• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/CompositionEngine.h>
20 #include <compositionengine/CompositionRefreshArgs.h>
21 #include <compositionengine/DisplayColorProfile.h>
22 #include <compositionengine/LayerFE.h>
23 #include <compositionengine/LayerFECompositionState.h>
24 #include <compositionengine/RenderSurface.h>
25 #include <compositionengine/impl/HwcAsyncWorker.h>
26 #include <compositionengine/impl/Output.h>
27 #include <compositionengine/impl/OutputCompositionState.h>
28 #include <compositionengine/impl/OutputLayer.h>
29 #include <compositionengine/impl/OutputLayerCompositionState.h>
30 #include <compositionengine/impl/planner/Planner.h>
31 #include <ftl/future.h>
32 
33 #include <thread>
34 
35 #include "renderengine/ExternalTexture.h"
36 
37 // TODO(b/129481165): remove the #pragma below and fix conversion issues
38 #pragma clang diagnostic push
39 #pragma clang diagnostic ignored "-Wconversion"
40 
41 #include <renderengine/DisplaySettings.h>
42 #include <renderengine/RenderEngine.h>
43 
44 // TODO(b/129481165): remove the #pragma below and fix conversion issues
45 #pragma clang diagnostic pop // ignored "-Wconversion"
46 
47 #include <android-base/properties.h>
48 #include <ui/DebugUtils.h>
49 #include <ui/HdrCapabilities.h>
50 #include <utils/Trace.h>
51 
52 #include "TracedOrdinal.h"
53 
54 using aidl::android::hardware::graphics::composer3::Composition;
55 
56 namespace android::compositionengine {
57 
58 Output::~Output() = default;
59 
60 namespace impl {
61 using CompositionStrategyPredictionState =
62         OutputCompositionState::CompositionStrategyPredictionState;
63 namespace {
64 
65 template <typename T>
66 class Reversed {
67 public:
Reversed(const T & container)68     explicit Reversed(const T& container) : mContainer(container) {}
begin()69     auto begin() { return mContainer.rbegin(); }
end()70     auto end() { return mContainer.rend(); }
71 
72 private:
73     const T& mContainer;
74 };
75 
76 // Helper for enumerating over a container in reverse order
77 template <typename T>
reversed(const T & c)78 Reversed<T> reversed(const T& c) {
79     return Reversed<T>(c);
80 }
81 
82 struct ScaleVector {
83     float x;
84     float y;
85 };
86 
87 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
88 // where to' will have the same size as "to". In the case where "from" and "to"
89 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)90 ScaleVector getScale(const Rect& from, const Rect& to) {
91     return {.x = static_cast<float>(to.width()) / from.width(),
92             .y = static_cast<float>(to.height()) / from.height()};
93 }
94 
95 } // namespace
96 
createOutput(const compositionengine::CompositionEngine & compositionEngine)97 std::shared_ptr<Output> createOutput(
98         const compositionengine::CompositionEngine& compositionEngine) {
99     return createOutputTemplated<Output>(compositionEngine);
100 }
101 
102 Output::~Output() = default;
103 
isValid() const104 bool Output::isValid() const {
105     return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
106             mRenderSurface->isValid();
107 }
108 
getDisplayId() const109 std::optional<DisplayId> Output::getDisplayId() const {
110     return {};
111 }
112 
getName() const113 const std::string& Output::getName() const {
114     return mName;
115 }
116 
setName(const std::string & name)117 void Output::setName(const std::string& name) {
118     mName = name;
119 }
120 
setCompositionEnabled(bool enabled)121 void Output::setCompositionEnabled(bool enabled) {
122     auto& outputState = editState();
123     if (outputState.isEnabled == enabled) {
124         return;
125     }
126 
127     outputState.isEnabled = enabled;
128     dirtyEntireOutput();
129 }
130 
setLayerCachingEnabled(bool enabled)131 void Output::setLayerCachingEnabled(bool enabled) {
132     if (enabled == (mPlanner != nullptr)) {
133         return;
134     }
135 
136     if (enabled) {
137         mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
138         if (mRenderSurface) {
139             mPlanner->setDisplaySize(mRenderSurface->getSize());
140         }
141     } else {
142         mPlanner.reset();
143     }
144 
145     for (auto* outputLayer : getOutputLayersOrderedByZ()) {
146         if (!outputLayer) {
147             continue;
148         }
149 
150         outputLayer->editState().overrideInfo = {};
151     }
152 }
153 
setLayerCachingTexturePoolEnabled(bool enabled)154 void Output::setLayerCachingTexturePoolEnabled(bool enabled) {
155     if (mPlanner) {
156         mPlanner->setTexturePoolEnabled(enabled);
157     }
158 }
159 
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)160 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
161                            const Rect& orientedDisplaySpaceRect) {
162     auto& outputState = editState();
163 
164     outputState.displaySpace.setOrientation(orientation);
165     LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT,
166                  "The display bounds are unknown.");
167 
168     // Compute orientedDisplaySpace
169     ui::Size orientedSize = outputState.displaySpace.getBounds();
170     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
171         std::swap(orientedSize.width, orientedSize.height);
172     }
173     outputState.orientedDisplaySpace.setBounds(orientedSize);
174     outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect);
175 
176     // Compute displaySpace.content
177     const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
178     ui::Transform rotation;
179     if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
180         const auto displaySize = outputState.displaySpace.getBoundsAsRect();
181         rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
182     }
183     outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect));
184 
185     // Compute framebufferSpace
186     outputState.framebufferSpace.setOrientation(orientation);
187     LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT,
188                  "The framebuffer bounds are unknown.");
189     const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(),
190                                 outputState.framebufferSpace.getBoundsAsRect());
191     outputState.framebufferSpace.setContent(
192             outputState.displaySpace.getContent().scale(scale.x, scale.y));
193 
194     // Compute layerStackSpace
195     outputState.layerStackSpace.setContent(layerStackSpaceRect);
196     outputState.layerStackSpace.setBounds(
197             ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight()));
198 
199     outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
200     outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
201     dirtyEntireOutput();
202 }
203 
setNextBrightness(float brightness)204 void Output::setNextBrightness(float brightness) {
205     editState().displayBrightness = brightness;
206 }
207 
setDisplaySize(const ui::Size & size)208 void Output::setDisplaySize(const ui::Size& size) {
209     mRenderSurface->setDisplaySize(size);
210 
211     auto& state = editState();
212 
213     // Update framebuffer space
214     const ui::Size newBounds(size);
215     state.framebufferSpace.setBounds(newBounds);
216 
217     // Update display space
218     state.displaySpace.setBounds(newBounds);
219     state.transform = state.layerStackSpace.getTransform(state.displaySpace);
220 
221     // Update oriented display space
222     const auto orientation = state.displaySpace.getOrientation();
223     ui::Size orientedSize = size;
224     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
225         std::swap(orientedSize.width, orientedSize.height);
226     }
227     const ui::Size newOrientedBounds(orientedSize);
228     state.orientedDisplaySpace.setBounds(newOrientedBounds);
229 
230     if (mPlanner) {
231         mPlanner->setDisplaySize(size);
232     }
233 
234     dirtyEntireOutput();
235 }
236 
getTransformHint() const237 ui::Transform::RotationFlags Output::getTransformHint() const {
238     return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
239 }
240 
setLayerFilter(ui::LayerFilter filter)241 void Output::setLayerFilter(ui::LayerFilter filter) {
242     editState().layerFilter = filter;
243     dirtyEntireOutput();
244 }
245 
setColorTransform(const compositionengine::CompositionRefreshArgs & args)246 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
247     auto& colorTransformMatrix = editState().colorTransformMatrix;
248     if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
249         return;
250     }
251 
252     colorTransformMatrix = *args.colorTransformMatrix;
253 
254     dirtyEntireOutput();
255 }
256 
setColorProfile(const ColorProfile & colorProfile)257 void Output::setColorProfile(const ColorProfile& colorProfile) {
258     ui::Dataspace targetDataspace =
