1 // Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "VkDevice.hpp"
16
17 #include "VkConfig.hpp"
18 #include "VkDescriptorSetLayout.hpp"
19 #include "VkFence.hpp"
20 #include "VkQueue.hpp"
21 #include "VkSemaphore.hpp"
22 #include "VkTimelineSemaphore.hpp"
23 #include "Debug/Context.hpp"
24 #include "Debug/Server.hpp"
25 #include "Device/Blitter.hpp"
26 #include "System/Debug.hpp"
27
28 #include <chrono>
29 #include <climits>
30 #include <new> // Must #include this to use "placement new"
31
32 namespace {
33
34 using time_point = std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds>;
35
now()36 time_point now()
37 {
38 return std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now());
39 }
40
getEndTimePoint(uint64_t timeout,bool & infiniteTimeout)41 const time_point getEndTimePoint(uint64_t timeout, bool &infiniteTimeout)
42 {
43 const time_point start = now();
44 const uint64_t max_timeout = (LLONG_MAX - start.time_since_epoch().count());
45 infiniteTimeout = (timeout > max_timeout);
46 return start + std::chrono::nanoseconds(std::min(max_timeout, timeout));
47 }
48
49 } // anonymous namespace
50
51 namespace vk {
52
updateSnapshot()53 void Device::SamplingRoutineCache::updateSnapshot()
54 {
55 marl::lock lock(mutex);
56
57 if(snapshotNeedsUpdate)
58 {
59 snapshot.clear();
60
61 for(auto it : cache)
62 {
63 snapshot[it.key()] = it.data();
64 }
65
66 snapshotNeedsUpdate = false;
67 }
68 }
69
~SamplerIndexer()70 Device::SamplerIndexer::~SamplerIndexer()
71 {
72 ASSERT(map.empty());
73 }
74
index(const SamplerState & samplerState)75 uint32_t Device::SamplerIndexer::index(const SamplerState &samplerState)
76 {
77 marl::lock lock(mutex);
78
79 auto it = map.find(samplerState);
80
81 if(it != map.end())
82 {
83 it->second.count++;
84 return it->second.id;
85 }
86
87 nextID++;
88
89 map.emplace(samplerState, Identifier{ nextID, 1 });
90
91 return nextID;
92 }
93
remove(const SamplerState & samplerState)94 void Device::SamplerIndexer::remove(const SamplerState &samplerState)
95 {
96 marl::lock lock(mutex);
97
98 auto it = map.find(samplerState);
99 ASSERT(it != map.end());
100
101 auto count = --it->second.count;
102 if(count == 0)
103 {
104 map.erase(it);
105 }
106 }
107
find(uint32_t id)108 const SamplerState *Device::SamplerIndexer::find(uint32_t id)
109 {
110 marl::lock lock(mutex);
111
112 auto it = std::find_if(std::begin(map), std::end(map),
113 [&id](auto &&p) { return p.second.id == id; });
114
115 return (it != std::end(map)) ? &(it->first) : nullptr;
116 }
117
Device(const VkDeviceCreateInfo * pCreateInfo,void * mem,PhysicalDevice * physicalDevice,const VkPhysicalDeviceFeatures * enabledFeatures,const std::shared_ptr<marl::Scheduler> & scheduler)118 Device::Device(const VkDeviceCreateInfo *pCreateInfo, void *mem, PhysicalDevice *physicalDevice, const VkPhysicalDeviceFeatures *enabledFeatures, const std::shared_ptr<marl::Scheduler> &scheduler)
119 : physicalDevice(physicalDevice)
120 , queues(reinterpret_cast<Queue *>(mem))
121 , enabledExtensionCount(pCreateInfo->enabledExtensionCount)
122 , enabledFeatures(enabledFeatures ? *enabledFeatures : VkPhysicalDeviceFeatures{}) // "Setting pEnabledFeatures to NULL and not including a VkPhysicalDeviceFeatures2 in the pNext member of VkDeviceCreateInfo is equivalent to setting all members of the structure to VK_FALSE."
123 , scheduler(scheduler)
124 {
125 for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
126 {
127 const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
128 queueCount += queueCreateInfo.queueCount;
129 }
130
131 uint32_t queueID = 0;
132 for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
133 {
134 const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i];
135
136 for(uint32_t j = 0; j < queueCreateInfo.queueCount; j++, queueID++)
137 {
138 new(&queues[queueID]) Queue(this, scheduler.get());
139 }
140 }
141
142 extensions = reinterpret_cast<ExtensionName *>(static_cast<uint8_t *>(mem) + (sizeof(Queue) * queueCount));
143 for(uint32_t i = 0; i < enabledExtensionCount; i++)
144 {
145 strncpy(extensions[i], pCreateInfo->ppEnabledExtensionNames[i], VK_MAX_EXTENSION_NAME_SIZE);
146 }
147
148 if(pCreateInfo->enabledLayerCount)
149 {
150 // "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations."
