1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 //#define LOG_NDEBUG 0
22 #undef LOG_TAG
23 #define LOG_TAG "BufferLayer"
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include "BufferLayer.h"
27
28 #include <compositionengine/CompositionEngine.h>
29 #include <compositionengine/LayerFECompositionState.h>
30 #include <compositionengine/OutputLayer.h>
31 #include <compositionengine/impl/OutputLayerCompositionState.h>
32 #include <cutils/compiler.h>
33 #include <cutils/native_handle.h>
34 #include <cutils/properties.h>
35 #include <gui/BufferItem.h>
36 #include <gui/BufferQueue.h>
37 #include <gui/GLConsumer.h>
38 #include <gui/LayerDebugInfo.h>
39 #include <gui/Surface.h>
40 #include <renderengine/RenderEngine.h>
41 #include <ui/DebugUtils.h>
42 #include <utils/Errors.h>
43 #include <utils/Log.h>
44 #include <utils/NativeHandle.h>
45 #include <utils/StopWatch.h>
46 #include <utils/Trace.h>
47
48 #include <cmath>
49 #include <cstdlib>
50 #include <mutex>
51 #include <sstream>
52
53 #include "Colorizer.h"
54 #include "DisplayDevice.h"
55 #include "FrameTracer/FrameTracer.h"
56 #include "LayerRejecter.h"
57 #include "TimeStats/TimeStats.h"
58
59 namespace android {
60
61 using gui::WindowInfo;
62
63 static constexpr float defaultMaxLuminance = 1000.0;
64
BufferLayer(const LayerCreationArgs & args)65 BufferLayer::BufferLayer(const LayerCreationArgs& args)
66 : Layer(args),
67 mTextureName(args.textureName),
68 mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
69 ALOGV("Creating Layer %s", getDebugName());
70
71 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
72
73 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
74 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
75 }
76
~BufferLayer()77 BufferLayer::~BufferLayer() {
78 if (!isClone()) {
79 // The original layer and the clone layer share the same texture. Therefore, only one of
80 // the layers, in this case the original layer, needs to handle the deletion. The original
81 // layer and the clone should be removed at the same time so there shouldn't be any issue
82 // with the clone layer trying to use the deleted texture.
83 mFlinger->deleteTextureAsync(mTextureName);
84 }
85 const int32_t layerId = getSequence();
86 mFlinger->mTimeStats->onDestroy(layerId);
87 mFlinger->mFrameTracer->onDestroy(layerId);
88 }
89
useSurfaceDamage()90 void BufferLayer::useSurfaceDamage() {
91 if (mFlinger->mForceFullDamage) {
92 surfaceDamageRegion = Region::INVALID_REGION;
93 } else {
94 surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
95 }
96 }
97
useEmptyDamage()98 void BufferLayer::useEmptyDamage() {
99 surfaceDamageRegion.clear();
100 }
101
isOpaque(const Layer::State & s) const102 bool BufferLayer::isOpaque(const Layer::State& s) const {
103 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
104 // layer's opaque flag.
105 if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
106 return false;
107 }
108
109 // if the layer has the opaque flag, then we're always opaque,
110 // otherwise we use the current buffer's format.
111 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
112 }
113
canReceiveInput() const114 bool BufferLayer::canReceiveInput() const {
115 return !isHiddenByPolicy() && (mBufferInfo.mBuffer == nullptr || getAlpha() > 0.0f);
116 }
117
isVisible() const118 bool BufferLayer::isVisible() const {
119 return !isHiddenByPolicy() && getAlpha() > 0.0f &&
120 (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
121 }
122
isFixedSize() const123 bool BufferLayer::isFixedSize() const {
124 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
125 }
126
usesSourceCrop() const127 bool BufferLayer::usesSourceCrop() const {
128 return true;
129 }
130
inverseOrientation(uint32_t transform)131 static constexpr mat4 inverseOrientation(uint32_t transform) {
132 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
133 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
134 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
135 mat4 tr;
136
137 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
138 tr = tr * rot90;
139 }
140 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
141 tr = tr * flipH;
142 }
143 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
144 tr = tr * flipV;
145 }
146 return inverse(tr);
147 }
148
prepareClientComposition(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)149 std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
150 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
151 ATRACE_CALL();
152
153 std::optional<compositionengine::LayerFE::LayerSettings> result =
154 Layer::prepareClientComposition(targetSettings);
155 if (!result) {
156 return result;
157 }
158
159 if (CC_UNLIKELY(mBufferInfo.mBuffer == 0) && mSidebandStream != nullptr) {
160 // For surfaceview of tv sideband, there is no activeBuffer
161 // in bufferqueue, we need return LayerSettings.