259             getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
260                                                          colorProfile.colorSpaceAgnosticDataspace);
261 
262     auto& outputState = editState();
263     if (outputState.colorMode == colorProfile.mode &&
264         outputState.dataspace == colorProfile.dataspace &&
265         outputState.renderIntent == colorProfile.renderIntent &&
266         outputState.targetDataspace == targetDataspace) {
267         return;
268     }
269 
270     outputState.colorMode = colorProfile.mode;
271     outputState.dataspace = colorProfile.dataspace;
272     outputState.renderIntent = colorProfile.renderIntent;
273     outputState.targetDataspace = targetDataspace;
274 
275     mRenderSurface->setBufferDataspace(colorProfile.dataspace);
276 
277     ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
278           decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
279           decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
280 
281     dirtyEntireOutput();
282 }
283 
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)284 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
285     auto& outputState = editState();
286     if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
287         outputState.displayBrightnessNits == displayBrightnessNits) {
288         // Nothing changed
289         return;
290     }
291     outputState.sdrWhitePointNits = sdrWhitePointNits;
292     outputState.displayBrightnessNits = displayBrightnessNits;
293     dirtyEntireOutput();
294 }
295 
dump(std::string & out) const296 void Output::dump(std::string& out) const {
297     base::StringAppendF(&out, "Output \"%s\"", mName.c_str());
298     out.append("\n   Composition Output State:\n");
299 
300     dumpBase(out);
301 }
302 
dumpBase(std::string & out) const303 void Output::dumpBase(std::string& out) const {
304     dumpState(out);
305     out += '\n';
306 
307     if (mDisplayColorProfile) {
308         mDisplayColorProfile->dump(out);
309     } else {
310         out.append("    No display color profile!\n");
311     }
312 
313     out += '\n';
314 
315     if (mRenderSurface) {
316         mRenderSurface->dump(out);
317     } else {
318         out.append("    No render surface!\n");
319     }
320 
321     base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount());
322     for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
323         if (!outputLayer) {
324             continue;
325         }
326         outputLayer->dump(out);
327     }
328 }
329 
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const330 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
331     if (!mPlanner) {
332         out.append("Planner is disabled\n");
333         return;
334     }
335     base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
336     mPlanner->dump(args, out);
337 }
338 
getDisplayColorProfile() const339 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
340     return mDisplayColorProfile.get();
341 }
342 
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)343 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
344     mDisplayColorProfile = std::move(mode);
345 }
346 
getReleasedLayersForTest() const347 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
348     return mReleasedLayers;
349 }
350 
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)351 void Output::setDisplayColorProfileForTest(
352         std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
353     mDisplayColorProfile = std::move(mode);
354 }
355 
getRenderSurface() const356 compositionengine::RenderSurface* Output::getRenderSurface() const {
357     return mRenderSurface.get();
358 }
359 
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)360 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
361     mRenderSurface = std::move(surface);
362     const auto size = mRenderSurface->getSize();
363     editState().framebufferSpace.setBounds(size);
364     if (mPlanner) {
365         mPlanner->setDisplaySize(size);
366     }
367     dirtyEntireOutput();
368 }
369 
cacheClientCompositionRequests(uint32_t cacheSize)370 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
371     if (cacheSize == 0) {
372         mClientCompositionRequestCache.reset();
373     } else {
374         mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
375     }
376 };
377 
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)378 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
379     mRenderSurface = std::move(surface);
380 }
381 
getDirtyRegion() const382 Region Output::getDirtyRegion() const {
383     const auto& outputState = getState();
384     return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent());
385 }
386 
includesLayer(ui::LayerFilter filter) const387 bool Output::includesLayer(ui::LayerFilter filter) const {
388     return getState().layerFilter.includes(filter);
389 }
390 
includesLayer(const sp<LayerFE> & layerFE) const391 bool Output::includesLayer(const sp<LayerFE>& layerFE) const {
392     const auto* layerFEState = layerFE->getCompositionState();
393     return layerFEState && includesLayer(layerFEState->outputFilter);
394 }
395 
createOutputLayer(const sp<LayerFE> & layerFE) const396 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
397         const sp<LayerFE>& layerFE) const {
398     return impl::createOutputLayer(*this, layerFE);
399 }
400 
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const401 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
402     auto index = findCurrentOutputLayerForLayer(layerFE);
403     return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
404 }
405 
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const406 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
407         const sp<compositionengine::LayerFE>& layer) const {
408     for (size_t i = 0; i < getOutputLayerCount(); i++) {
409         auto outputLayer = getOutputLayerOrderedByZByIndex(i);
410         if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
411             return i;
412         }
413     }
414     return std::nullopt;
415 }
416 
setReleasedLayers(Output::ReleasedLayers && layers)417 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
418     mReleasedLayers = std::move(layers);
419 }
420 
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)421 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
422                      LayerFESet& geomSnapshots) {
423     ATRACE_CALL();
424     ALOGV(__FUNCTION__);
425 
426     rebuildLayerStacks(refreshArgs, geomSnapshots);
427 }
428 
present(const compositionengine::CompositionRefreshArgs & refreshArgs)429 void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
430     ATRACE_CALL();
431     ALOGV(__FUNCTION__);
432 
433     updateColorProfile(refreshArgs);
434     updateCompositionState(refreshArgs);
435     planComposition();
436     writeCompositionState(refreshArgs);
437     setColorTransform(refreshArgs);
438     beginFrame();
439 
440     GpuCompositionResult result;
441     const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs);
442     if (predictCompositionStrategy) {
443         result = prepareFrameAsync(refreshArgs);
444     } else {
445         prepareFrame();
446     }
447 
448     devOptRepaintFlash(refreshArgs);
449     finishFrame(refreshArgs, std::move(result));
450     postFramebuffer();
451     renderCachedSets(refreshArgs);
452 }
453 
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)454 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
455                                 LayerFESet& layerFESet) {
456     ATRACE_CALL();
457     ALOGV(__FUNCTION__);
458 
459     auto& outputState = editState();
460 
461     // Do nothing if this output is not enabled or there is no need to perform this update
462     if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
463         return;
464     }
465 
466     // Process the layers to determine visibility and coverage
467     compositionengine::Output::CoverageState coverage{layerFESet};
468     collectVisibleLayers(refreshArgs, coverage);
469 
470     // Compute the resulting coverage for this output, and store it for later
471     const ui::Transform& tr = outputState.transform;
472     Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()};
473     undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
474 
475     outputState.undefinedRegion = undefinedRegion;
476     outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
477 }
478 
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)479 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
480                                   compositionengine::Output::CoverageState& coverage) {
481     // Evaluate the layers from front to back to determine what is visible. This
482     // also incrementally calculates the coverage information for each layer as
483     // well as the entire output.