151 UNSUPPORTED("enabledLayerCount");
152 }
153
154 // FIXME (b/119409619): use an allocator here so we can control all memory allocations
155 blitter.reset(new sw::Blitter());
156 samplingRoutineCache.reset(new SamplingRoutineCache());
157 samplerIndexer.reset(new SamplerIndexer());
158
159 #ifdef ENABLE_VK_DEBUGGER
160 static auto port = getenv("VK_DEBUGGER_PORT");
161 if(port)
162 {
163 // Construct the debugger context and server - this may block for a
164 // debugger connection, allowing breakpoints to be set before they're
165 // executed.
166 debugger.context = vk::dbg::Context::create();
167 debugger.server = vk::dbg::Server::create(debugger.context, atoi(port));
168 }
169 #endif // ENABLE_VK_DEBUGGER
170
171 #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
172 const VkBaseInStructure *extensionCreateInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
173 while(extensionCreateInfo)
174 {
175 if(extensionCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT)
176 {
177 auto deviceMemoryReportCreateInfo = reinterpret_cast<const VkDeviceDeviceMemoryReportCreateInfoEXT *>(pCreateInfo->pNext);
178 if(deviceMemoryReportCreateInfo->pfnUserCallback != nullptr)
179 {
180 deviceMemoryReportCallbacks.emplace_back(deviceMemoryReportCreateInfo->pfnUserCallback, deviceMemoryReportCreateInfo->pUserData);
181 }
182 }
183 extensionCreateInfo = extensionCreateInfo->pNext;
184 }
185 #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
186 }
187
destroy(const VkAllocationCallbacks * pAllocator)188 void Device::destroy(const VkAllocationCallbacks *pAllocator)
189 {
190 for(uint32_t i = 0; i < queueCount; i++)
191 {
192 queues[i].~Queue();
193 }
194
195 vk::freeHostMemory(queues, pAllocator);
196 }
197
ComputeRequiredAllocationSize(const VkDeviceCreateInfo * pCreateInfo)198 size_t Device::ComputeRequiredAllocationSize(const VkDeviceCreateInfo *pCreateInfo)
199 {
200 uint32_t queueCount = 0;
201 for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
202 {
203 queueCount += pCreateInfo->pQueueCreateInfos[i].queueCount;
204 }
205
206 return (sizeof(Queue) * queueCount) + (pCreateInfo->enabledExtensionCount * sizeof(ExtensionName));
207 }
208
hasExtension(const char * extensionName) const209 bool Device::hasExtension(const char *extensionName) const
210 {
211 for(uint32_t i = 0; i < enabledExtensionCount; i++)
212 {
213 if(strncmp(extensions[i], extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0)
214 {
215 return true;
216 }
217 }
218 return false;
219 }
220
getQueue(uint32_t queueFamilyIndex,uint32_t queueIndex) const221 VkQueue Device::getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex) const
222 {
223 ASSERT(queueFamilyIndex == 0);
224
225 return queues[queueIndex];
226 }
227
waitForFences(uint32_t fenceCount,const VkFence * pFences,VkBool32 waitAll,uint64_t timeout)228 VkResult Device::waitForFences(uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout)
229 {
230 bool infiniteTimeout = false;
231 const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout);
232
233 if(waitAll != VK_FALSE) // All fences must be signaled
234 {
235 for(uint32_t i = 0; i < fenceCount; i++)
236 {
237 if(timeout == 0)
238 {
239 if(Cast(pFences[i])->getStatus() != VK_SUCCESS) // At least one fence is not signaled
240 {
241 return VK_TIMEOUT;
242 }
243 }
244 else if(infiniteTimeout)
245 {
246 if(Cast(pFences[i])->wait() != VK_SUCCESS) // At least one fence is not signaled
247 {
248 return VK_TIMEOUT;
249 }
250 }
251 else
252 {
253 if(Cast(pFences[i])->wait(end_ns) != VK_SUCCESS) // At least one fence is not signaled
254 {
255 return VK_TIMEOUT;
256 }
257 }
258 }
259
260 return VK_SUCCESS;
261 }
262 else // At least one fence must be signaled
263 {
264 marl::containers::vector<marl::Event, 8> events;
265 for(uint32_t i = 0; i < fenceCount; i++)
266 {
267 events.push_back(Cast(pFences[i])->getCountedEvent()->event());
268 }
269
270 auto any = marl::Event::any(events.begin(), events.end());
271
272 if(timeout == 0)
273 {
274 return any.isSignalled() ? VK_SUCCESS : VK_TIMEOUT;
275 }
276 else if(infiniteTimeout)
277 {
278 any.wait();
279 return VK_SUCCESS;
280 }
281 else
282 {