162 return result;
163 }
164 const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
165 ((isSecure() || isProtected()) && !targetSettings.isSecure);
166 const bool bufferCanBeUsedAsHwTexture =
167 mBufferInfo.mBuffer->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
168 compositionengine::LayerFE::LayerSettings& layer = *result;
169 if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
170 ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
171 mName.c_str());
172 prepareClearClientComposition(layer, true /* blackout */);
173 return layer;
174 }
175
176 const State& s(getDrawingState());
177 layer.source.buffer.buffer = mBufferInfo.mBuffer;
178 layer.source.buffer.isOpaque = isOpaque(s);
179 layer.source.buffer.fence = mBufferInfo.mFence;
180 layer.source.buffer.textureName = mTextureName;
181 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
182 layer.source.buffer.isY410BT2020 = isHdrY410();
183 bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
184 bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
185 float maxLuminance = 0.f;
186 if (hasSmpte2086 && hasCta861_3) {
187 maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
188 mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
189 } else if (hasSmpte2086) {
190 maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
191 } else if (hasCta861_3) {
192 maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
193 } else {
194 switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
195 case HAL_DATASPACE_TRANSFER_ST2084:
196 case HAL_DATASPACE_TRANSFER_HLG:
197 // Behavior-match previous releases for HDR content
198 maxLuminance = defaultMaxLuminance;
199 break;
200 }
201 }
202 layer.source.buffer.maxLuminanceNits = maxLuminance;
203 layer.frameNumber = mCurrentFrameNumber;
204 layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0;
205
206 const bool useFiltering =
207 targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();
208
209 // Query the texture matrix given our current filtering mode.
210 float textureMatrix[16];
211 getDrawingTransformMatrix(useFiltering, textureMatrix);
212
213 if (getTransformToDisplayInverse()) {
214 /*
215 * the code below applies the primary display's inverse transform to
216 * the texture transform
217 */
218 uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
219 mat4 tr = inverseOrientation(transform);
220
221 /**
222 * TODO(b/36727915): This is basically a hack.
223 *
224 * Ensure that regardless of the parent transformation,
225 * this buffer is always transformed from native display
226 * orientation to display orientation. For example, in the case
227 * of a camera where the buffer remains in native orientation,
228 * we want the pixels to always be upright.
229 */
230 sp<Layer> p = mDrawingParent.promote();
231 if (p != nullptr) {
232 const auto parentTransform = p->getTransform();
233 tr = tr * inverseOrientation(parentTransform.getOrientation());
234 }
235
236 // and finally apply it to the original texture matrix
237 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
238 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
239 }
240
241 const Rect win{getBounds()};
242 float bufferWidth = getBufferSize(s).getWidth();
243 float bufferHeight = getBufferSize(s).getHeight();
244
245 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
246 // been set and there is no parent layer bounds. In that case, the scale is meaningless so
247 // ignore them.
248 if (!getBufferSize(s).isValid()) {
249 bufferWidth = float(win.right) - float(win.left);
250 bufferHeight = float(win.bottom) - float(win.top);
251 }
252
253 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
254 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
255 const float translateY = float(win.top) / bufferHeight;
256 const float translateX = float(win.left) / bufferWidth;
257
258 // Flip y-coordinates because GLConsumer expects OpenGL convention.
