• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 package com.android.cts.verifier.sensors;
2 
3 /*
4  * Copyright (C) 2014 The Android Open Source Project
5  *
6  * Licensed under the Apache License, Version 2.0 (the "License");
7  * you may not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  *      http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 import android.media.MediaCodec;
19 import android.media.MediaExtractor;
20 import android.media.MediaFormat;
21 import android.os.Debug;
22 import android.os.Environment;
23 import android.os.PowerManager;
24 import android.util.JsonWriter;
25 import android.util.Log;
26 
27 import org.opencv.core.Mat;
28 import org.opencv.core.CvType;
29 import org.opencv.core.MatOfDouble;
30 import org.opencv.core.MatOfFloat;
31 import org.opencv.core.MatOfPoint2f;
32 import org.opencv.core.MatOfPoint3f;
33 import org.opencv.core.Point;
34 import org.opencv.core.Size;
35 import org.opencv.imgcodecs.Imgcodecs;
36 import org.opencv.imgproc.Imgproc;
37 import org.opencv.calib3d.Calib3d;
38 import org.opencv.core.Core;
39 
40 import org.json.JSONObject;
41 import org.json.JSONException;
42 
43 import java.io.BufferedReader;
44 import java.io.ByteArrayOutputStream;
45 import java.io.File;
46 import java.io.FileNotFoundException;
47 import java.io.FileOutputStream;
48 import java.io.FileReader;
49 import java.io.IOException;
50 import java.io.OutputStream;
51 import java.io.OutputStreamWriter;
52 import java.nio.ByteBuffer;
53 import java.util.ArrayList;
54 
55 import android.opengl.GLES20;
56 import javax.microedition.khronos.opengles.GL10;
57 
58 /**
59  *  This class does analysis on the recorded RVCVCXCheck data sets.
60  */
61 public class RVCVXCheckAnalyzer {
62     private static final String TAG = "RVCVXAnalysis";
63     private static final boolean LOCAL_LOGV = false;
64     private static final boolean LOCAL_LOGD = true;
65     private final String mPath;
66 
67     private static final boolean OUTPUT_DEBUG_IMAGE = false;
68     private static final double VALID_FRAME_THRESHOLD = 0.8;
69     private static final double REPROJECTION_THRESHOLD_RATIO = 0.01;
70     private static final boolean FORCE_CV_ANALYSIS  = false;
71     private static final boolean TRACE_VIDEO_ANALYSIS = false;
72     private static final double DECIMATION_FPS_TARGET = 15.0;
73     private static final double MIN_VIDEO_LENGTH_SEC = 10;
74 
75     private final boolean mHaveInvertedImu;
76 
RVCVXCheckAnalyzer(String path, boolean haveInvertedImu)77     RVCVXCheckAnalyzer(String path, boolean haveInvertedImu)
78     {
79         mPath = path;
80         mHaveInvertedImu = haveInvertedImu;
81     }
82 
83     /**
84      * A class that contains  the analysis results
85      *
86      */
87     class AnalyzeReport {
88         public boolean error=true;
89         public String reason = "incomplete";
90 
91         // roll pitch yaw RMS error ( \sqrt{\frac{1}{n} \sum e_i^2 })
92         // unit in rad
93         public double roll_rms_error;
94         public double pitch_rms_error;
95         public double yaw_rms_error;
96 
97         // roll pitch yaw max error
98         // unit in rad
99         public double roll_max_error;
100         public double pitch_max_error;
101         public double yaw_max_error;
102 
103         // optimal t delta between sensor and camera data set to make best match
104         public double optimal_delta_t;
105         // the associate yaw offset based on initial values
106         public double yaw_offset;
107 
108         public int n_of_frame;
109         public int n_of_valid_frame;
110 
111         // both data below are in [sec]
112         public double sensor_period_avg;
113         public double sensor_period_stdev;
114 
115         /**
116          * write Json format serialization to a file in case future processing need the data
117          */
writeToFile(File file)118         public void writeToFile(File file) {
119             try {
120                 writeJSONToStream(new FileOutputStream(file));
121             } catch (FileNotFoundException e) {
122                 e.printStackTrace();
123                 Log.e(TAG, "Cannot create analyze report file.");
124             }
125         }
126 
127         /**
128          * Get the JSON format serialization
129          *@return Json format serialization as String
130          */
131         @Override
toString()132         public String toString() {
133             ByteArrayOutputStream s = new ByteArrayOutputStream();
134             writeJSONToStream(s);
135             return new String(s.toByteArray(),  java.nio.charset.StandardCharsets.UTF_8);
136         }
137 
writeJSONToStream(OutputStream s)138         private void writeJSONToStream(OutputStream s) {
139             try{
140                 JsonWriter writer =
141                         new JsonWriter(
142                                 new OutputStreamWriter( s )
143                         );
144                 writer.beginObject();
145                 writer.setLenient(true);
146 
147                 writer.name("roll_rms_error").value(roll_rms_error);
148                 writer.name("pitch_rms_error").value(pitch_rms_error);
149                 writer.name("yaw_rms_error").value(yaw_rms_error);
150                 writer.name("roll_max_error").value(roll_max_error);
151                 writer.name("pitch_max_error").value(pitch_max_error);
152                 writer.name("yaw_max_error").value(yaw_max_error);
153                 writer.name("optimal_delta_t").value(optimal_delta_t);
154                 writer.name("yaw_offset").value(yaw_offset);
155                 writer.name("n_of_frame").value(n_of_frame);
156                 writer.name("n_of_valid_frame").value(n_of_valid_frame);
157                 writer.name("sensor_period_avg").value(sensor_period_avg);
158                 writer.name("sensor_period_stdev").value(sensor_period_stdev);
159 
160                 writer.endObject();
161 
162                 writer.close();
163             } catch (IOException e) {
164                 // do nothing
165                 Log.e(TAG, "Error in serialize analyze report to JSON");
166             } catch (IllegalArgumentException e) {
167                 e.printStackTrace();
168                 Log.e(TAG, "Invalid parameter to write into JSON format");
169             }
170         }
171     }
172 
173     /**
174      *  Process data set stored in the path specified in constructor
175      *  and return an analyze report to caller
176      *
177      *  @return An AnalyzeReport that contains detailed information about analysis
178      */
processDataSet()179     public AnalyzeReport processDataSet() {
180         int nframe;// number of frames in video
181         int nslog; // number of sensor log
182         int nvlog; // number of video generated log
183 
184 
185         AnalyzeReport report = new AnalyzeReport();
186 
187         ArrayList<AttitudeRec> srecs = new ArrayList<>();
188         ArrayList<AttitudeRec> vrecs = new ArrayList<>();
189         ArrayList<AttitudeRec> srecs2 = new ArrayList<>();
190 
191 
192         final boolean use_solved = new File(mPath, "vision_rpy.log").exists() && !FORCE_CV_ANALYSIS;
193 
194         if (use_solved) {
195             nframe = nvlog = loadAttitudeRecs(new File(mPath, "vision_rpy.log"), vrecs);
196             nslog = loadAttitudeRecs(new File(mPath, "sensor_rpy.log"),srecs);
197         }else {
198             nframe = analyzeVideo(vrecs);
199             nvlog = vrecs.size();
200 
201             if (LOCAL_LOGV) {
202                 Log.v(TAG, "Post video analysis nvlog = " + nvlog + " nframe=" + nframe);
203             }
204             if (nvlog <= 0 || nframe <= 0) {
205                 // invalid results
206                 report.reason = "Unable to load recorded video.";
207                 return report;
208             }
209             if (nframe < MIN_VIDEO_LENGTH_SEC*VALID_FRAME_THRESHOLD) {
210                 // video is too short
211                 Log.w(TAG, "Video record is to short, n frame = " + nframe);
212                 report.reason = "Video too short.";
213                 return report;
214             }
215             if ((double) nvlog / nframe < VALID_FRAME_THRESHOLD) {
216                 // too many invalid frames
217                 Log.w(TAG, "Too many invalid frames, n valid frame = " + nvlog +
218                         ", n total frame = " + nframe);
219                 report.reason = "Too many invalid frames.";
220                 return report;
221             }
222 
223             fixFlippedAxis(vrecs);
224 
225             nslog = loadSensorLog(srecs);
226         }
227 
228         // Gradient descent will have faster performance than this simple search,
229         // but the performance is dominated by the vision part, so it is not very necessary.