283 return any.wait_until(end_ns) ? VK_SUCCESS : VK_TIMEOUT;
284 }
285 }
286 }
287
waitForSemaphores(const VkSemaphoreWaitInfo * pWaitInfo,uint64_t timeout)288 VkResult Device::waitForSemaphores(const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout)
289 {
290 bool infiniteTimeout = false;
291 const time_point end_ns = getEndTimePoint(timeout, infiniteTimeout);
292
293 if(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT)
294 {
295 TimelineSemaphore any = TimelineSemaphore();
296
297 for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++)
298 {
299 TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]);
300 uint64_t waitValue = pWaitInfo->pValues[i];
301
302 if(semaphore->getCounterValue() == waitValue)
303 {
304 return VK_SUCCESS;
305 }
306
307 semaphore->addDependent(any, waitValue);
308 }
309
310 if(infiniteTimeout)
311 {
312 any.wait(1ull);
313 return VK_SUCCESS;
314 }
315 else
316 {
317 if(any.wait(1, end_ns) == VK_SUCCESS)
318 {
319 return VK_SUCCESS;
320 }
321 }
322
323 return VK_TIMEOUT;
324 }
325 else
326 {
327 ASSERT(pWaitInfo->flags == 0);
328 for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; i++)
329 {
330 TimelineSemaphore *semaphore = DynamicCast<TimelineSemaphore>(pWaitInfo->pSemaphores[i]);
331 uint64_t value = pWaitInfo->pValues[i];
332 if(infiniteTimeout)
333 {
334 semaphore->wait(value);
335 }
336 else if(semaphore->wait(pWaitInfo->pValues[i], end_ns) != VK_SUCCESS)
337 {
338 return VK_TIMEOUT;
339 }
340 }
341 return VK_SUCCESS;
342 }
343 }
344
waitIdle()345 VkResult Device::waitIdle()
346 {
347 for(uint32_t i = 0; i < queueCount; i++)
348 {
349 queues[i].waitIdle();
350 }
351
352 return VK_SUCCESS;
353 }
354
getDescriptorSetLayoutSupport(const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport) const355 void Device::getDescriptorSetLayoutSupport(const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
356 VkDescriptorSetLayoutSupport *pSupport) const
357 {
358 // From Vulkan Spec 13.2.1 Descriptor Set Layout, in description of vkGetDescriptorSetLayoutSupport:
359 // "This command does not consider other limits such as maxPerStageDescriptor*, and so a descriptor
360 // set layout that is supported according to this command must still satisfy the pipeline layout limits
361 // such as maxPerStageDescriptor* in order to be used in a pipeline layout."
362
363 // We have no "strange" limitations to enforce beyond the device limits, so we can safely always claim support.
364 pSupport->supported = VK_TRUE;
365 }
366
updateDescriptorSets(uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)367 void Device::updateDescriptorSets(uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites,
368 uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies)
369 {
370 for(uint32_t i = 0; i < descriptorWriteCount; i++)
371 {
372 DescriptorSetLayout::WriteDescriptorSet(this, pDescriptorWrites[i]);
373 }
374
375 for(uint32_t i = 0; i < descriptorCopyCount; i++)
376 {
377 DescriptorSetLayout::CopyDescriptorSet(pDescriptorCopies[i]);
378 }
379 }
380
getRequirements(VkMemoryDedicatedRequirements * requirements) const381 void Device::getRequirements(VkMemoryDedicatedRequirements *requirements) const
382 {
383 requirements->prefersDedicatedAllocation = VK_FALSE;
384 requirements->requiresDedicatedAllocation = VK_FALSE;
385 }
386
getSamplingRoutineCache() const387 Device::SamplingRoutineCache *Device::getSamplingRoutineCache() const
388 {
389 return samplingRoutineCache.get();
390 }
391
updateSamplingRoutineSnapshotCache()392 void Device::updateSamplingRoutineSnapshotCache()
393 {
394 samplingRoutineCache->updateSnapshot();
395 }
396
indexSampler(const SamplerState & samplerState)397 uint32_t Device::indexSampler(const SamplerState &samplerState)
398 {
399 return samplerIndexer->index(samplerState);
400 }
401
removeSampler(const SamplerState & samplerState)402 void Device::removeSampler(const SamplerState &samplerState)
403 {
404 samplerIndexer->remove(samplerState);
405 }
406
findSampler(uint32_t samplerId) const407 const SamplerState *Device::findSampler(uint32_t samplerId) const
408 {
409 return samplerIndexer->find(samplerId);
410 }
411