484     for (auto layer : reversed(refreshArgs.layers)) {
485         // Incrementally process the coverage for each layer
486         ensureOutputLayerIfVisible(layer, coverage);
487 
488         // TODO(b/121291683): Stop early if the output is completely covered and
489         // no more layers could even be visible underneath the ones on top.
490     }
491 
492     setReleasedLayers(refreshArgs);
493 
494     finalizePendingOutputLayers();
495 }
496 
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)497 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
498                                         compositionengine::Output::CoverageState& coverage) {
499     // Ensure we have a snapshot of the basic geometry layer state. Limit the
500     // snapshots to once per frame for each candidate layer, as layers may
501     // appear on multiple outputs.
502     if (!coverage.latchedLayers.count(layerFE)) {
503         coverage.latchedLayers.insert(layerFE);
504         layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
505     }
506 
507     // Only consider the layers on this output
508     if (!includesLayer(layerFE)) {
509         return;
510     }
511 
512     // Obtain a read-only pointer to the front-end layer state
513     const auto* layerFEState = layerFE->getCompositionState();
514     if (CC_UNLIKELY(!layerFEState)) {
515         return;
516     }
517 
518     // handle hidden surfaces by setting the visible region to empty
519     if (CC_UNLIKELY(!layerFEState->isVisible)) {
520         return;
521     }
522 
523     /*
524      * opaqueRegion: area of a surface that is fully opaque.
525      */
526     Region opaqueRegion;
527 
528     /*
529      * visibleRegion: area of a surface that is visible on screen and not fully
530      * transparent. This is essentially the layer's footprint minus the opaque
531      * regions above it. Areas covered by a translucent surface are considered
532      * visible.
533      */
534     Region visibleRegion;
535 
536     /*
537      * coveredRegion: area of a surface that is covered by all visible regions
538      * above it (which includes the translucent areas).
539      */
540     Region coveredRegion;
541 
542     /*
543      * transparentRegion: area of a surface that is hinted to be completely
544      * transparent.
545      * This is used to tell when the layer has no visible non-transparent
546      * regions and can be removed from the layer list. It does not affect the
547      * visibleRegion of this layer or any layers beneath it. The hint may not
548      * be correct if apps don't respect the SurfaceView restrictions (which,
549      * sadly, some don't).
550      *
551      * In addition, it is used on DISPLAY_DECORATION layers to specify the
552      * blockingRegion, allowing the DPU to skip it to save power. Once we have
553      * hardware that supports a blockingRegion on frames with AFBC, it may be
554      * useful to use this for other layers, too, so long as we can prevent
555      * regressions on b/7179570.
556      */
557     Region transparentRegion;
558 
559     /*
560      * shadowRegion: Region cast by the layer's shadow.
561      */
562     Region shadowRegion;
563 
564     const ui::Transform& tr = layerFEState->geomLayerTransform;
565 
566     // Get the visible region
567     // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
568     // for computations like this?
569     const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
570     visibleRegion.set(visibleRect);
571 
572     if (layerFEState->shadowRadius > 0.0f) {
573         // if the layer casts a shadow, offset the layers visible region and
574         // calculate the shadow region.
575         const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
576         Rect visibleRectWithShadows(visibleRect);
577         visibleRectWithShadows.inset(inset, inset, inset, inset);
578         visibleRegion.set(visibleRectWithShadows);
579         shadowRegion = visibleRegion.subtract(visibleRect);
580     }
581 
582     if (visibleRegion.isEmpty()) {
583         return;
584     }
585 
586     // Remove the transparent area from the visible region
587     if (!layerFEState->isOpaque) {
588         if (tr.preserveRects()) {
589             // Clip the transparent region to geomLayerBounds first
590             // The transparent region may be influenced by applications, for
591             // instance, by overriding ViewGroup#gatherTransparentRegion with a
592             // custom view. Once the layer stack -> display mapping is known, we
593             // must guard against very wrong inputs to prevent underflow or
594             // overflow errors. We do this here by constraining the transparent
595             // region to be within the pre-transform layer bounds, since the
596             // layer bounds are expected to play nicely with the full
597             // transform.
598             const Region clippedTransparentRegionHint =
599                     layerFEState->transparentRegionHint.intersect(
600                             Rect(layerFEState->geomLayerBounds));
601 
602             if (clippedTransparentRegionHint.isEmpty()) {
603                 if (!layerFEState->transparentRegionHint.isEmpty()) {
604                     ALOGD("Layer: %s had an out of bounds transparent region",
605                           layerFE->getDebugName());
606                     layerFEState->transparentRegionHint.dump("transparentRegionHint");
607                 }
608                 transparentRegion.clear();
609             } else {
610                 transparentRegion = tr.transform(clippedTransparentRegionHint);
611             }
612         } else {
613             // transformation too complex, can't do the
614             // transparent region optimization.
615             transparentRegion.clear();
616         }
617     }
618 
619     // compute the opaque region
620     const auto layerOrientation = tr.getOrientation();
621     if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
622         // If we one of the simple category of transforms (0/90/180/270 rotation
623         // + any flip), then the opaque region is the layer's footprint.
624         // Otherwise we don't try and compute the opaque region since there may
625         // be errors at the edges, and we treat the entire layer as
626         // translucent.
627         opaqueRegion.set(visibleRect);
628     }
629 
630     // Clip the covered region to the visible region
631     coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
632 
633     // Update accumAboveCoveredLayers for next (lower) layer
634     coverage.aboveCoveredLayers.orSelf(visibleRegion);
635 
636     // subtract the opaque region covered by the layers above us
637     visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
638 
639     if (visibleRegion.isEmpty()) {
640         return;
641     }
642 
643     // Get coverage information for the layer as previously displayed,
644     // also taking over ownership from mOutputLayersorderedByZ.