259 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
260 mat4::translate(vec4(-.5, -.5, 0, 1)) *
261 mat4::translate(vec4(translateX, translateY, 0, 1)) *
262 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
263
264 layer.source.buffer.useTextureFiltering = useFiltering;
265 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
266
267 return layer;
268 }
269
isHdrY410() const270 bool BufferLayer::isHdrY410() const {
271 // pixel format is HDR Y410 masquerading as RGBA_1010102
272 return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
273 mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
274 mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
275 }
276
getCompositionEngineLayerFE() const277 sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
278 return asLayerFE();
279 }
280
editCompositionState()281 compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
282 return mCompositionState.get();
283 }
284
getCompositionState() const285 const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
286 return mCompositionState.get();
287 }
288
preparePerFrameCompositionState()289 void BufferLayer::preparePerFrameCompositionState() {
290 Layer::preparePerFrameCompositionState();
291
292 // Sideband layers
293 auto* compositionState = editCompositionState();
294 if (compositionState->sidebandStream.get() && !compositionState->sidebandStreamHasFrame) {
295 compositionState->compositionType =
296 aidl::android::hardware::graphics::composer3::Composition::SIDEBAND;
297 return;
298 } else if ((mDrawingState.flags & layer_state_t::eLayerIsDisplayDecoration) != 0) {
299 compositionState->compositionType =
300 aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
301 } else {
302 // Normal buffer layers
303 compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
304 compositionState->compositionType = mPotentialCursor
305 ? aidl::android::hardware::graphics::composer3::Composition::CURSOR
306 : aidl::android::hardware::graphics::composer3::Composition::DEVICE;
307 }
308
309 compositionState->buffer = getBuffer();
310 compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
311 ? 0
312 : mBufferInfo.mBufferSlot;
313 compositionState->acquireFence = mBufferInfo.mFence;
314 compositionState->frameNumber = mBufferInfo.mFrameNumber;
315 compositionState->sidebandStreamHasFrame = false;
316 }
317
onPreComposition(nsecs_t)318 bool BufferLayer::onPreComposition(nsecs_t) {
319 return hasReadyFrame();
320 }
321 namespace {
frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate)322 TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
323 using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
324 using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
325 const auto frameRateCompatibility = [frameRate] {
326 switch (frameRate.type) {
327 case Layer::FrameRateCompatibility::Default:
328 return FrameRateCompatibility::Default;
329 case Layer::FrameRateCompatibility::ExactOrMultiple:
330 return FrameRateCompatibility::ExactOrMultiple;
331 default:
332 return FrameRateCompatibility::Undefined;
333 }
334 }();
335
336 const auto seamlessness = [frameRate] {
337 switch (frameRate.seamlessness) {
338 case scheduler::Seamlessness::OnlySeamless:
339 return Seamlessness::ShouldBeSeamless;
340 case scheduler::Seamlessness::SeamedAndSeamless:
341 return Seamlessness::NotRequired;
342 default:
343 return Seamlessness::Undefined;
344 }
345 }();
346
347 return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
348 .frameRateCompatibility = frameRateCompatibility,
349 .seamlessness = seamlessness};
350 }
351 } // namespace
352
onPostComposition(const DisplayDevice * display,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)353 void BufferLayer::onPostComposition(const DisplayDevice* display,
354 const std::shared_ptr<FenceTime>& glDoneFence,
355 const std::shared_ptr<FenceTime>& presentFence,
356 const CompositorTiming& compositorTiming) {
357 // mFrameLatencyNeeded is true when a new frame was latched for the
358 // composition.
359 if (!mBufferInfo.mFrameLatencyNeeded) return;
360
361 // Update mFrameEventHistory.
362 finalizeFrameEventHistory(glDoneFence, compositorTiming);
363
364 // Update mFrameTracker.
365 nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
366 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
367
368 const int32_t layerId = getSequence();
369 mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
370
371 const auto outputLayer = findOutputLayerForDisplay(display);
372 if (outputLayer && outputLayer->requiresClientComposition()) {
373 nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
374 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
375 clientCompositionTimestamp,
376 FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
377 // Update the SurfaceFrames in the drawing state
378 if (mDrawingState.bufferSurfaceFrameTX) {
379 mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
380 }
381 for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
382 surfaceFrame->setGpuComposition();
383 }
384 }
385
386 std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
387 if (frameReadyFence->isValid()) {
388 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
389 } else {
390 // There was no fence for this frame, so assume that it was ready
391 // to be presented at the desired present time.
392 mFrameTracker.setFrameReadyTime(desiredPresentTime);
393 }
394
395 if (display) {
396 const Fps refreshRate = display->refreshRateConfigs().getActiveMode()->getFps();
397 const std::optional<Fps> renderRate =
398 mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
399
400 const auto vote = frameRateToSetFrameRateVotePayload(mDrawingState.frameRate);
401 const auto gameMode = getGameMode();
402
403 if (presentFence->isValid()) {
404 mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
405 refreshRate, renderRate, vote, gameMode);
406 mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
407 presentFence,
408 FrameTracer::FrameEvent::PRESENT_FENCE);
409 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
410 } else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
411 displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
412 // The HWC doesn't support present fences, so use the refresh
413 // timestamp instead.
