1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "tests/validation/Helpers.h"
25
26 #include <algorithm>
27 #include <cmath>
28
29 namespace arm_compute
30 {
31 namespace test
32 {
33 namespace validation
34 {
fill_mask_from_pattern(uint8_t * mask,int cols,int rows,MatrixPattern pattern)35 void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern)
36 {
37 unsigned int v = 0;
38 std::mt19937 gen(library->seed());
39 std::bernoulli_distribution dist(0.5);
40
41 for(int r = 0; r < rows; ++r)
42 {
43 for(int c = 0; c < cols; ++c, ++v)
44 {
45 uint8_t val = 0;
46
47 switch(pattern)
48 {
49 case MatrixPattern::BOX:
50 val = 255;
51 break;
52 case MatrixPattern::CROSS:
53 val = ((r == (rows / 2)) || (c == (cols / 2))) ? 255 : 0;
54 break;
55 case MatrixPattern::DISK:
56 val = (((r - rows / 2.0f + 0.5f) * (r - rows / 2.0f + 0.5f)) / ((rows / 2.0f) * (rows / 2.0f)) + ((c - cols / 2.0f + 0.5f) * (c - cols / 2.0f + 0.5f)) / ((cols / 2.0f) *
57 (cols / 2.0f))) <= 1.0f ? 255 : 0;
58 break;
59 case MatrixPattern::OTHER:
60 val = (dist(gen) ? 0 : 255);
61 break;
62 default:
63 return;
64 }
65
66 mask[v] = val;
67 }
68 }
69
70 if(pattern == MatrixPattern::OTHER)
71 {
72 std::uniform_int_distribution<uint8_t> distribution_u8(0, ((cols * rows) - 1));
73 mask[distribution_u8(gen)] = 255;
74 }
75 }
76
harris_corners_parameters()77 HarrisCornersParameters harris_corners_parameters()
78 {
79 HarrisCornersParameters params;
80
81 std::mt19937 gen(library->seed());
82 std::uniform_real_distribution<float> threshold_dist(0.f, 0.001f);
83 std::uniform_real_distribution<float> sensitivity(0.04f, 0.15f);
84 std::uniform_real_distribution<float> euclidean_distance(0.f, 30.f);
85 std::uniform_int_distribution<uint8_t> int_dist(0, 255);
86
87 params.threshold = threshold_dist(gen);
88 params.sensitivity = sensitivity(gen);
89 params.min_dist = euclidean_distance(gen);
90 params.constant_border_value = int_dist(gen);
91
92 return params;
93 }
94
canny_edge_parameters()95 CannyEdgeParameters canny_edge_parameters()
96 {
97 CannyEdgeParameters params;
98
99 std::mt19937 gen(library->seed());
100 std::uniform_int_distribution<uint8_t> int_dist(0, 255);
101 std::uniform_int_distribution<uint8_t> threshold_dist(2, 255);
102
103 params.constant_border_value = int_dist(gen);
104 params.upper_thresh = threshold_dist(gen); // upper_threshold >= 2
105 threshold_dist = std::uniform_int_distribution<uint8_t>(1, params.upper_thresh - 1);
106 params.lower_thresh = threshold_dist(gen); // lower_threshold >= 1 && lower_threshold < upper_threshold
107
108 return params;
109 }
110
111 template <>
convert_from_asymmetric(const SimpleTensor<uint8_t> & src)112 SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint8_t> &src)
113 {
114 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
115 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
116 #if defined(_OPENMP)
117 #pragma omp parallel for
118 #endif /* _OPENMP */
119 for(int i = 0; i < src.num_elements(); ++i)
120 {
121 dst[i] = dequantize_qasymm8(src[i], quantization_info);
122 }
123 return dst;
124 }
125
126 template <>
convert_from_asymmetric(const SimpleTensor<int8_t> & src)127 SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<int8_t> &src)
128 {
129 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
130 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
131
132 #if defined(_OPENMP)
133 #pragma omp parallel for
134 #endif /* _OPENMP */
135 for(int i = 0; i < src.num_elements(); ++i)
136 {
137 dst[i] = dequantize_qasymm8_signed(src[i], quantization_info);
138 }
139 return dst;