230         double delta_t;
231         double min_rms = Double.MAX_VALUE;
232         double min_delta_t =0.;
233         double min_yaw_offset =0.;
234 
235         // pre-allocation
236         for (AttitudeRec i: vrecs) {
237             srecs2.add(new AttitudeRec(0,0,0,0));
238         }
239 
240         // find optimal offset
241         for (delta_t = -2.0; delta_t<2.0; delta_t +=0.01) {
242             double rms;
243             resampleSensorLog(srecs, vrecs, delta_t, 0.0, srecs2);
244             rms = Math.sqrt(calcSqrErr(vrecs, srecs2, 0)+ calcSqrErr(vrecs, srecs2, 1));
245             if (rms < min_rms) {
246                 min_rms = rms;
247                 min_delta_t = delta_t;
248                 min_yaw_offset = vrecs.get(0).yaw - srecs2.get(0).yaw;
249             }
250         }
251         // sample at optimal offset
252         resampleSensorLog(srecs, vrecs, min_delta_t, min_yaw_offset, srecs2);
253 
254         if (!use_solved) {
255             dumpAttitudeRecs(new File(mPath, "vision_rpy.log"), vrecs);
256             dumpAttitudeRecs(new File(mPath, "sensor_rpy.log"), srecs);
257         }
258         dumpAttitudeRecs(new File(mPath, "sensor_rpy_resampled.log"), srecs2);
259         dumpAttitudeError(new File(mPath, "attitude_error.log"), vrecs, srecs2);
260 
261         // fill report fields
262         report.roll_rms_error = Math.sqrt(calcSqrErr(vrecs, srecs2, 0));
263         report.pitch_rms_error = Math.sqrt(calcSqrErr(vrecs, srecs2, 1));
264         report.yaw_rms_error = Math.sqrt(calcSqrErr(vrecs, srecs2, 2));
265 
266         report.roll_max_error = calcMaxErr(vrecs, srecs2, 0);
267         report.pitch_max_error = calcMaxErr(vrecs, srecs2, 1);
268         report.yaw_max_error = calcMaxErr(vrecs, srecs2, 2);
269 
270         report.optimal_delta_t = min_delta_t;
271         report.yaw_offset = (min_yaw_offset);
272 
273         report.n_of_frame = nframe;
274         report.n_of_valid_frame = nvlog;
275 
276         double [] sensor_period_stat = calcSensorPeriodStat(srecs);
277         report.sensor_period_avg = sensor_period_stat[0];
278         report.sensor_period_stdev = sensor_period_stat[1];
279 
280         // output report to file and log in JSON format as well
281         report.writeToFile(new File(mPath, "report.json"));
282         if (LOCAL_LOGV)    Log.v(TAG, "Report in JSON:" + report.toString());
283 
284         report.reason = "Completed";
285         report.error = false;
286         return report;
287     }
288 
289     /**
290      * Generate pattern geometry like this one
291      * http://docs.opencv.org/trunk/_downloads/acircles_pattern.png
292      *
293      * @return Array of 3D points
294      */
asymmetricalCircleGrid(Size size)295     private MatOfPoint3f asymmetricalCircleGrid(Size size) {
296         final int cn = 3;
297 
298         int n = (int)(size.width * size.height);
299         float positions[] = new float[n * cn];
300         float unit=0.02f;
301         MatOfPoint3f grid = new MatOfPoint3f();
302 
303         for (int i = 0; i < size.height; i++) {
304             for (int j = 0; j < size.width * cn; j += cn) {
305                 positions[(int) (i * size.width * cn + j + 0)] =
306                         (2 * (j / cn) + i % 2) * (float) unit;
307                 positions[(int) (i * size.width * cn + j + 1)] =
308                         i * unit;
309                 positions[(int) (i * size.width * cn + j + 2)] = 0;
310             }
311         }
312         grid.create(n, 1, CvType.CV_32FC3);
313         grid.put(0, 0, positions);
314         return grid;
315     }
316 
317     /**
318      *  Create a camera intrinsic matrix using input parameters
319      *
320      *  The camera intrinsic matrix will be like:
321      *
322      *       +-                       -+
323      *       |  f   0    center.width  |
324      *   A = |  0   f    center.height |
325      *       |  0   0         1        |
326      *       +-                       -+
327      *
328      *  @return An approximated (not actually calibrated) camera matrix
329      */
cameraMatrix(float f, Size center)330     private static Mat cameraMatrix(float f, Size center) {
331         final double [] data = {f, 0, center.width, 0, f, center.height, 0, 0, 1f};
332         Mat m = new Mat(3,3, CvType.CV_64F);
333         m.put(0, 0, data);
334         return m;
335     }
336 
337     /**
338      *  Attitude record in time roll pitch yaw format.