setDebugUtilsObjectName(const VkDebugUtilsObjectNameInfoEXT * pNameInfo)412 VkResult Device::setDebugUtilsObjectName(const VkDebugUtilsObjectNameInfoEXT *pNameInfo)
413 {
414 // Optionally maps user-friendly name to an object
415 return VK_SUCCESS;
416 }
417
setDebugUtilsObjectTag(const VkDebugUtilsObjectTagInfoEXT * pTagInfo)418 VkResult Device::setDebugUtilsObjectTag(const VkDebugUtilsObjectTagInfoEXT *pTagInfo)
419 {
420 // Optionally attach arbitrary data to an object
421 return VK_SUCCESS;
422 }
423
registerImageView(ImageView * imageView)424 void Device::registerImageView(ImageView *imageView)
425 {
426 if(imageView != nullptr)
427 {
428 marl::lock lock(imageViewSetMutex);
429 imageViewSet.insert(imageView);
430 }
431 }
432
unregisterImageView(ImageView * imageView)433 void Device::unregisterImageView(ImageView *imageView)
434 {
435 if(imageView != nullptr)
436 {
437 marl::lock lock(imageViewSetMutex);
438 auto it = imageViewSet.find(imageView);
439 if(it != imageViewSet.end())
440 {
441 imageViewSet.erase(it);
442 }
443 }
444 }
445
prepareForSampling(ImageView * imageView)446 void Device::prepareForSampling(ImageView *imageView)
447 {
448 if(imageView != nullptr)
449 {
450 marl::lock lock(imageViewSetMutex);
451
452 auto it = imageViewSet.find(imageView);
453 if(it != imageViewSet.end())
454 {
455 imageView->prepareForSampling();
456 }
457 }
458 }
459
contentsChanged(ImageView * imageView,Image::ContentsChangedContext context)460 void Device::contentsChanged(ImageView *imageView, Image::ContentsChangedContext context)
461 {
462 if(imageView != nullptr)
463 {
464 marl::lock lock(imageViewSetMutex);
465
466 auto it = imageViewSet.find(imageView);
467 if(it != imageViewSet.end())
468 {
469 imageView->contentsChanged(context);
470 }
471 }
472 }
473
setPrivateData(VkObjectType objectType,uint64_t objectHandle,const PrivateData * privateDataSlot,uint64_t data)474 VkResult Device::setPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t data)
475 {
476 marl::lock lock(privateDataMutex);
477
478 auto &privateDataSlotMap = privateData[privateDataSlot];
479 const PrivateDataObject privateDataObject = { objectType, objectHandle };
480 privateDataSlotMap[privateDataObject] = data;
481 return VK_SUCCESS;
482 }
483
getPrivateData(VkObjectType objectType,uint64_t objectHandle,const PrivateData * privateDataSlot,uint64_t * data)484 void Device::getPrivateData(VkObjectType objectType, uint64_t objectHandle, const PrivateData *privateDataSlot, uint64_t *data)
485 {
486 marl::lock lock(privateDataMutex);
487
488 *data = 0;
489 auto it = privateData.find(privateDataSlot);
490 if(it != privateData.end())
491 {
492 auto &privateDataSlotMap = it->second;
493 const PrivateDataObject privateDataObject = { objectType, objectHandle };
494 auto it2 = privateDataSlotMap.find(privateDataObject);
495 if(it2 != privateDataSlotMap.end())
496 {
497 *data = it2->second;
498 }
499 }
500 }
501
removePrivateDataSlot(const PrivateData * privateDataSlot)502 void Device::removePrivateDataSlot(const PrivateData *privateDataSlot)
503 {
504 marl::lock lock(privateDataMutex);
505
506 privateData.erase(privateDataSlot);
507 }
508
509 #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT
emitDeviceMemoryReport(VkDeviceMemoryReportEventTypeEXT type,uint64_t memoryObjectId,VkDeviceSize size,VkObjectType objectType,uint64_t objectHandle,uint32_t heapIndex)510 void Device::emitDeviceMemoryReport(VkDeviceMemoryReportEventTypeEXT type, uint64_t memoryObjectId, VkDeviceSize size, VkObjectType objectType, uint64_t objectHandle, uint32_t heapIndex)
511 {
512 if(deviceMemoryReportCallbacks.empty()) return;
513
514 const VkDeviceMemoryReportCallbackDataEXT callbackData = {
515 VK_STRUCTURE_TYPE_DEVICE_MEMORY_REPORT_CALLBACK_DATA_EXT, // sType
516 nullptr, // pNext
517 0, // flags
518 type, // type
519 memoryObjectId, // memoryObjectId
520 size, // size
521 objectType, // objectType
522 objectHandle, // objectHandle
523 heapIndex, // heapIndex
524 };
525 for(const auto &callback : deviceMemoryReportCallbacks)
526 {
527 callback.first(&callbackData, callback.second);
528 }
529 }
530 #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT
531
532 } // namespace vk
533