140 }
141
142 template <>
convert_from_asymmetric(const SimpleTensor<uint16_t> & src)143 SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint16_t> &src)
144 {
145 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
146 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
147
148 #if defined(_OPENMP)
149 #pragma omp parallel for
150 #endif /* _OPENMP */
151 for(int i = 0; i < src.num_elements(); ++i)
152 {
153 dst[i] = dequantize_qasymm16(src[i], quantization_info);
154 }
155 return dst;
156 }
157
158 template <>
convert_to_asymmetric(const SimpleTensor<float> & src,const QuantizationInfo & quantization_info)159 SimpleTensor<uint8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
160 {
161 SimpleTensor<uint8_t> dst{ src.shape(), DataType::QASYMM8, 1, quantization_info };
162 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
163
164 #if defined(_OPENMP)
165 #pragma omp parallel for
166 #endif /* _OPENMP */
167 for(int i = 0; i < src.num_elements(); ++i)
168 {
169 dst[i] = quantize_qasymm8(src[i], qinfo);
170 }
171 return dst;
172 }
173
174 template <>
convert_to_asymmetric(const SimpleTensor<float> & src,const QuantizationInfo & quantization_info)175 SimpleTensor<int8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
176 {
177 SimpleTensor<int8_t> dst{ src.shape(), DataType::QASYMM8_SIGNED, 1, quantization_info };
178 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
179
180 #if defined(_OPENMP)
181 #pragma omp parallel for
182 #endif /* _OPENMP */
183 for(int i = 0; i < src.num_elements(); ++i)
184 {
185 dst[i] = quantize_qasymm8_signed(src[i], qinfo);
186 }
187 return dst;
188 }
189
190 template <>
convert_to_asymmetric(const SimpleTensor<float> & src,const QuantizationInfo & quantization_info)191 SimpleTensor<uint16_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
192 {
193 SimpleTensor<uint16_t> dst{ src.shape(), DataType::QASYMM16, 1, quantization_info };
194 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
195
196 #if defined(_OPENMP)
197 #pragma omp parallel for
198 #endif /* _OPENMP */
199 for(int i = 0; i < src.num_elements(); ++i)
200 {
201 dst[i] = quantize_qasymm16(src[i], qinfo);
202 }
203 return dst;
204 }
205
206 template <>
convert_to_symmetric(const SimpleTensor<float> & src,const QuantizationInfo & quantization_info)207 SimpleTensor<int16_t> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
208 {
209 SimpleTensor<int16_t> dst{ src.shape(), DataType::QSYMM16, 1, quantization_info };
210 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
211
212 #if defined(_OPENMP)
213 #pragma omp parallel for
214 #endif /* _OPENMP */
215 for(int i = 0; i < src.num_elements(); ++i)
216 {
217 dst[i] = quantize_qsymm16(src[i], qinfo);
218 }
219 return dst;
220 }
221
222 template <>
convert_from_symmetric(const SimpleTensor<int16_t> & src)223 SimpleTensor<float> convert_from_symmetric(const SimpleTensor<int16_t> &src)
224 {
225 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
226 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
227
228 #if defined(_OPENMP)
229 #pragma omp parallel for
230 #endif /* _OPENMP */
231 for(int i = 0; i < src.num_elements(); ++i)
232 {
233 dst[i] = dequantize_qsymm16(src[i], quantization_info);
234 }
235 return dst;
236 }
237
238 template <typename T>
matrix_multiply(const SimpleTensor<T> & a,const SimpleTensor<T> & b,SimpleTensor<T> & out)239 void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out)
240 {
241 ARM_COMPUTE_ERROR_ON(a.shape()[0] != b.shape()[1]);
242 ARM_COMPUTE_ERROR_ON(a.shape()[1] != out.shape()[1]);