339      *
340      */
341     private class AttitudeRec {
342         public double time;
343         public double roll;
344         public double pitch;
345         public double yaw;
346 
347         // ctor
AttitudeRec(double atime, double aroll, double apitch, double ayaw)348         AttitudeRec(double atime, double aroll, double apitch, double ayaw) {
349             time = atime;
350             roll = aroll;
351             pitch = apitch;
352             yaw = ayaw;
353         }
354 
355         // ctor
AttitudeRec(double atime, double [] rpy)356         AttitudeRec(double atime, double [] rpy) {
357             time = atime;
358             roll = rpy[0];
359             pitch = rpy[1];
360             yaw = rpy[2];
361         }
362 
363         // copy value of another to this
assign(AttitudeRec rec)364         void assign(AttitudeRec rec) {
365             time = rec.time;
366             roll = rec.time;
367             pitch = rec.pitch;
368             yaw = rec.yaw;
369         }
370 
371         // copy roll-pitch-yaw value but leave the time specified by atime
assign(AttitudeRec rec, double atime)372         void assign(AttitudeRec rec, double atime) {
373             time = atime;
374             roll = rec.time;
375             pitch = rec.pitch;
376             yaw = rec.yaw;
377         }
378 
379         // set each field separately
set(double atime, double aroll, double apitch, double ayaw)380         void set(double atime, double aroll, double apitch, double ayaw) {
381             time = atime;
382             roll = aroll;
383             pitch = apitch;
384             yaw = ayaw;
385         }
386     }
387 
388 
389     /**
390      *  Load the sensor log in (time Roll-pitch-yaw) format to a ArrayList<AttitudeRec>
391      *
392      *  @return the number of sensor log items
393      */
loadSensorLog(ArrayList<AttitudeRec> recs)394     private int loadSensorLog(ArrayList<AttitudeRec> recs) {
395         //ArrayList<AttitudeRec> recs = new ArrayList<AttitudeRec>();
396         File csvFile = new File(mPath, "sensor.log");
397         BufferedReader br=null;
398         String line;
399 
400         // preallocate and reuse
401         double [] quat = new double[4];
402         double [] rpy = new double[3];
403 
404         double t0 = -1;
405 
406         Log.i(TAG, "Converting sensor log; inverted IMU adjustment: " + mHaveInvertedImu);
407         try {
408             br = new BufferedReader(new FileReader(csvFile));
409             while ((line = br.readLine()) != null) {
410                 //space separator
411                 String[] items = line.split(" ");
412 
413                 if (items.length != 5) {
414                     recs.clear();
415                     return -1;
416                 }
417 
418                 quat[0] = Double.parseDouble(items[1]);
419                 quat[1] = Double.parseDouble(items[2]);
420                 quat[2] = Double.parseDouble(items[3]);
421                 quat[3] = Double.parseDouble(items[4]);
422 
423                 //
424                 quat2rpy(quat, rpy);
425 
426                 if (mHaveInvertedImu) {
427                     // Compensate for front-facing camera rotated around hinge along
428                     // Y-axis with IMU on same panel (so IMU X & Z axes are inverted
429                     // compared to what we expect): offset roll by 180 degrees and
430                     // invert pitch and roll directions
431                     rpy[0] -= Math.PI;
432                     if (rpy[0] <= -Math.PI) {
433                       rpy[0] += 2 * Math.PI;
434                     }
435                     rpy[0] *= -1;
436                     rpy[1] *= -1;
437                 }
438 
439                 if (t0 < 0) {
440                     t0 = Long.parseLong(items[0])/1e9;
441                 }
442                 recs.add(new AttitudeRec(Long.parseLong(items[0])/1e9-t0, rpy));
443             }
444 
445         } catch (FileNotFoundException e) {
446             e.printStackTrace();
447             Log.e(TAG, "Cannot find sensor logging data");
448         } catch (IOException e) {
449             e.printStackTrace();
450             Log.e(TAG, "Cannot read sensor logging data");
451         } finally {
452             if (br != null) {
453                 try {
454                     br.close();
455                 } catch (IOException e) {
456                     e.printStackTrace();
457                 }
458             }
459         }
460 
461         return recs.size();
462     }
463 
464     /**
465      * Read video meta info
466      */
467     private class VideoMetaInfo {
468         public double fps;
469         public int frameWidth;
470         public int frameHeight;
471         public double fovWidth;
472         public double fovHeight;
473         public boolean valid = false;
474 
VideoMetaInfo(File file)475         VideoMetaInfo(File file) {
476 
477             BufferedReader br=null;
478             String line;
479             String content="";
480             try {
481                 br = new BufferedReader(new FileReader(file));
482                 while ((line = br.readLine()) != null) {
483                     content = content +line;
484                 }
485 
486             } catch (FileNotFoundException e) {
487                 e.printStackTrace();
488                 Log.e(TAG, "Cannot find video meta info file");
489             } catch (IOException e) {
490                 e.printStackTrace();
491                 Log.e(TAG, "Cannot read video meta info file");
492             } finally {
493                 if (br != null) {
494                     try {
495                         br.close();
496                     } catch (IOException e) {
497                         e.printStackTrace();
498                     }
499                 }
500             }
501 
502             if (content.isEmpty()) {
503                 return;
504             }
505 
506             try {
507                 JSONObject json = new JSONObject(content);
508                 frameWidth = json.getInt("width");