414 const nsecs_t actualPresentTime = display->getRefreshTimestamp();
415 mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
416 refreshRate, renderRate, vote, gameMode);
417 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
418 mCurrentFrameNumber, actualPresentTime,
419 FrameTracer::FrameEvent::PRESENT_FENCE);
420 mFrameTracker.setActualPresentTime(actualPresentTime);
421 }
422 }
423
424 mFrameTracker.advanceFrame();
425 mBufferInfo.mFrameLatencyNeeded = false;
426 }
427
gatherBufferInfo()428 void BufferLayer::gatherBufferInfo() {
429 mBufferInfo.mPixelFormat =
430 !mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getPixelFormat();
431 mBufferInfo.mFrameLatencyNeeded = true;
432 }
433
shouldPresentNow(nsecs_t expectedPresentTime) const434 bool BufferLayer::shouldPresentNow(nsecs_t expectedPresentTime) const {
435 // If this is not a valid vsync for the layer's uid, return and try again later
436 const bool isVsyncValidForUid =
437 mFlinger->mScheduler->isVsyncValid(expectedPresentTime, mOwnerUid);
438 if (!isVsyncValidForUid) {
439 ATRACE_NAME("!isVsyncValidForUid");
440 return false;
441 }
442
443 // AutoRefresh layers and sideband streams should always be presented
444 if (getSidebandStreamChanged() || getAutoRefresh()) {
445 return true;
446 }
447
448 // If this layer doesn't have a frame is shouldn't be presented
449 if (!hasFrameUpdate()) {
450 return false;
451 }
452
453 // Defer to the derived class to decide whether the next buffer is due for
454 // presentation.
455 return isBufferDue(expectedPresentTime);
456 }
457
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime,nsecs_t expectedPresentTime)458 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
459 nsecs_t expectedPresentTime) {
460 ATRACE_CALL();
461
462 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
463
464 if (refreshRequired) {
465 return refreshRequired;
466 }
467
468 // If the head buffer's acquire fence hasn't signaled yet, return and
469 // try again later
470 if (!fenceHasSignaled()) {
471 ATRACE_NAME("!fenceHasSignaled()");
472 mFlinger->onLayerUpdate();
473 return false;
474 }
475
476 // Capture the old state of the layer for comparisons later
477 const State& s(getDrawingState());
478 const bool oldOpacity = isOpaque(s);
479
480 BufferInfo oldBufferInfo = mBufferInfo;
481
482 status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
483 if (err != NO_ERROR) {
484 return false;
485 }
486
487 err = updateActiveBuffer();
488 if (err != NO_ERROR) {
489 return false;
490 }
491
492 err = updateFrameNumber();
493 if (err != NO_ERROR) {
494 return false;
495 }
496
497 gatherBufferInfo();
498
499 if (oldBufferInfo.mBuffer == nullptr) {
500 // the first time we receive a buffer, we need to trigger a
501 // geometry invalidation.
502 recomputeVisibleRegions = true;
503 }
504
505 if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
506 (mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
507 (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
508 (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
509 recomputeVisibleRegions = true;
510 }
511
512 if (oldBufferInfo.mBuffer != nullptr) {
513 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
514 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
515 if (bufWidth != oldBufferInfo.mBuffer->getWidth() ||
516 bufHeight != oldBufferInfo.mBuffer->getHeight()) {
517 recomputeVisibleRegions = true;
518 }
519 }
520
521 if (oldOpacity != isOpaque(s)) {
522 recomputeVisibleRegions = true;
523 }
524
525 return true;
526 }
527
hasReadyFrame() const528 bool BufferLayer::hasReadyFrame() const {
529 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
530 }
531
getEffectiveScalingMode() const532 uint32_t BufferLayer::getEffectiveScalingMode() const {
533 return mBufferInfo.mScaleMode;
534 }
535
isProtected() const536 bool BufferLayer::isProtected() const {
537 return (mBufferInfo.mBuffer != nullptr) &&
538 (mBufferInfo.mBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
539 }
540
541 // As documented in libhardware header, formats in the range
542 // 0x100 - 0x1FF are specific to the HAL implementation, and
543 // are known to have no alpha channel
544 // TODO: move definition for device-specific range into
545 // hardware.h, instead of using hard-coded values here.