243 ARM_COMPUTE_ERROR_ON(b.shape()[0] != out.shape()[0]);
244
245 const int M = a.shape()[1]; // Rows
246 const int N = b.shape()[0]; // Cols
247 const int K = b.shape()[1];
248
249 #if defined(_OPENMP)
250 #pragma omp parallel for collapse(2)
251 #endif /* _OPENMP */
252 for(int y = 0; y < M; ++y)
253 {
254 for(int x = 0; x < N; ++x)
255 {
256 float acc = 0.0f;
257 for(int k = 0; k < K; ++k)
258 {
259 acc += a[y * K + k] * b[x + k * N];
260 }
261
262 out[x + y * N] = acc;
263 }
264 }
265 }
266
267 template <typename T>
transpose_matrix(const SimpleTensor<T> & in,SimpleTensor<T> & out)268 void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out)
269 {
270 ARM_COMPUTE_ERROR_ON((in.shape()[0] != out.shape()[1]) || (in.shape()[1] != out.shape()[0]));
271
272 const int width = in.shape()[0];
273 const int height = in.shape()[1];
274
275 #if defined(_OPENMP)
276 #pragma omp parallel for collapse(2)
277 #endif /* _OPENMP */
278 for(int y = 0; y < height; ++y)
279 {
280 for(int x = 0; x < width; ++x)
281 {
282 const T val = in[x + y * width];
283
284 out[x * height + y] = val;
285 }
286 }
287 }
288
289 template <typename T>
get_tile(const SimpleTensor<T> & in,SimpleTensor<T> & tile,const Coordinates & coord)290 void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord)
291 {
292 ARM_COMPUTE_ERROR_ON(tile.shape().num_dimensions() > 2);
293
294 const int w_tile = tile.shape()[0];
295 const int h_tile = tile.shape()[1];
296
297 // Fill the tile with zeros
298 std::fill(tile.data() + 0, (tile.data() + (w_tile * h_tile)), static_cast<T>(0));
299
300 // Check if with the dimensions greater than 2 we could have out-of-bound reads
301 for(size_t d = 2; d < Coordinates::num_max_dimensions; ++d)
302 {
303 if(coord[d] < 0 || coord[d] >= static_cast<int>(in.shape()[d]))
304 {
305 ARM_COMPUTE_ERROR("coord[d] < 0 || coord[d] >= in.shape()[d] with d >= 2");
306 }
307 }
308
309 // Since we could have out-of-bound reads along the X and Y dimensions,
310 // we start calculating the input address with x = 0 and y = 0
311 Coordinates start_coord = coord;
312 start_coord[0] = 0;
313 start_coord[1] = 0;
314
315 // Get input and roi pointers
316 auto in_ptr = static_cast<const T *>(in(start_coord));
317 auto roi_ptr = static_cast<T *>(tile.data());
318
319 const int x_in_start = std::max(0, coord[0]);
320 const int y_in_start = std::max(0, coord[1]);
321 const int x_in_end = std::min(static_cast<int>(in.shape()[0]), coord[0] + w_tile);
322 const int y_in_end = std::min(static_cast<int>(in.shape()[1]), coord[1] + h_tile);
323
324 // Number of elements to copy per row
325 const int n = x_in_end - x_in_start;
326
327 // Starting coordinates for the ROI
328 const int x_tile_start = coord[0] > 0 ? 0 : std::abs(coord[0]);
329 const int y_tile_start = coord[1] > 0 ? 0 : std::abs(coord[1]);
330
331 // Update input pointer
332 in_ptr += x_in_start;
333 in_ptr += (y_in_start * in.shape()[0]);
334
335 // Update ROI pointer
336 roi_ptr += x_tile_start;
337 roi_ptr += (y_tile_start * tile.shape()[0]);
338
339 for(int y = y_in_start; y < y_in_end; ++y)
340 {
341 // Copy per row
342 std::copy(in_ptr, in_ptr + n, roi_ptr);
343
344 in_ptr += in.shape()[0];
345 roi_ptr += tile.shape()[0];
346 }
347 }
348
349 template <typename T>
zeros(SimpleTensor<T> & in,const Coordinates & anchor,const TensorShape & shape)350 void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape)
351 {
352 ARM_COMPUTE_ERROR_ON(anchor.num_dimensions() != shape.num_dimensions());
353 ARM_COMPUTE_ERROR_ON(in.shape().num_dimensions() > 2);
354 ARM_COMPUTE_ERROR_ON(shape.num_dimensions() > 2);