509                 frameHeight = json.getInt("height");
510                 fps = json.getDouble("frameRate");
511                 fovWidth = json.getDouble("fovW")*Math.PI/180.0;
512                 fovHeight = json.getDouble("fovH")*Math.PI/180.0;
513             } catch (JSONException e) {
514                 return;
515             }
516 
517             valid = true;
518 
519         }
520     }
521 
522 
523 
524     /**
525      * Debugging helper function, load ArrayList<AttitudeRec> from a file dumped out by
526      * dumpAttitudeRecs
527      */
loadAttitudeRecs(File file, ArrayList<AttitudeRec> recs)528     private int loadAttitudeRecs(File file, ArrayList<AttitudeRec> recs) {
529         BufferedReader br=null;
530         String line;
531         double time;
532         double [] rpy = new double[3];
533 
534         try {
535             br = new BufferedReader(new FileReader(file));
536             while ((line = br.readLine()) != null) {
537                 //space separator
538                 String[] items = line.split(" ");
539 
540                 if (items.length != 4) {
541                     recs.clear();
542                     return -1;
543                 }
544 
545                 time = Double.parseDouble(items[0]);
546                 rpy[0] = Double.parseDouble(items[1]);
547                 rpy[1] = Double.parseDouble(items[2]);
548                 rpy[2] = Double.parseDouble(items[3]);
549 
550                 recs.add(new AttitudeRec(time, rpy));
551             }
552 
553         } catch (FileNotFoundException e) {
554             e.printStackTrace();
555             Log.e(TAG, "Cannot find AttitudeRecs file specified.");
556         } catch (IOException e) {
557             e.printStackTrace();
558             Log.e(TAG, "Read AttitudeRecs file failure");
559         } finally {
560             if (br != null) {
561                 try {
562                     br.close();
563                 } catch (IOException e) {
564                     e.printStackTrace();
565                 }
566             }
567         }
568 
569         return recs.size();
570     }
571     /**
572      * Debugging helper function, Dump an ArrayList<AttitudeRec> to a file
573      */
dumpAttitudeRecs(File file, ArrayList<AttitudeRec> recs)574     private void dumpAttitudeRecs(File file, ArrayList<AttitudeRec> recs) {
575         OutputStreamWriter w=null;
576         try {
577             w = new OutputStreamWriter(new FileOutputStream(file));
578 
579             for (AttitudeRec r : recs) {
580                 w.write(String.format("%f %f %f %f\r\n", r.time, r.roll, r.pitch, r.yaw));
581             }
582             w.close();
583         } catch(FileNotFoundException e) {
584             e.printStackTrace();
585             Log.e(TAG, "Cannot create AttitudeRecs file.");
586         } catch (IOException e) {
587             Log.e(TAG, "Write AttitudeRecs file failure");
588         } finally {
589             if (w!=null) {
590                 try {
591                     w.close();
592                 } catch (IOException e) {
593                     e.printStackTrace();
594                 }
595             }
596         }
597     }
598 
599     /**
600      *  Read the sensor log in ArrayList<AttitudeRec> format and find out the sensor sample time
601      *  statistics: mean and standard deviation.
602      *
603      *  @return The returned value will be a double array with exact 2 items, first [0] will be
604      *  mean and the second [1]  will be the standard deviation.
605      *
606      */
calcSensorPeriodStat(ArrayList<AttitudeRec> srec)607     private double [] calcSensorPeriodStat(ArrayList<AttitudeRec> srec)   {
608         double tp = srec.get(0).time;
609         int i;
610         double sum = 0.0;
611         double sumsq = 0.0;
612         for(i=1; i<srec.size(); ++i) {
613             double dt;
614             dt = srec.get(i).time - tp;
615             sum += dt;
616             sumsq += dt*dt;
617             tp += dt;
618         }
619         double [] ret = new double[2];
620         ret[0] = sum/srec.size();
621         ret[1] = Math.sqrt(sumsq/srec.size() - ret[0]*ret[0]);
622         return ret;
623     }
624 
625     /**
626      * Flipping the axis as the image are flipped upside down in OpenGL frames
627      */
fixFlippedAxis(ArrayList<AttitudeRec> vrecs)628     private void fixFlippedAxis(ArrayList<AttitudeRec> vrecs)   {
629         for (AttitudeRec i: vrecs) {
630             i.yaw = -i.yaw;
631         }
632     }
633 
634     /**
635      *  Calculate the maximum error on the specified axis between two time aligned (resampled)
636      *  ArrayList<AttitudeRec>. Yaw axis needs special treatment as 0 and 2pi error are same thing
637      *
638      * @param ra  one ArrayList of AttitudeRec
639      * @param rb  the other ArrayList of AttitudeRec
640      * @param axis axis id for the comparison (0 = roll, 1 = pitch, 2 = yaw)
641      * @return Maximum error
642      */
calcMaxErr(ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb, int axis)643     private double calcMaxErr(ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb, int axis)  {
644         // check if they are valid and comparable data
645         if (ra.size() != rb.size()) {
646             throw new ArrayIndexOutOfBoundsException("Two array has to be the same");
647         }
648         // check input parameter validity
649         if (axis<0 || axis > 2) {
650             throw new IllegalArgumentException("Invalid data axis.");
651         }
652 
653         int i;
654         double max = 0.0;
655         double diff = 0.0;
656         for(i=0; i<ra.size(); ++i) {
657             // make sure they are aligned data
658             if (ra.get(i).time != rb.get(i).time) {
659                 throw new IllegalArgumentException("Element "+i+
660                         " of two inputs has different time.");
661             }
662             switch(axis) {
663                 case 0:
664                     diff = ra.get(i).roll - rb.get(i).roll; // they always opposite of each other..