645     auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
646     auto prevOutputLayer =
647             prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
648 
649     //  Get coverage information for the layer as previously displayed
650     // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
651     const Region kEmptyRegion;
652     const Region& oldVisibleRegion =
653             prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
654     const Region& oldCoveredRegion =
655             prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
656 
657     // compute this layer's dirty region
658     Region dirty;
659     if (layerFEState->contentDirty) {
660         // we need to invalidate the whole region
661         dirty = visibleRegion;
662         // as well, as the old visible region
663         dirty.orSelf(oldVisibleRegion);
664     } else {
665         /* compute the exposed region:
666          *   the exposed region consists of two components:
667          *   1) what's VISIBLE now and was COVERED before
668          *   2) what's EXPOSED now less what was EXPOSED before
669          *
670          * note that (1) is conservative, we start with the whole visible region
671          * but only keep what used to be covered by something -- which mean it
672          * may have been exposed.
673          *
674          * (2) handles areas that were not covered by anything but got exposed
675          * because of a resize.
676          *
677          */
678         const Region newExposed = visibleRegion - coveredRegion;
679         const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
680         dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
681     }
682     dirty.subtractSelf(coverage.aboveOpaqueLayers);
683 
684     // accumulate to the screen dirty region
685     coverage.dirtyRegion.orSelf(dirty);
686 
687     // Update accumAboveOpaqueLayers for next (lower) layer
688     coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
689 
690     // Compute the visible non-transparent region
691     Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
692 
693     // Perform the final check to see if this layer is visible on this output
694     // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
695     const auto& outputState = getState();
696     Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
697     drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect());
698     if (drawRegion.isEmpty()) {
699         return;
700     }
701 
702     Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
703 
704     // The layer is visible. Either reuse the existing outputLayer if we have
705     // one, or create a new one if we do not.
706     auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
707 
708     // Store the layer coverage information into the layer state as some of it
709     // is useful later.
710     auto& outputLayerState = result->editState();
711     outputLayerState.visibleRegion = visibleRegion;
712     outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
713     outputLayerState.coveredRegion = coveredRegion;
714     outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
715             visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent()));
716     outputLayerState.shadowRegion = shadowRegion;
717     outputLayerState.outputSpaceBlockingRegionHint =
718             layerFEState->compositionType == Composition::DISPLAY_DECORATION
719             ? outputState.transform.transform(
720                       transparentRegion.intersect(outputState.layerStackSpace.getContent()))
721             : Region();
722 }
723 
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)724 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
725     // The base class does nothing with this call.
726 }
727 
updateLayerStateFromFE(const CompositionRefreshArgs & args) const728 void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
729     for (auto* layer : getOutputLayersOrderedByZ()) {
730         layer->getLayerFE().prepareCompositionState(
731                 args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
732                                                : LayerFE::StateSubset::Content);
733     }
734 }
735 
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)736 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
737     ATRACE_CALL();
738     ALOGV(__FUNCTION__);
739 
740     if (!getState().isEnabled) {
741         return;
742     }
743 
744     mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
745     bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
746 
747     for (auto* layer : getOutputLayersOrderedByZ()) {
748         layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
749                                       refreshArgs.devOptForceClientComposition ||
750                                               forceClientComposition,
751                                       refreshArgs.internalDisplayRotationFlags);
752 
753         if (mLayerRequestingBackgroundBlur == layer) {
754             forceClientComposition = false;
755         }
756     }
757 }
758 
planComposition()759 void Output::planComposition() {
760     if (!mPlanner || !getState().isEnabled) {
761         return;
762     }
763 
764     ATRACE_CALL();
765     ALOGV(__FUNCTION__);
766 
767     mPlanner->plan(getOutputLayersOrderedByZ());
768 }
769 
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)770 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
771     ATRACE_CALL();
772     ALOGV(__FUNCTION__);
773 
774     if (!getState().isEnabled) {
775         return;
776     }
777 
778     editState().earliestPresentTime = refreshArgs.earliestPresentTime;
779     editState().previousPresentFence = refreshArgs.previousPresentFence;
780     editState().expectedPresentTime = refreshArgs.expectedPresentTime;
781 
782     compositionengine::OutputLayer* peekThroughLayer = nullptr;
783     sp<GraphicBuffer> previousOverride = nullptr;
784     bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
785     uint32_t z = 0;
786     bool overrideZ = false;
787     uint64_t outputLayerHash = 0;
788     for (auto* layer : getOutputLayersOrderedByZ()) {
789         if (layer == peekThroughLayer) {
790             // No longer needed, although it should not show up again, so
791             // resetting it is not truly needed either.
792             peekThroughLayer = nullptr;
793 
794             // peekThroughLayer was already drawn ahead of its z order.
795             continue;
796         }
797         bool skipLayer = false;
798         const auto& overrideInfo = layer->getState().overrideInfo;
799         if (overrideInfo.buffer != nullptr) {
800             if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
801                 ALOGV("Skipping redundant buffer");
802                 skipLayer = true;
803             } else {
804                 // First layer with the override buffer.
805                 if (overrideInfo.peekThroughLayer) {
806                     peekThroughLayer = overrideInfo.peekThroughLayer;
807 
808                     // Draw peekThroughLayer first.
809                     overrideZ = true;
810                     includeGeometry = true;
811                     constexpr bool isPeekingThrough = true;
812                     peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
813                                                       isPeekingThrough);
814                     outputLayerHash ^= android::hashCombine(
815                             reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()),
816                             z, includeGeometry, overrideZ, isPeekingThrough,
817                             peekThroughLayer->requiresClientComposition());
818                 }
819 
820                 previousOverride = overrideInfo.buffer->getBuffer();
821             }
822         }
823 
824         constexpr bool isPeekingThrough = false;
825         layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough);
826         if (!skipLayer) {
827             outputLayerHash ^= android::hashCombine(
828                     reinterpret_cast<uint64_t>(&layer->getLayerFE()),
829                     z, includeGeometry, overrideZ, isPeekingThrough,
830                     layer->requiresClientComposition());
831         }
832     }
833     editState().outputLayerHash = outputLayerHash;
834 }
835 
findLayerRequestingBackgroundComposition() const836 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
837     compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
838     for (auto* layer : getOutputLayersOrderedByZ()) {
839         auto* compState = layer->getLayerFE().getCompositionState();
840 
841         // If any layer has a sideband stream, we will disable blurs. In that case, we don't
842         // want to force client composition because of the blur.