355
356 // Check if with the dimensions greater than 2 we could have out-of-bound reads
357 for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
358 {
359 if(anchor[d] < 0 || ((anchor[d] + shape[d]) > in.shape()[d]))
360 {
361 ARM_COMPUTE_ERROR("anchor[d] < 0 || (anchor[d] + shape[d]) > in.shape()[d]");
362 }
363 }
364
365 // Get input pointer
366 auto in_ptr = static_cast<T *>(in(anchor[0] + anchor[1] * in.shape()[0]));
367
368 const unsigned int n = in.shape()[0];
369
370 for(unsigned int y = 0; y < shape[1]; ++y)
371 {
372 std::fill(in_ptr, in_ptr + shape[0], 0);
373 in_ptr += n;
374 }
375 }
376
get_quantized_bounds(const QuantizationInfo & quant_info,float min,float max)377 std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max)
378 {
379 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
380
381 const int min_bound = quantize_qasymm8(min, quant_info.uniform());
382 const int max_bound = quantize_qasymm8(max, quant_info.uniform());
383 return std::pair<int, int> { min_bound, max_bound };
384 }
385
get_quantized_qasymm8_signed_bounds(const QuantizationInfo & quant_info,float min,float max)386 std::pair<int, int> get_quantized_qasymm8_signed_bounds(const QuantizationInfo &quant_info, float min, float max)
387 {
388 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
389
390 const int min_bound = quantize_qasymm8_signed(min, quant_info.uniform());
391 const int max_bound = quantize_qasymm8_signed(max, quant_info.uniform());
392 return std::pair<int, int> { min_bound, max_bound };
393 }
394
get_symm_quantized_per_channel_bounds(const QuantizationInfo & quant_info,float min,float max,size_t channel_id)395 std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id)
396 {
397 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
398
399 const int min_bound = quantize_qsymm8_per_channel(min, quant_info, channel_id);
400 const int max_bound = quantize_qsymm8_per_channel(max, quant_info, channel_id);
401 return std::pair<int, int> { min_bound, max_bound };
402 }
403
404 template void get_tile(const SimpleTensor<float> &in, SimpleTensor<float> &roi, const Coordinates &coord);
405 template void get_tile(const SimpleTensor<half> &in, SimpleTensor<half> &roi, const Coordinates &coord);
406 template void get_tile(const SimpleTensor<int> &in, SimpleTensor<int> &roi, const Coordinates &coord);
407 template void get_tile(const SimpleTensor<short> &in, SimpleTensor<short> &roi, const Coordinates &coord);
408 template void get_tile(const SimpleTensor<char> &in, SimpleTensor<char> &roi, const Coordinates &coord);
409 template void zeros(SimpleTensor<float> &in, const Coordinates &anchor, const TensorShape &shape);
410 template void zeros(SimpleTensor<half> &in, const Coordinates &anchor, const TensorShape &shape);
411 template void transpose_matrix(const SimpleTensor<float> &in, SimpleTensor<float> &out);
412 template void transpose_matrix(const SimpleTensor<half> &in, SimpleTensor<half> &out);
413 template void transpose_matrix(const SimpleTensor<int> &in, SimpleTensor<int> &out);
414 template void transpose_matrix(const SimpleTensor<short> &in, SimpleTensor<short> &out);
415 template void transpose_matrix(const SimpleTensor<char> &in, SimpleTensor<char> &out);
416 template void matrix_multiply(const SimpleTensor<float> &a, const SimpleTensor<float> &b, SimpleTensor<float> &out);
417 template void matrix_multiply(const SimpleTensor<half> &a, const SimpleTensor<half> &b, SimpleTensor<half> &out);
418
419 } // namespace validation
420 } // namespace test
421 } // namespace arm_compute
422