665                     break;
666                 case 1:
667                     diff = ra.get(i).pitch - rb.get(i).pitch;
668                     break;
669                 case 2:
670                     diff = Math.abs(((4*Math.PI + ra.get(i).yaw - rb.get(i).yaw)%(2*Math.PI))
671                             -Math.PI)-Math.PI;
672                     break;
673             }
674             diff = Math.abs(diff);
675             if (diff>max) {
676                 max = diff;
677             }
678         }
679         return max;
680     }
681 
682     /**
683      *  Calculate the RMS error on the specified axis between two time aligned (resampled)
684      *  ArrayList<AttitudeRec>. Yaw axis needs special treatment as 0 and 2pi error are same thing
685      *
686      * @param ra  one ArrayList of AttitudeRec
687      * @param rb  the other ArrayList of AttitudeRec
688      * @param axis axis id for the comparison (0 = roll, 1 = pitch, 2 = yaw)
689      * @return Mean square error
690      */
calcSqrErr(ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb, int axis)691     private double calcSqrErr(ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb, int axis) {
692         // check if they are valid and comparable data
693         if (ra.size() != rb.size()) {
694             throw new ArrayIndexOutOfBoundsException("Two array has to be the same");
695         }
696         // check input parameter validity
697         if (axis<0 || axis > 2) {
698             throw new IllegalArgumentException("Invalid data axis.");
699         }
700 
701         int i;
702         double sum = 0.0;
703         double diff = 0.0;
704         for(i=0; i<ra.size(); ++i) {
705             // check input data validity
706             if (ra.get(i).time != rb.get(i).time) {
707                 throw new IllegalArgumentException("Element "+i+
708                         " of two inputs has different time.");
709             }
710 
711             switch(axis) {
712                 case 0:
713                     diff = ra.get(i).roll - rb.get(i).roll;
714                     break;
715                 case 1:
716                     diff = ra.get(i).pitch - rb.get(i).pitch;
717                     break;
718                 case 2:
719                     diff = Math.abs(((4*Math.PI + ra.get(i).yaw - rb.get(i).yaw)%(2*Math.PI))-
720                             Math.PI)-Math.PI;
721                     break;
722             }
723 
724             sum += diff*diff;
725         }
726         return sum/ra.size();
727     }
728 
729     /**
730      * Debugging helper function. Dump the error between two time aligned ArrayList<AttitudeRec>'s
731      *
732      * @param file File to write to
733      * @param ra  one ArrayList of AttitudeRec
734      * @param rb  the other ArrayList of AttitudeRec
735      */
dumpAttitudeError(File file, ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb)736     private void dumpAttitudeError(File file, ArrayList<AttitudeRec> ra, ArrayList<AttitudeRec> rb){
737         if (ra.size() != rb.size()) {
738             throw new ArrayIndexOutOfBoundsException("Two array has to be the same");
739         }
740 
741         int i;
742 
743         ArrayList<AttitudeRec> rerr = new ArrayList<>();
744         for(i=0; i<ra.size(); ++i) {
745             if (ra.get(i).time != rb.get(i).time) {
746                 throw new IllegalArgumentException("Element "+ i
747                         + " of two inputs has different time.");
748             }
749 
750             rerr.add(new AttitudeRec(ra.get(i).time, ra.get(i).roll - rb.get(i).roll,
751                     ra.get(i).pitch - rb.get(i).pitch,
752                     (Math.abs(((4*Math.PI + ra.get(i).yaw - rb.get(i).yaw)%(2*Math.PI))
753                             -Math.PI)-Math.PI)));
754 
755         }
756         dumpAttitudeRecs(file, rerr);
757     }
758 
759     /**
760      * Resample one ArrayList<AttitudeRec> with respect to another ArrayList<AttitudeRec>
761      *
762      * @param rec           the ArrayList of AttitudeRec to be sampled
763      * @param timebase      the other ArrayList of AttitudeRec that serves as time base
764      * @param delta_t       offset in time before resample
765      * @param yaw_offset    offset in yaw axis
766      * @param resampled     output ArrayList of AttitudeRec
767      */
768 
resampleSensorLog(ArrayList<AttitudeRec> rec, ArrayList<AttitudeRec> timebase, double delta_t, double yaw_offset, ArrayList<AttitudeRec> resampled)769     private void resampleSensorLog(ArrayList<AttitudeRec> rec, ArrayList<AttitudeRec> timebase,
770             double delta_t, double yaw_offset, ArrayList<AttitudeRec> resampled)    {
771         int i;
772         int j = -1;
773         for(i=0; i<timebase.size(); i++) {
774             double time = timebase.get(i).time + delta_t;
775 
776             while(j<rec.size()-1 && rec.get(j+1).time < time) j++;
777 
778             if (j == -1) {
779                 //use first
780                 resampled.get(i).assign(rec.get(0), timebase.get(i).time);
781             } else if (j == rec.size()-1) {
782                 // use last
783                 resampled.get(i).assign(rec.get(j), timebase.get(i).time);
784             } else {
785                 // do linear resample
786                 double alpha = (time - rec.get(j).time)/((rec.get(j+1).time - rec.get(j).time));
787                 double roll = (1-alpha) * rec.get(j).roll + alpha * rec.get(j+1).roll;
788                 double pitch = (1-alpha) * rec.get(j).pitch + alpha * rec.get(j+1).pitch;
789                 double yaw = (1-alpha) * rec.get(j).yaw + alpha * rec.get(j+1).yaw + yaw_offset;
790                 resampled.get(i).set(timebase.get(i).time, roll, pitch, yaw);
791             }
792         }
793     }
794 
795     /**
796      * Analyze video frames using computer vision approach and generate a ArrayList<AttitudeRec>
797      *
798      * @param recs  output ArrayList of AttitudeRec
799      * @return total number of frame of the video
800      */
analyzeVideo(ArrayList<AttitudeRec> recs)801     private int analyzeVideo(ArrayList<AttitudeRec> recs) {
802         VideoMetaInfo meta = new VideoMetaInfo(new File(mPath, "videometa.json"));
803 
804         int decimation = 1;
805         boolean use_timestamp = true;
806 
807         // roughly determine if decimation is necessary
808         if (meta.fps > DECIMATION_FPS_TARGET) {
809             decimation = (int)(meta.fps / DECIMATION_FPS_TARGET);
810             meta.fps /=decimation;
811         }
812 
813         VideoDecoderForOpenCV videoDecoder = new VideoDecoderForOpenCV(
814                 new File(mPath, "video.mp4"), decimation);
815 
816 
817         Mat frame;
818         Mat gray = new Mat();
819         int i = -1;
820 
821         Size frameSize = videoDecoder.getSize();
822 
823         if (frameSize.width != meta.frameWidth || frameSize.height != meta.frameHeight) {
824             // this is very unlikely
825             return -1;
826         }
827 
828         if (TRACE_VIDEO_ANALYSIS) {
829             Debug.startMethodTracing("cvprocess");
830         }
831 
832         final int patternWidth = 4;
833         final int patternHeight = 11;
834         Size patternSize = new Size(patternWidth, patternHeight);
835 
836         float fc = (float)(meta.frameWidth/2.0/Math.tan(meta.fovWidth/2.0));
837         Mat camMat = cameraMatrix(fc, new Size(frameSize.width/2, frameSize.height/2));
838         MatOfDouble coeff = new MatOfDouble(); // dummy
839 
840         MatOfPoint2f centers = new MatOfPoint2f();
841         MatOfPoint3f grid = asymmetricalCircleGrid(patternSize);
842         Mat rvec = new MatOfFloat();
843         Mat tvec = new MatOfFloat();
844 
845         MatOfPoint2f reprojCenters = new MatOfPoint2f();
846 
847         if (LOCAL_LOGV) {
848             Log.v(TAG, "Camera Mat = \n" + camMat.dump());
849         }
850 
851         long startTime = System.nanoTime();
852         long [] ts = new long[1];
853 
854         while ((frame = videoDecoder.getFrame(ts)) !=null) {
855             if (LOCAL_LOGV) {
856                 Log.v(TAG, "got a frame " + i);
857             }
858 
859             if (use_timestamp && ts[0] == -1) {
860                 use_timestamp = false;
861             }
862 
863             // has to be in front, as there are cases where execution
864             // will skip the later part of this while
865             i++;
866 
867             // convert to gray manually as by default findCirclesGridDefault uses COLOR_BGR2GRAY
868             Imgproc.cvtColor(frame, gray, Imgproc.COLOR_RGB2GRAY);
869 
870             boolean foundPattern = Calib3d.findCirclesGrid(
871                     gray,  patternSize, centers, Calib3d.CALIB_CB_ASYMMETRIC_GRID);
872 
873             if (!foundPattern) {
874                 // skip to next frame
875                 continue;
876             }
877 
878             if (OUTPUT_DEBUG_IMAGE) {
879                 Calib3d.drawChessboardCorners(frame, patternSize, centers, true);
880             }
881 
882             // figure out the extrinsic parameters using real ground truth 3D points and the pixel
883             // position of blobs found in findCircleGrid, an estimated camera matrix and
884             // no-distortion are assumed.