546 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
547
getOpacityForFormat(PixelFormat format)548 bool BufferLayer::getOpacityForFormat(PixelFormat format) {
549 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
550 return true;
551 }
552 switch (format) {
553 case PIXEL_FORMAT_RGBA_8888:
554 case PIXEL_FORMAT_BGRA_8888:
555 case PIXEL_FORMAT_RGBA_FP16:
556 case PIXEL_FORMAT_RGBA_1010102:
557 case PIXEL_FORMAT_R_8:
558 return false;
559 }
560 // in all other case, we have no blending (also for unknown formats)
561 return true;
562 }
563
needsFiltering(const DisplayDevice * display) const564 bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
565 const auto outputLayer = findOutputLayerForDisplay(display);
566 if (outputLayer == nullptr) {
567 return false;
568 }
569
570 // We need filtering if the sourceCrop rectangle size does not match the
571 // displayframe rectangle size (not a 1:1 render)
572 const auto& compositionState = outputLayer->getState();
573 const auto displayFrame = compositionState.displayFrame;
574 const auto sourceCrop = compositionState.sourceCrop;
575 return sourceCrop.getHeight() != displayFrame.getHeight() ||
576 sourceCrop.getWidth() != displayFrame.getWidth();
577 }
578
needsFilteringForScreenshots(const DisplayDevice * display,const ui::Transform & inverseParentTransform) const579 bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
580 const ui::Transform& inverseParentTransform) const {
581 const auto outputLayer = findOutputLayerForDisplay(display);
582 if (outputLayer == nullptr) {
583 return false;
584 }
585
586 // We need filtering if the sourceCrop rectangle size does not match the
587 // viewport rectangle size (not a 1:1 render)
588 const auto& compositionState = outputLayer->getState();
589 const ui::Transform& displayTransform = display->getTransform();
590 const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
591 // Undo the transformation of the displayFrame so that we're back into
592 // layer-stack space.
593 const Rect frame = inverseTransform.transform(compositionState.displayFrame);
594 const FloatRect sourceCrop = compositionState.sourceCrop;
595
596 int32_t frameHeight = frame.getHeight();
597 int32_t frameWidth = frame.getWidth();
598 // If the display transform had a rotational component then undo the
599 // rotation so that the orientation matches the source crop.
600 if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
601 std::swap(frameHeight, frameWidth);
602 }
603 return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
604 }
605
getBufferSize(const State & s) const606 Rect BufferLayer::getBufferSize(const State& s) const {
607 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
608 // we cannot determine the buffer size.
609 if ((s.sidebandStream != nullptr) ||
610 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
611 return Rect(getActiveWidth(s), getActiveHeight(s));
612 }
613
614 if (mBufferInfo.mBuffer == nullptr) {
615 return Rect::INVALID_RECT;
616 }
617
618 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
619 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
620
621 // Undo any transformations on the buffer and return the result.
622 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
623 std::swap(bufWidth, bufHeight);
624 }
625
626 if (getTransformToDisplayInverse()) {
627 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
628 if (invTransform & ui::Transform::ROT_90) {
629 std::swap(bufWidth, bufHeight);
630 }
631 }
632
633 return Rect(bufWidth, bufHeight);
634 }
635
computeSourceBounds(const FloatRect & parentBounds) const636 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
637 const State& s(getDrawingState());
638
639 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
640 // we cannot determine the buffer size.
641 if ((s.sidebandStream != nullptr) ||
642 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
643 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
644 }
645
646 if (mBufferInfo.mBuffer == nullptr) {
647 return parentBounds;
648 }
649
650 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
651 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
652
653 // Undo any transformations on the buffer and return the result.