843         if (compState->sidebandStream != nullptr) {
844             return nullptr;
845         }
846         if (compState->isOpaque) {
847             continue;
848         }
849         if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
850             layerRequestingBgComposition = layer;
851         }
852     }
853     return layerRequestingBgComposition;
854 }
855 
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)856 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
857     setColorProfile(pickColorProfile(refreshArgs));
858 }
859 
860 // Returns a data space that fits all visible layers.  The returned data space
861 // can only be one of
862 //  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
863 //  - Dataspace::DISPLAY_P3
864 //  - Dataspace::DISPLAY_BT2020
865 // The returned HDR data space is one of
866 //  - Dataspace::UNKNOWN
867 //  - Dataspace::BT2020_HLG
868 //  - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const869 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
870                                        bool* outIsHdrClientComposition) const {
871     ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
872     *outHdrDataSpace = ui::Dataspace::UNKNOWN;
873 
874     for (const auto* layer : getOutputLayersOrderedByZ()) {
875         switch (layer->getLayerFE().getCompositionState()->dataspace) {
876             case ui::Dataspace::V0_SCRGB:
877             case ui::Dataspace::V0_SCRGB_LINEAR:
878             case ui::Dataspace::BT2020:
879             case ui::Dataspace::BT2020_ITU:
880             case ui::Dataspace::BT2020_LINEAR:
881             case ui::Dataspace::DISPLAY_BT2020:
882                 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
883                 break;
884             case ui::Dataspace::DISPLAY_P3:
885                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
886                 break;
887             case ui::Dataspace::BT2020_PQ:
888             case ui::Dataspace::BT2020_ITU_PQ:
889                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
890                 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
891                 *outIsHdrClientComposition =
892                         layer->getLayerFE().getCompositionState()->forceClientComposition;
893                 break;
894             case ui::Dataspace::BT2020_HLG:
895             case ui::Dataspace::BT2020_ITU_HLG:
896                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
897                 // When there's mixed PQ content and HLG content, we set the HDR
898                 // data space to be BT2020_PQ and convert HLG to PQ.
899                 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
900                     *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
901                 }
902                 break;
903             default:
904                 break;
905         }
906     }
907 
908     return bestDataSpace;
909 }
910 
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const911 compositionengine::Output::ColorProfile Output::pickColorProfile(
912         const compositionengine::CompositionRefreshArgs& refreshArgs) const {
913     if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
914         return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
915                             ui::RenderIntent::COLORIMETRIC,
916                             refreshArgs.colorSpaceAgnosticDataspace};
917     }
918 
919     ui::Dataspace hdrDataSpace;
920     bool isHdrClientComposition = false;
921     ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
922 
923     switch (refreshArgs.forceOutputColorMode) {
924         case ui::ColorMode::SRGB:
925             bestDataSpace = ui::Dataspace::V0_SRGB;
926             break;
927         case ui::ColorMode::DISPLAY_P3:
928             bestDataSpace = ui::Dataspace::DISPLAY_P3;
929             break;
930         default:
931             break;
932     }
933 
934     // respect hdrDataSpace only when there is no legacy HDR support
935     const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
936             !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
937     if (isHdr) {
938         bestDataSpace = hdrDataSpace;
939     }
940 
941     ui::RenderIntent intent;
942     switch (refreshArgs.outputColorSetting) {
943         case OutputColorSetting::kManaged:
944         case OutputColorSetting::kUnmanaged:
945             intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
946                            : ui::RenderIntent::COLORIMETRIC;
947             break;
948         case OutputColorSetting::kEnhanced:
949             intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
950             break;
951         default: // vendor display color setting
952             intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
953             break;
954     }
955 
956     ui::ColorMode outMode;
957     ui::Dataspace outDataSpace;
958     ui::RenderIntent outRenderIntent;
959     mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
960                                            &outRenderIntent);
961 
962     return ColorProfile{outMode, outDataSpace, outRenderIntent,
963                         refreshArgs.colorSpaceAgnosticDataspace};
964 }
965 
beginFrame()966 void Output::beginFrame() {
967     auto& outputState = editState();
968     const bool dirty = !getDirtyRegion().isEmpty();
969     const bool empty = getOutputLayerCount() == 0;
970     const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
971 
972     // If nothing has changed (!dirty), don't recompose.
973     // If something changed, but we don't currently have any visible layers,
974     //   and didn't when we last did a composition, then skip it this time.
975     // The second rule does two things:
976     // - When all layers are removed from a display, we'll emit one black
977     //   frame, then nothing more until we get new layers.
978     // - When a display is created with a private layer stack, we won't
979     //   emit any black frames until a layer is added to the layer stack.
980     mMustRecompose = dirty && !(empty && wasEmpty);
981 
982     const char flagPrefix[] = {'-', '+'};
983     static_cast<void>(flagPrefix);
984     ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__,
985           mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
986           flagPrefix[empty], flagPrefix[wasEmpty]);
987 
988     mRenderSurface->beginFrame(mMustRecompose);
989 
990     if (mMustRecompose) {
991         outputState.lastCompositionHadVisibleLayers = !empty;
992     }
993 }
994 
prepareFrame()995 void Output::prepareFrame() {
996     ATRACE_CALL();
997     ALOGV(__FUNCTION__);
998 
999     auto& outputState = editState();
1000     if (!outputState.isEnabled) {
1001         return;
1002     }
1003 
1004     std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1005     bool success = chooseCompositionStrategy(&changes);
1006     resetCompositionStrategy();
1007     outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED;
1008     outputState.previousDeviceRequestedChanges = changes;
1009     outputState.previousDeviceRequestedSuccess = success;
1010     if (success) {
1011         applyCompositionStrategy(changes);
1012     }
1013     finishPrepareFrame();
1014 }
1015 
chooseCompositionStrategyAsync(std::optional<android::HWComposer::DeviceRequestedChanges> * changes)1016 std::future<bool> Output::chooseCompositionStrategyAsync(
1017         std::optional<android::HWComposer::DeviceRequestedChanges>* changes) {
1018     return mHwComposerAsyncWorker->send(
1019             [&, changes]() { return chooseCompositionStrategy(changes); });
1020 }
1021 
prepareFrameAsync(const CompositionRefreshArgs & refreshArgs)1022 GpuCompositionResult Output::prepareFrameAsync(const CompositionRefreshArgs& refreshArgs) {
1023     ATRACE_CALL();
1024     ALOGV(__FUNCTION__);
1025     auto& state = editState();
1026     const auto& previousChanges = state.previousDeviceRequestedChanges;
1027     std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1028     resetCompositionStrategy();
1029     auto hwcResult = chooseCompositionStrategyAsync(&changes);
1030     if (state.previousDeviceRequestedSuccess) {
1031         applyCompositionStrategy(previousChanges);
1032     }
1033     finishPrepareFrame();
1034 
1035     base::unique_fd bufferFence;
1036     std::shared_ptr<renderengine::ExternalTexture> buffer;
1037     updateProtectedContentState();
1038     const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer);
1039     GpuCompositionResult compositionResult;
1040     if (dequeueSucceeded) {
1041         std::optional<base::unique_fd> optFd =
1042                 composeSurfaces(Region::INVALID_REGION, refreshArgs, buffer, bufferFence);
1043         if (optFd) {
1044             compositionResult.fence = std::move(*optFd);
1045         }
1046     }
1047 
1048     auto chooseCompositionSuccess = hwcResult.get();
1049     const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges;
1050     state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS
1051                                                    : CompositionStrategyPredictionState::FAIL;
1052     if (!predictionSucceeded) {
1053         ATRACE_NAME("CompositionStrategyPredictionMiss");
1054         resetCompositionStrategy();
1055         if (chooseCompositionSuccess) {
1056             applyCompositionStrategy(changes);
1057         }
1058         finishPrepareFrame();
1059         // Track the dequeued buffer to reuse so we don't need to dequeue another one.