885             boolean foundSolution =
886                     Calib3d.solvePnP(grid, centers, camMat, coeff, rvec, tvec,
887                             false, Calib3d.CV_ITERATIVE);
888 
889             if (!foundSolution) {
890                 // skip to next frame
891                 if (LOCAL_LOGV) {
892                     Log.v(TAG, "cannot find pnp solution in frame " + i + ", skipped.");
893                 }
894                 continue;
895             }
896 
897             // reproject points to for evaluation of result accuracy of solvePnP
898             Calib3d.projectPoints(grid, rvec, tvec, camMat, coeff, reprojCenters);
899 
900             // Calculate the average distance between opposite corners of the pattern in pixels
901             Point[] centerPoints = centers.toArray();
902             Point bottomLeftPos = centerPoints[0];
903             Point bottomRightPos = centerPoints[patternWidth - 1];
904             Point topLeftPos = centerPoints[(patternHeight * patternWidth) - patternWidth];
905             Point topRightPos = centerPoints[(patternHeight * patternWidth) - 1];
906             double avgPixelDist = (getDistanceBetweenPoints(bottomLeftPos, topRightPos)
907                     + getDistanceBetweenPoints(bottomRightPos, topLeftPos)) / 2;
908 
909             // Calculate the average pixel error between the circle centers from the video and the
910             // reprojected circle centers based on the estimated camera position. The error provides
911             // a way to estimate how accurate the assumed test device's position is. If the error
912             // is high, then the frame should be discarded to prevent an inaccurate test device's
913             // position from being compared against the rotation vector sample at that time.
914             Point[] reprojectedPointsArray = reprojCenters.toArray();
915             double avgCenterError = 0.0;
916             for (int curCenter = 0; curCenter < reprojectedPointsArray.length; curCenter++) {
917                 avgCenterError += getDistanceBetweenPoints(
918                         reprojectedPointsArray[curCenter], centerPoints[curCenter]);
919             }
920             avgCenterError /= reprojectedPointsArray.length;
921 
922             if (LOCAL_LOGV) {
923                 Log.v(TAG, "Found attitude, re-projection error = " + avgCenterError);
924             }
925 
926             // if error is reasonable, add it into the results. Use a dynamic threshold based on
927             // the pixel distance of opposite corners of the pattern to prevent higher resolution
928             // video or the distance between the camera and the test pattern from impacting the test
929             if (avgCenterError < REPROJECTION_THRESHOLD_RATIO * avgPixelDist) {
930                 double [] rv = new double[3];
931                 double timestamp;
932 
933                 rvec.get(0,0, rv);
934                 if (use_timestamp) {
935                     timestamp = (double)ts[0] / 1e6;
936                 } else {
937                     timestamp = (double) i / meta.fps;
938                 }
939                 if (LOCAL_LOGV) Log.v(TAG, String.format("Added frame %d  ts = %f", i, timestamp));
940                 recs.add(new AttitudeRec(timestamp, rodr2rpy(rv)));
941             }
942 
943             if (OUTPUT_DEBUG_IMAGE) {
944                 Calib3d.drawChessboardCorners(frame, patternSize, reprojCenters, true);
945                 Imgcodecs.imwrite(mPath + "/RVCVRecData/DebugCV/img" + i + ".png", frame);
946             }
947         }
948 
949         if (LOCAL_LOGV) {
950             Log.v(TAG, "Finished decoding");
951         }
952 
953         if (TRACE_VIDEO_ANALYSIS) {
954             Debug.stopMethodTracing();
955         }
956 
957         if (LOCAL_LOGV) {
958             // time analysis
959             double totalTime = (System.nanoTime()-startTime)/1e9;
960             Log.i(TAG, "Total time: "+totalTime +"s, Per frame time: "+totalTime/i );
961         }
962         return i;
963     }
964 
965     /**
966      * OpenCV for Android have not support the VideoCapture from file
967      * This is a make shift solution before it is supported.
968      * One issue right now is that the glReadPixels is quite slow .. around 6.5ms for a 720p frame
969      */
970     private class VideoDecoderForOpenCV implements Runnable {
971         static final String TAG = "VideoDecoderForOpenCV";
972 
973         private MediaExtractor extractor=null;
974         private MediaCodec decoder=null;
975         private CtsMediaOutputSurface surface=null;
976 
977         private MatBuffer mMatBuffer;
978 
979         private final File mVideoFile;
980 
981         private boolean valid;
982         private Object setupSignal;
983 
984         private Thread mThread;
985         private int mDecimation;
986 
987         /**
988          * Constructor
989          * @param file video file
990          * @param decimation process every "decimation" number of frame
991          */
VideoDecoderForOpenCV(File file, int decimation)992         VideoDecoderForOpenCV(File file, int decimation) {
993             mVideoFile = file;
994             mDecimation = decimation;
995             valid = false;
996 
997             start();
998         }
999 
1000         /**
1001          * Constructor
1002          * @param file video file
1003          */
VideoDecoderForOpenCV(File file)1004         VideoDecoderForOpenCV(File file)   {
1005             this(file, 1);
1006         }
1007 
1008         /**
1009          * Test if video decoder is in valid states ready to output video.
1010          * @return true of force.