654 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
655 std::swap(bufWidth, bufHeight);
656 }
657
658 if (getTransformToDisplayInverse()) {
659 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
660 if (invTransform & ui::Transform::ROT_90) {
661 std::swap(bufWidth, bufHeight);
662 }
663 }
664
665 return FloatRect(0, 0, bufWidth, bufHeight);
666 }
667
latchAndReleaseBuffer()668 void BufferLayer::latchAndReleaseBuffer() {
669 if (hasReadyFrame()) {
670 bool ignored = false;
671 latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
672 }
673 releasePendingBuffer(systemTime());
674 }
675
getPixelFormat() const676 PixelFormat BufferLayer::getPixelFormat() const {
677 return mBufferInfo.mPixelFormat;
678 }
679
getTransformToDisplayInverse() const680 bool BufferLayer::getTransformToDisplayInverse() const {
681 return mBufferInfo.mTransformToDisplayInverse;
682 }
683
getBufferCrop() const684 Rect BufferLayer::getBufferCrop() const {
685 // this is the crop rectangle that applies to the buffer
686 // itself (as opposed to the window)
687 if (!mBufferInfo.mCrop.isEmpty()) {
688 // if the buffer crop is defined, we use that
689 return mBufferInfo.mCrop;
690 } else if (mBufferInfo.mBuffer != nullptr) {
691 // otherwise we use the whole buffer
692 return mBufferInfo.mBuffer->getBounds();
693 } else {
694 // if we don't have a buffer yet, we use an empty/invalid crop
695 return Rect();
696 }
697 }
698
getBufferTransform() const699 uint32_t BufferLayer::getBufferTransform() const {
700 return mBufferInfo.mTransform;
701 }
702
getDataSpace() const703 ui::Dataspace BufferLayer::getDataSpace() const {
704 return mBufferInfo.mDataspace;
705 }
706
translateDataspace(ui::Dataspace dataspace)707 ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
708 ui::Dataspace updatedDataspace = dataspace;
709 // translate legacy dataspaces to modern dataspaces
710 switch (dataspace) {
711 case ui::Dataspace::SRGB:
712 updatedDataspace = ui::Dataspace::V0_SRGB;
713 break;
714 case ui::Dataspace::SRGB_LINEAR:
715 updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
716 break;
717 case ui::Dataspace::JFIF:
718 updatedDataspace = ui::Dataspace::V0_JFIF;
719 break;
720 case ui::Dataspace::BT601_625:
721 updatedDataspace = ui::Dataspace::V0_BT601_625;
722 break;
723 case ui::Dataspace::BT601_525:
724 updatedDataspace = ui::Dataspace::V0_BT601_525;
725 break;
726 case ui::Dataspace::BT709:
727 updatedDataspace = ui::Dataspace::V0_BT709;
728 break;
729 default:
730 break;
731 }
732
733 return updatedDataspace;
734 }
735
getBuffer() const736 sp<GraphicBuffer> BufferLayer::getBuffer() const {
737 return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
738 }
739
getDrawingTransformMatrix(bool filteringEnabled,float outMatrix[16])740 void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
741 GLConsumer::computeTransformMatrix(outMatrix,
742 mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()
743 : nullptr,
744 mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled);
745 }
746
setInitialValuesForClone(const sp<Layer> & clonedFrom)747 void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
748 Layer::setInitialValuesForClone(clonedFrom);
749
750 sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
751 mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
752 mPotentialCursor = bufferClonedFrom->mPotentialCursor;
753 mProtectedByApp = bufferClonedFrom->mProtectedByApp;
754
755 updateCloneBufferInfo();
756 }
757
updateCloneBufferInfo()758 void BufferLayer::updateCloneBufferInfo() {
759 if (!isClone() || !isClonedFromAlive()) {
760 return;
761 }
762
763 sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
764 mBufferInfo = clonedFrom->mBufferInfo;
765 mSidebandStream = clonedFrom->mSidebandStream;
766 surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
767 mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
768 mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
769
770 // After buffer info is updated, the drawingState from the real layer needs to be copied into
771 // the cloned. This is because some properties of drawingState can change when latchBuffer is
772 // called. However, copying the drawingState would also overwrite the cloned layer's relatives
773 // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
774 // the cloned drawingState again.
775 wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
776 SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
777 wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
778 WindowInfo tmpInputInfo = mDrawingState.inputInfo;
779
780 cloneDrawingState(clonedFrom.get());
781
782 mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
783 mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
784 mDrawingState.zOrderRelatives = tmpZOrderRelatives;
785 mDrawingState.inputInfo = tmpInputInfo;
786 }
787
setTransformHint(ui::Transform::RotationFlags displayTransformHint)788 void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
789 mTransformHint = getFixedTransformHint();
790 if (mTransformHint == ui::Transform::ROT_INVALID) {
791 mTransformHint = displayTransformHint;
792 }
793 }
794
bufferNeedsFiltering() const795 bool BufferLayer::bufferNeedsFiltering() const {
796 return isFixedSize();
797 }
798
getExternalTexture() const799 const std::shared_ptr<renderengine::ExternalTexture>& BufferLayer::getExternalTexture() const {
800 return mBufferInfo.mBuffer;
801 }
802
803 } // namespace android
804
805 #if defined(__gl_h_)
806 #error "don't include gl/gl.h in this file"
807 #endif
808
809 #if defined(__gl2_h_)
810 #error "don't include gl2/gl2.h in this file"
811 #endif
812
813 // TODO(b/129481165): remove the #pragma below and fix conversion issues
814 #pragma clang diagnostic pop // ignored "-Wconversion"
815