1060         compositionResult.buffer = buffer;
1061     } else {
1062         ATRACE_NAME("CompositionStrategyPredictionHit");
1063     }
1064     state.previousDeviceRequestedChanges = std::move(changes);
1065     state.previousDeviceRequestedSuccess = chooseCompositionSuccess;
1066     return compositionResult;
1067 }
1068 
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)1069 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
1070     if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
1071         return;
1072     }
1073 
1074     if (getState().isEnabled) {
1075         if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) {
1076             base::unique_fd bufferFence;
1077             std::shared_ptr<renderengine::ExternalTexture> buffer;
1078             updateProtectedContentState();
1079             dequeueRenderBuffer(&bufferFence, &buffer);
1080             static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs, buffer, bufferFence));
1081             mRenderSurface->queueBuffer(base::unique_fd());
1082         }
1083     }
1084 
1085     postFramebuffer();
1086 
1087     std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
1088 
1089     prepareFrame();
1090 }
1091 
finishFrame(const CompositionRefreshArgs & refreshArgs,GpuCompositionResult && result)1092 void Output::finishFrame(const CompositionRefreshArgs& refreshArgs, GpuCompositionResult&& result) {
1093     ATRACE_CALL();
1094     ALOGV(__FUNCTION__);
1095     const auto& outputState = getState();
1096     if (!outputState.isEnabled) {
1097         return;
1098     }
1099 
1100     std::optional<base::unique_fd> optReadyFence;
1101     std::shared_ptr<renderengine::ExternalTexture> buffer;
1102     base::unique_fd bufferFence;
1103     if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) {
1104         optReadyFence = std::move(result.fence);
1105     } else {
1106         if (result.bufferAvailable()) {
1107             buffer = std::move(result.buffer);
1108             bufferFence = std::move(result.fence);
1109         } else {
1110             updateProtectedContentState();
1111             if (!dequeueRenderBuffer(&bufferFence, &buffer)) {
1112                 return;
1113             }
1114         }
1115         // Repaint the framebuffer (if needed), getting the optional fence for when
1116         // the composition completes.
1117         optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs, buffer, bufferFence);
1118     }
1119     if (!optReadyFence) {
1120         return;
1121     }
1122 
1123     if (isPowerHintSessionEnabled()) {
1124         // get fence end time to know when gpu is complete in display
1125         setHintSessionGpuFence(std::make_unique<FenceTime>(new Fence(dup(optReadyFence->get()))));
1126     }
1127     // swap buffers (presentation)
1128     mRenderSurface->queueBuffer(std::move(*optReadyFence));
1129 }
1130 
updateProtectedContentState()1131 void Output::updateProtectedContentState() {
1132     const auto& outputState = getState();
1133     auto& renderEngine = getCompositionEngine().getRenderEngine();
1134     const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1135 
1136     // If we the display is secure, protected content support is enabled, and at
1137     // least one layer has protected content, we need to use a secure back
1138     // buffer.
1139     if (outputState.isSecure && supportsProtectedContent) {
1140         auto layers = getOutputLayersOrderedByZ();
1141         bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1142             return layer->getLayerFE().getCompositionState()->hasProtectedContent;
1143         });
1144         if (needsProtected != renderEngine.isProtected()) {
1145             renderEngine.useProtectedContext(needsProtected);
1146         }
1147         if (needsProtected != mRenderSurface->isProtected() &&
1148             needsProtected == renderEngine.isProtected()) {
1149             mRenderSurface->setProtected(needsProtected);
1150         }
1151     } else if (!outputState.isSecure && renderEngine.isProtected()) {
1152         renderEngine.useProtectedContext(false);
1153     }
1154 }
1155 
dequeueRenderBuffer(base::unique_fd * bufferFence,std::shared_ptr<renderengine::ExternalTexture> * tex)1156 bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence,
1157                                  std::shared_ptr<renderengine::ExternalTexture>* tex) {
1158     const auto& outputState = getState();
1159 
1160     // If we aren't doing client composition on this output, but do have a
1161     // flipClientTarget request for this frame on this output, we still need to
1162     // dequeue a buffer.
1163     if (outputState.usesClientComposition || outputState.flipClientTarget) {
1164         *tex = mRenderSurface->dequeueBuffer(bufferFence);
1165         if (*tex == nullptr) {
1166             ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1167                   "client composition for this frame",
1168                   mName.c_str());
1169             return false;
1170         }
1171     }
1172     return true;
1173 }
1174 
composeSurfaces(const Region & debugRegion,const compositionengine::CompositionRefreshArgs & refreshArgs,std::shared_ptr<renderengine::ExternalTexture> tex,base::unique_fd & fd)1175 std::optional<base::unique_fd> Output::composeSurfaces(
1176         const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs,
1177         std::shared_ptr<renderengine::ExternalTexture> tex, base::unique_fd& fd) {
1178     ATRACE_CALL();
1179     ALOGV(__FUNCTION__);
1180 
1181     const auto& outputState = getState();
1182     const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
1183                                                       outputState.usesClientComposition};
1184     if (!hasClientComposition) {
1185         setExpensiveRenderingExpected(false);
1186         return base::unique_fd();
1187     }
1188 
1189     if (tex == nullptr) {
1190         ALOGW("Buffer not valid for display [%s], bailing out of "
1191               "client composition for this frame",
1192               mName.c_str());
1193         return {};
1194     }
1195 
1196     ALOGV("hasClientComposition");
1197 
1198     renderengine::DisplaySettings clientCompositionDisplay;
1199     clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent();
1200     clientCompositionDisplay.clip = outputState.layerStackSpace.getContent();
1201     clientCompositionDisplay.orientation =
1202             ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation());
1203     clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1204             ? outputState.dataspace
1205             : ui::Dataspace::UNKNOWN;
1206 
1207     // If we have a valid current display brightness use that, otherwise fall back to the
1208     // display's max desired
1209     clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f
1210             ? outputState.displayBrightnessNits
1211             : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1212     clientCompositionDisplay.maxLuminance =
1213             mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1214     clientCompositionDisplay.targetLuminanceNits =
1215             outputState.clientTargetBrightness * outputState.displayBrightnessNits;
1216     clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage;
1217     clientCompositionDisplay.renderIntent =
1218             static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>(
1219                     outputState.renderIntent);
1220 
1221     // Compute the global color transform matrix.
1222     clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1223     clientCompositionDisplay.deviceHandlesColorTransform =
1224             outputState.usesDeviceComposition || getSkipColorTransform();
1225 
1226     // Generate the client composition requests for the layers on this output.
1227     auto& renderEngine = getCompositionEngine().getRenderEngine();
1228     const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1229     std::vector<LayerFE*> clientCompositionLayersFE;
1230     std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1231             generateClientCompositionRequests(supportsProtectedContent,
1232                                               clientCompositionDisplay.outputDataspace,
1233                                               clientCompositionLayersFE);
1234     appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1235 
1236     OutputCompositionState& outputCompositionState = editState();
1237     // Check if the client composition requests were rendered into the provided graphic buffer. If
1238     // so, we can reuse the buffer and avoid client composition.