1011          */
isValid()1012         public boolean isValid() {
1013             return valid;
1014         }
1015 
start()1016         private void start() {
1017             setupSignal = new Object();
1018             mThread = new Thread(this);
1019             mThread.start();
1020 
1021             synchronized (setupSignal) {
1022                 try {
1023                     setupSignal.wait();
1024                 } catch (InterruptedException e) {
1025                     Log.e(TAG, "Interrupted when waiting for video decoder setup ready");
1026                 }
1027             }
1028         }
stop()1029         private void stop() {
1030             if (mThread != null) {
1031                 mThread.interrupt();
1032                 try {
1033                     mThread.join();
1034                 } catch (InterruptedException e) {
1035                     Log.e(TAG, "Interrupted when waiting for video decoder thread to stop");
1036                 }
1037                 try {
1038                     decoder.stop();
1039                 }catch (IllegalStateException e) {
1040                     Log.e(TAG, "Video decoder is not in a state that can be stopped");
1041                 }
1042             }
1043             mThread = null;
1044         }
1045 
teardown()1046         void teardown() {
1047             if (decoder!=null) {
1048                 decoder.release();
1049                 decoder = null;
1050             }
1051             if (surface!=null) {
1052                 surface.release();
1053                 surface = null;
1054             }
1055             if (extractor!=null) {
1056                 extractor.release();
1057                 extractor = null;
1058             }
1059         }
1060 
setup()1061         void setup() {
1062             int width=0, height=0;
1063 
1064             extractor = new MediaExtractor();
1065 
1066             try {
1067                 extractor.setDataSource(mVideoFile.getPath());
1068             } catch (IOException e) {
1069                 return;
1070             }
1071 
1072             for (int i = 0; i < extractor.getTrackCount(); i++) {
1073                 MediaFormat format = extractor.getTrackFormat(i);
1074                 String mime = format.getString(MediaFormat.KEY_MIME);
1075 
1076                 if (mime.startsWith("video/")) {
1077                     width = format.getInteger(MediaFormat.KEY_WIDTH);
1078                     height = format.getInteger(MediaFormat.KEY_HEIGHT);
1079                     extractor.selectTrack(i);
1080                     try {
1081                         decoder = MediaCodec.createDecoderByType(mime);
1082                     }catch (IOException e) {
1083                         continue;
1084                     }
1085                     // Decode to surface
1086                     //decoder.configure(format, surface, null, 0);
1087 
1088                     // Decode to offscreen surface
1089                     surface = new CtsMediaOutputSurface(width, height);
1090                     mMatBuffer = new MatBuffer(width, height);
1091 
1092                     decoder.configure(format, surface.getSurface(), null, 0);
1093                     break;
1094                 }
1095             }
1096 
1097             if (decoder == null) {
1098                 Log.e(TAG, "Can't find video info!");
1099                 return;
1100             }
1101             valid = true;
1102         }
1103 
1104         @Override
run()1105         public void run() {
1106             setup();
1107 
1108             synchronized (setupSignal) {
1109                 setupSignal.notify();
1110             }
1111 
1112             if (!valid) {
1113                 return;
1114             }
1115 
1116             decoder.start();
1117 
1118             ByteBuffer[] inputBuffers = decoder.getInputBuffers();
1119             ByteBuffer[] outputBuffers = decoder.getOutputBuffers();
1120             MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
1121 
1122             boolean isEOS = false;
1123             long startMs = System.currentTimeMillis();
1124             long timeoutUs = 10000;
1125 
1126             int iframe = 0;
1127             long frameTimestamp = 0;
1128 
1129             while (!Thread.interrupted()) {
1130                 if (!isEOS) {
1131                     int inIndex = decoder.dequeueInputBuffer(10000);
1132                     if (inIndex >= 0) {
1133                         ByteBuffer buffer = inputBuffers[inIndex];
1134                         int sampleSize = extractor.readSampleData(buffer, 0);
1135                         if (sampleSize < 0) {
1136                             if (LOCAL_LOGD) {
1137                                 Log.d("VideoDecoderForOpenCV",
1138                                         "InputBuffer BUFFER_FLAG_END_OF_STREAM");
1139                             }
1140                             decoder.queueInputBuffer(inIndex, 0, 0, 0,
1141                                     MediaCodec.BUFFER_FLAG_END_OF_STREAM);
1142                             isEOS = true;
1143                         } else {
1144                             frameTimestamp = extractor.getSampleTime();
1145                             decoder.queueInputBuffer(inIndex, 0, sampleSize, frameTimestamp, 0);
1146                             if (LOCAL_LOGD) {
1147                                 Log.d(TAG, String.format("Frame %d sample time %f s",
1148                                             iframe, (double)frameTimestamp/1e6));
1149                             }
1150                             extractor.advance();
1151                         }
1152                     }
1153                 }
1154 
1155                 int outIndex = decoder.dequeueOutputBuffer(info, 10000);
1156                 MediaFormat outFormat;
1157                 switch (outIndex) {
1158                     case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
1159                         if (LOCAL_LOGD) {
1160                             Log.d(TAG, "INFO_OUTPUT_BUFFERS_CHANGED");
1161                         }
1162                         outputBuffers = decoder.getOutputBuffers();
1163                         break;
1164                     case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
1165                         outFormat = decoder.getOutputFormat();
1166                         if (LOCAL_LOGD) {
1167                             Log.d(TAG, "New format " + outFormat);
1168                         }
1169                         break;
1170                     case MediaCodec.INFO_TRY_AGAIN_LATER:
1171                         if (LOCAL_LOGD) {
1172                             Log.d(TAG, "dequeueOutputBuffer timed out!");
1173                         }
1174                         break;
1175                     default:
1176 
1177                         ByteBuffer buffer = outputBuffers[outIndex];
1178                         boolean doRender = (info.size != 0);
1179 
1180                         // As soon as we call releaseOutputBuffer, the buffer will be forwarded
1181                         // to SurfaceTexture to convert to a texture.  The API doesn't
1182                         // guarantee that the texture will be available before the call
1183                         // returns, so we need to wait for the onFrameAvailable callback to
1184                         // fire.  If we don't wait, we risk rendering from the previous frame.
1185                         decoder.releaseOutputBuffer(outIndex, doRender);
1186 
1187                         if (doRender) {
1188                             surface.awaitNewImage();
1189                             surface.drawImage();
1190                             if (LOCAL_LOGV) {
1191                                 Log.v(TAG, "Finish drawing a frame!");
1192                             }
1193                             if ((iframe++ % mDecimation) == 0) {
1194                                 //Send the frame for processing
1195                                 mMatBuffer.put(frameTimestamp);
1196                             }
1197                         }
1198                         break;
1199                 }
1200 
1201                 if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
1202                     if (LOCAL_LOGD) {
1203                         Log.d("VideoDecoderForOpenCV", "OutputBuffer BUFFER_FLAG_END_OF_STREAM");
1204                     }
1205                     break;
1206                 }
1207             }
1208             mMatBuffer.invalidate();
1209 
1210             decoder.stop();
1211 
1212             teardown();
1213             mThread = null;
1214         }
1215 
1216 
1217         /**
1218          * Get next valid frame
1219          * @return Frame in OpenCV mat
1220          */
getFrame(long ts[])1221         public Mat getFrame(long ts[]) {
1222             return mMatBuffer.get(ts);
1223         }
1224 
1225         /**
1226          * Get the size of the frame
1227          * @return size of the frame
1228          */
getSize()1229         Size getSize() {
1230             return mMatBuffer.getSize();
1231         }
1232 
1233         /**
1234          * A synchronized buffer
1235          */
1236         class MatBuffer {
1237             private Mat mat;
1238             private byte[] bytes;
1239             private ByteBuffer buf;
1240             private long timestamp;
1241             private boolean full;
1242 
1243             private int mWidth, mHeight;
1244             private boolean mValid = false;
1245 
MatBuffer(int width, int height)1246             MatBuffer(int width, int height) {
1247                 mWidth = width;
1248                 mHeight = height;
1249 
1250                 mat = new Mat(height, width, CvType.CV_8UC4); //RGBA
1251                 buf = ByteBuffer.allocateDirect(width*height*4);
1252                 bytes = new byte[width*height*4];
1253                 timestamp = -1;
1254 
1255                 mValid = true;
1256                 full = false;
1257             }
1258 
invalidate()1259             public synchronized void invalidate() {
1260                 mValid = false;
1261                 notifyAll();
1262             }
1263 
get(long ts[])1264             public synchronized Mat get(long ts[]) {
1265 
1266                 if (!mValid) return null;
1267                 while (full == false) {
1268                     try {
1269                         wait();
1270                         if (!mValid) return null;
1271                     } catch (InterruptedException e) {
1272                         return null;
1273                     }
1274                 }
1275                 mat.put(0,0, bytes);
1276                 full = false;
1277                 notifyAll();
1278                 ts[0] = timestamp;
1279                 return mat;
1280             }
1281 
put(long ts)1282             public synchronized void put(long ts) {
1283                 while (full) {
1284                     try {
1285                         wait();
1286                     } catch (InterruptedException e) {
1287                         Log.e(TAG, "Interrupted when waiting for space in buffer");
1288                     }
1289                 }
1290                 GLES20.glReadPixels(0, 0, mWidth, mHeight, GL10.GL_RGBA,
1291                         GL10.GL_UNSIGNED_BYTE, buf);
1292                 buf.get(bytes);
1293                 buf.rewind();
1294 
1295                 timestamp = ts;
1296                 full = true;
1297                 notifyAll();
1298             }
1299 
getSize()1300             public Size getSize() {
1301                 if (valid) {
1302                     return mat.size();
1303                 }
1304                 return new Size();
1305             }
1306         }
1307     }
1308 
1309 
1310     /* a small set of math functions */
quat2rpy( double [] q)1311     private static double [] quat2rpy( double [] q) {
1312         double [] rpy = {Math.atan2(2*(q[0]*q[1]+q[2]*q[3]), 1-2*(q[1]*q[1]+q[2]*q[2])),
1313                 Math.asin(2*(q[0]*q[2] - q[3]*q[1])),
1314                 Math.atan2(2*(q[0]*q[3]+q[1]*q[2]), 1-2*(q[2]*q[2]+q[3]*q[3]))};
1315         return rpy;
1316     }
1317 
quat2rpy( double [] q, double[] rpy)1318     private static void quat2rpy( double [] q, double[] rpy) {
1319         rpy[0] = Math.atan2(2*(q[0]*q[1]+q[2]*q[3]), 1-2*(q[1]*q[1]+q[2]*q[2]));
1320         rpy[1] = Math.asin(2*(q[0]*q[2] - q[3]*q[1]));
1321         rpy[2] = Math.atan2(2*(q[0]*q[3]+q[1]*q[2]), 1-2*(q[2]*q[2]+q[3]*q[3]));
1322     }
1323 
quat2rpy(Mat quat)1324     private static Mat quat2rpy(Mat quat) {
1325         double [] q = new double[4];
1326         quat.get(0,0,q);
1327 
1328         double [] rpy = {Math.atan2(2*(q[0]*q[1]+q[2]*q[3]), 1-2*(q[1]*q[1]+q[2]*q[2])),
1329                 Math.asin(2*(q[0]*q[2] - q[3]*q[1])),
1330                 Math.atan2(2*(q[0]*q[3]+q[1]*q[2]), 1-2*(q[2]*q[2]+q[3]*q[3]))};
1331 
1332         Mat rpym = new Mat(3,1, CvType.CV_64F);
1333         rpym.put(0,0, rpy);
1334         return rpym;
1335     }
1336 
rodr2quat( double [] r)1337     private static double [] rodr2quat( double [] r) {
1338         double t = Math.sqrt(r[0]*r[0]+r[1]*r[1]+r[2]*r[2]);
1339         double [] quat = {Math.cos(t/2), Math.sin(t/2)*r[0]/t,Math.sin(t/2)*r[1]/t,
1340                 Math.sin(t/2)*r[2]/t};
1341         return quat;
1342     }
1343 
rodr2quat( double [] r, double [] quat)1344     private static void rodr2quat( double [] r, double [] quat) {
1345         double t = Math.sqrt(r[0]*r[0]+r[1]*r[1]+r[2]*r[2]);
1346         quat[0] = Math.cos(t/2);
1347         quat[1] = Math.sin(t/2)*r[0]/t;
1348         quat[2] = Math.sin(t/2)*r[1]/t;
1349         quat[3] = Math.sin(t/2)*r[2]/t;
1350     }
1351 
rodr2quat(Mat rodr)1352     private static Mat rodr2quat(Mat rodr) {
1353         double t = Core.norm(rodr);
1354         double [] r = new double[3];
1355         rodr.get(0,0,r);
1356 
1357         double [] quat = {Math.cos(t/2), Math.sin(t/2)*r[0]/t,Math.sin(t/2)*r[1]/t,
1358                 Math.sin(t/2)*r[2]/t};
1359         Mat quatm = new Mat(4,1, CvType.CV_64F);
1360         quatm.put(0, 0, quat);
1361         return quatm;
1362     }
1363 
rodr2rpy( double [] r)1364     private static double [] rodr2rpy( double [] r) {
1365         return quat2rpy(rodr2quat(r));
1366     }
1367 
getDistanceBetweenPoints(Point a, Point b)1368     private double getDistanceBetweenPoints(Point a, Point b) {
1369         return Math.sqrt(Math.pow(a.x - b.x, 2) + Math.pow(a.y - b.y, 2));
1370     }
1371     //////////////////
1372 
1373 }
1374