1239     if (mClientCompositionRequestCache) {
1240         if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1241                                                    clientCompositionDisplay,
1242                                                    clientCompositionLayers)) {
1243             ATRACE_NAME("ClientCompositionCacheHit");
1244             outputCompositionState.reusedClientComposition = true;
1245             setExpensiveRenderingExpected(false);
1246             // b/239944175 pass the fence associated with the buffer.
1247             return base::unique_fd(std::move(fd));
1248         }
1249         ATRACE_NAME("ClientCompositionCacheMiss");
1250         mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1251                                             clientCompositionLayers);
1252     }
1253 
1254     // We boost GPU frequency here because there will be color spaces conversion
1255     // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1256     // GPU composition can finish in time. We must reset GPU frequency afterwards,
1257     // because high frequency consumes extra battery.
1258     const bool expensiveBlurs =
1259             refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
1260     const bool expensiveRenderingExpected = expensiveBlurs ||
1261             std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1262                         [outputDataspace =
1263                                  clientCompositionDisplay.outputDataspace](const auto& layer) {
1264                             return layer.sourceDataspace != outputDataspace;
1265                         });
1266     if (expensiveRenderingExpected) {
1267         setExpensiveRenderingExpected(true);
1268     }
1269 
1270     std::vector<renderengine::LayerSettings> clientRenderEngineLayers;
1271     clientRenderEngineLayers.reserve(clientCompositionLayers.size());
1272     std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1273                    std::back_inserter(clientRenderEngineLayers),
1274                    [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings {
1275                        return settings;
1276                    });
1277 
1278     const nsecs_t renderEngineStart = systemTime();
1279     // Only use the framebuffer cache when rendering to an internal display
1280     // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because
1281     // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine
1282     // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is
1283     // probably to encapsulate the output buffer into a structure that dispatches resource cleanup
1284     // over to RenderEngine, in which case this flag can be removed from the drawLayers interface.
1285     const bool useFramebufferCache = outputState.layerFilter.toInternalDisplay;
1286 
1287     auto fenceResult =
1288             toFenceResult(renderEngine
1289                                   .drawLayers(clientCompositionDisplay, clientRenderEngineLayers,
1290                                               tex, useFramebufferCache, std::move(fd))
1291                                   .get());
1292 
1293     if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) {
1294         // If rendering was not successful, remove the request from the cache.
1295         mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1296     }
1297 
1298     const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE);
1299 
1300     if (auto& timeStats = getCompositionEngine().getTimeStats(); fence->isValid()) {
1301         timeStats.recordRenderEngineDuration(renderEngineStart, std::make_shared<FenceTime>(fence));
1302     } else {
1303         timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
1304     }
1305 
1306     for (auto* clientComposedLayer : clientCompositionLayersFE) {
1307         clientComposedLayer->setWasClientComposed(fence);
1308     }
1309 
1310     return base::unique_fd(fence->dup());
1311 }
1312 
generateClientCompositionRequests(bool supportsProtectedContent,ui::Dataspace outputDataspace,std::vector<LayerFE * > & outLayerFEs)1313 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1314       bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) {
1315     std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1316     ALOGV("Rendering client layers");
1317 
1318     const auto& outputState = getState();
1319     const Region viewportRegion(outputState.layerStackSpace.getContent());
1320     bool firstLayer = true;
1321 
1322     bool disableBlurs = false;
1323     sp<GraphicBuffer> previousOverrideBuffer = nullptr;
1324 
1325     for (auto* layer : getOutputLayersOrderedByZ()) {
1326         const auto& layerState = layer->getState();
1327         const auto* layerFEState = layer->getLayerFE().getCompositionState();
1328         auto& layerFE = layer->getLayerFE();
1329         layerFE.setWasClientComposed(nullptr);
1330 
1331         const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1332         ALOGV("Layer: %s", layerFE.getDebugName());
1333         if (clip.isEmpty()) {
1334             ALOGV("  Skipping for empty clip");
1335             firstLayer = false;
1336             continue;
1337         }
1338 
1339         disableBlurs |= layerFEState->sidebandStream != nullptr;
1340 
1341         const bool clientComposition = layer->requiresClientComposition();
1342 
1343         // We clear the client target for non-client composed layers if
1344         // requested by the HWC. We skip this if the layer is not an opaque
1345         // rectangle, as by definition the layer must blend with whatever is
1346         // underneath. We also skip the first layer as the buffer target is
1347         // guaranteed to start out cleared.
1348         const bool clearClientComposition =
1349                 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1350 
1351         ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition);
1352 
1353         // If the layer casts a shadow but the content casting the shadow is occluded, skip
1354         // composing the non-shadow content and only draw the shadows.
1355         const bool realContentIsVisible = clientComposition &&
1356                 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1357 
1358         if (clientComposition || clearClientComposition) {
1359             std::vector<LayerFE::LayerSettings> results;
1360             if (layer->getState().overrideInfo.buffer != nullptr) {
1361                 if (layer->getState().overrideInfo.buffer->getBuffer() != previousOverrideBuffer) {
1362                     results = layer->getOverrideCompositionList();
1363                     previousOverrideBuffer = layer->getState().overrideInfo.buffer->getBuffer();
1364                     ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1365                 } else {
1366                     ALOGV("Skipping redundant override buffer for [%s] in RE",
1367                           layer->getLayerFE().getDebugName());
1368                 }
1369             } else {
1370                 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1371                         ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1372                         : (layer->getState().overrideInfo.disableBackgroundBlur
1373                                    ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1374                                              BlurRegionsOnly
1375                                    : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1376                                              Enabled);
1377                 compositionengine::LayerFE::ClientCompositionTargetSettings
1378                         targetSettings{.clip = clip,
1379                                        .needsFiltering = layer->needsFiltering() ||
1380                                                outputState.needsFiltering,
1381                                        .isSecure = outputState.isSecure,
1382                                        .supportsProtectedContent = supportsProtectedContent,
1383                                        .viewport = outputState.layerStackSpace.getContent(),
1384                                        .dataspace = outputDataspace,
1385                                        .realContentIsVisible = realContentIsVisible,
1386                                        .clearContent = !clientComposition,
1387                                        .blurSetting = blurSetting,
1388                                        .whitePointNits = layerState.whitePointNits};
1389                 results = layerFE.prepareClientCompositionList(targetSettings);
1390                 if (realContentIsVisible && !results.empty()) {
1391                     layer->editState().clientCompositionTimestamp = systemTime();
1392                 }
1393             }
1394 
1395             if (clientComposition) {
1396                 outLayerFEs.push_back(&layerFE);
1397             }
1398 
1399             clientCompositionLayers.insert(clientCompositionLayers.end(),
1400                                            std::make_move_iterator(results.begin()),
1401                                            std::make_move_iterator(results.end()));
1402             results.clear();
1403         }
1404 
1405         firstLayer = false;
1406     }
1407 
1408     return clientCompositionLayers;
1409 }
1410 
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1411 void Output::appendRegionFlashRequests(
1412         const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1413     if (flashRegion.isEmpty()) {
1414         return;
1415     }
1416 
1417     LayerFE::LayerSettings layerSettings;
1418     layerSettings.source.buffer.buffer = nullptr;
1419     layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1420     layerSettings.alpha = half(1.0);
1421 
1422     for (const auto& rect : flashRegion) {
1423         layerSettings.geometry.boundaries = rect.toFloatRect();
1424         clientCompositionLayers.push_back(layerSettings);
1425     }
1426 }
1427 
setExpensiveRenderingExpected(bool)1428 void Output::setExpensiveRenderingExpected(bool) {
1429     // The base class does nothing with this call.
1430 }
1431 
setHintSessionGpuFence(std::unique_ptr<FenceTime> &&)1432 void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) {
1433     // The base class does nothing with this call.
1434 }
1435 
isPowerHintSessionEnabled()1436 bool Output::isPowerHintSessionEnabled() {
1437     return false;
1438 }
1439 
postFramebuffer()1440 void Output::postFramebuffer() {
1441     ATRACE_CALL();
1442     ALOGV(__FUNCTION__);
1443 
1444     if (!getState().isEnabled) {
1445         return;
1446     }
1447 
1448     auto& outputState = editState();
1449     outputState.dirtyRegion.clear();
1450     mRenderSurface->flip();
1451 
1452     auto frame = presentAndGetFrameFences();
1453 
1454     mRenderSurface->onPresentDisplayCompleted();
1455 
1456     for (auto* layer : getOutputLayersOrderedByZ()) {
1457         // The layer buffer from the previous frame (if any) is released
1458         // by HWC only when the release fence from this frame (if any) is
1459         // signaled.  Always get the release fence from HWC first.
1460         sp<Fence> releaseFence = Fence::NO_FENCE;
1461 
1462         if (auto hwcLayer = layer->getHwcLayer()) {
1463             if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1464                 releaseFence = f->second;
1465             }
1466         }
1467 
1468         // If the layer was client composited in the previous frame, we
1469         // need to merge with the previous client target acquire fence.
1470         // Since we do not track that, always merge with the current
1471         // client target acquire fence when it is available, even though
1472         // this is suboptimal.
1473         // TODO(b/121291683): Track previous frame client target acquire fence.
1474         if (outputState.usesClientComposition) {
1475             releaseFence =
1476                     Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1477         }
1478         layer->getLayerFE().onLayerDisplayed(
1479                 ftl::yield<FenceResult>(std::move(releaseFence)).share());
1480     }
1481 
1482     // We've got a list of layers needing fences, that are disjoint with
1483     // OutputLayersOrderedByZ.  The best we can do is to
1484     // supply them with the present fence.
1485     for (auto& weakLayer : mReleasedLayers) {
1486         if (const auto layer = weakLayer.promote()) {
1487             layer->onLayerDisplayed(ftl::yield<FenceResult>(frame.presentFence).share());
1488         }
1489     }
1490 
1491     // Clear out the released layers now that we're done with them.
1492     mReleasedLayers.clear();
1493 }
1494 
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1495 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1496     if (mPlanner) {
1497         mPlanner->renderCachedSets(getState(), refreshArgs.scheduledFrameTime,
1498                                    getState().usesDeviceComposition || getSkipColorTransform());
1499     }
1500 }
1501 
dirtyEntireOutput()1502 void Output::dirtyEntireOutput() {
1503     auto& outputState = editState();
1504     outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect());
1505 }
1506 
resetCompositionStrategy()1507 void Output::resetCompositionStrategy() {
1508     // The base output implementation can only do client composition
1509     auto& outputState = editState();
1510     outputState.usesClientComposition = true;
1511     outputState.usesDeviceComposition = false;
1512     outputState.reusedClientComposition = false;
1513 }
1514 
getSkipColorTransform() const1515 bool Output::getSkipColorTransform() const {
1516     return true;
1517 }
1518 
presentAndGetFrameFences()1519 compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
1520     compositionengine::Output::FrameFences result;
1521     if (getState().usesClientComposition) {
1522         result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1523     }
1524     return result;
1525 }
1526 
setPredictCompositionStrategy(bool predict)1527 void Output::setPredictCompositionStrategy(bool predict) {
1528     if (predict) {
1529         mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>();
1530     } else {
1531         mHwComposerAsyncWorker.reset(nullptr);
1532     }
1533 }
1534 
setTreat170mAsSrgb(bool enable)1535 void Output::setTreat170mAsSrgb(bool enable) {
1536     editState().treat170mAsSrgb = enable;
1537 }
1538 
canPredictCompositionStrategy(const CompositionRefreshArgs & refreshArgs)1539 bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) {
1540     uint64_t lastOutputLayerHash = getState().lastOutputLayerHash;
1541     uint64_t outputLayerHash = getState().outputLayerHash;
1542     editState().lastOutputLayerHash = outputLayerHash;
1543 
1544     if (!getState().isEnabled || !mHwComposerAsyncWorker) {
1545         ALOGV("canPredictCompositionStrategy disabled");
1546         return false;
1547     }
1548 
1549     if (!getState().previousDeviceRequestedChanges) {
1550         ALOGV("canPredictCompositionStrategy previous changes not available");
1551         return false;
1552     }
1553 
1554     if (!mRenderSurface->supportsCompositionStrategyPrediction()) {
1555         ALOGV("canPredictCompositionStrategy surface does not support");
1556         return false;
1557     }
1558 
1559     if (refreshArgs.devOptFlashDirtyRegionsDelay) {
1560         ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay");
1561         return false;
1562     }
1563 
1564     if (lastOutputLayerHash != outputLayerHash) {
1565         ALOGV("canPredictCompositionStrategy output layers changed");
1566         return false;
1567     }
1568 
1569     // If no layer uses clientComposition, then don't predict composition strategy
1570     // because we have less work to do in parallel.
1571     if (!anyLayersRequireClientComposition()) {
1572         ALOGV("canPredictCompositionStrategy no layer uses clientComposition");
1573         return false;
1574     }
1575 
1576     return true;
1577 }
1578 
anyLayersRequireClientComposition() const1579 bool Output::anyLayersRequireClientComposition() const {
1580     const auto layers = getOutputLayersOrderedByZ();
1581     return std::any_of(layers.begin(), layers.end(),
1582                        [](const auto& layer) { return layer->requiresClientComposition(); });
1583 }
1584 
finishPrepareFrame()1585 void Output::finishPrepareFrame() {
1586     const auto& state = getState();
1587     if (mPlanner) {
1588         mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
1589     }
1590     mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition);
1591 }
1592 
mustRecompose() const1593 bool Output::mustRecompose() const {
1594     return mMustRecompose;
1595 }
1596 
1597 } // namespace impl
1598 } // namespace android::compositionengine
1599