• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
74 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
75 						>> REG##R_SHIFT]);	\
76 		}							\
77 	} while (false)
78 
79 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
80 	do {								\
81 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
82 				int_id += (1U << REG##R_SHIFT)) {	\
83 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
84 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
85 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
86 		}							\
87 	} while (false)
88 #else
89 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
90 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
91 #endif /* GIC_EXT_INTID */
92 
93 /*******************************************************************************
94  * This function initialises the ARM GICv3 driver in EL3 with provided platform
95  * inputs.
96  ******************************************************************************/
gicv3_driver_init(const gicv3_driver_data_t * plat_driver_data)97 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
98 {
99 	unsigned int gic_version;
100 	unsigned int gicv2_compat;
101 
102 	assert(plat_driver_data != NULL);
103 	assert(plat_driver_data->gicd_base != 0U);
104 	assert(plat_driver_data->rdistif_num != 0U);
105 	assert(plat_driver_data->rdistif_base_addrs != NULL);
106 
107 	assert(IS_IN_EL3());
108 
109 	assert((plat_driver_data->interrupt_props_num != 0U) ?
110 	       (plat_driver_data->interrupt_props != NULL) : 1);
111 
112 	/* Check for system register support */
113 #ifndef __aarch64__
114 	assert((read_id_pfr1() &
115 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
116 #else
117 	assert((read_id_aa64pfr0_el1() &
118 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
119 #endif /* !__aarch64__ */
120 
121 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
122 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
123 	gic_version &= PIDR2_ARCH_REV_MASK;
124 
125 	/* Check GIC version */
126 #if GIC_ENABLE_V4_EXTN
127 	assert(gic_version == ARCH_REV_GICV4);
128 
129 	/* GICv4 supports Direct Virtual LPI injection */
130 	assert((gicd_read_typer(plat_driver_data->gicd_base)
131 					& TYPER_DVIS) != 0);
132 #else
133 	assert(gic_version == ARCH_REV_GICV3);
134 #endif
135 	/*
136 	 * Find out whether the GIC supports the GICv2 compatibility mode.
137 	 * The ARE_S bit resets to 0 if supported
138 	 */
139 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
140 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
141 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
142 
143 	if (plat_driver_data->gicr_base != 0U) {
144 		/*
145 		 * Find the base address of each implemented Redistributor interface.
146 		 * The number of interfaces should be equal to the number of CPUs in the
147 		 * system. The memory for saving these addresses has to be allocated by
148 		 * the platform port
149 		 */
150 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
151 						   plat_driver_data->rdistif_num,
152 						   plat_driver_data->gicr_base,
153 						   plat_driver_data->mpidr_to_core_pos);
154 #if !HW_ASSISTED_COHERENCY
155 		/*
156 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
157 		 */
158 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
159 			plat_driver_data->rdistif_num *
160 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
161 #endif
162 	}
163 	gicv3_driver_data = plat_driver_data;
164 
165 	/*
166 	 * The GIC driver data is initialized by the primary CPU with caches
167 	 * enabled. When the secondary CPU boots up, it initializes the
168 	 * GICC/GICR interface with the caches disabled. Hence flush the
169 	 * driver data to ensure coherency. This is not required if the
170 	 * platform has HW_ASSISTED_COHERENCY enabled.
171 	 */
172 #if !HW_ASSISTED_COHERENCY
173 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
174 		sizeof(gicv3_driver_data));
175 	flush_dcache_range((uintptr_t)gicv3_driver_data,
176 		sizeof(*gicv3_driver_data));
177 #endif
178 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
179 				(gicv2_compat == 0U) ? "" : "out");
180 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
181 }
182 
183 /*******************************************************************************
184  * This function initialises the GIC distributor interface based upon the data
185  * provided by the platform while initialising the driver.
186  ******************************************************************************/
gicv3_distif_init(void)187 void __init gicv3_distif_init(void)
188 {
189 	unsigned int bitmap;
190 
191 	assert(gicv3_driver_data != NULL);
192 	assert(gicv3_driver_data->gicd_base != 0U);
193 
194 	assert(IS_IN_EL3());
195 
196 	/*
197 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
198 	 * the ARE_S bit. The Distributor might generate a system error
199 	 * otherwise.
200 	 */
201 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
202 		      CTLR_ENABLE_G0_BIT |
203 		      CTLR_ENABLE_G1S_BIT |
204 		      CTLR_ENABLE_G1NS_BIT,
205 		      RWP_TRUE);
206 
207 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
208 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
209 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
210 
211 	/* Set the default attribute of all (E)SPIs */
212 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
213 
214 	bitmap = gicv3_secure_spis_config_props(
215 			gicv3_driver_data->gicd_base,
216 			gicv3_driver_data->interrupt_props,
217 			gicv3_driver_data->interrupt_props_num);
218 
219 	/* Enable the secure (E)SPIs now that they have been configured */
220 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
221 }
222 
223 /*******************************************************************************
224  * This function initialises the GIC Redistributor interface of the calling CPU
225  * (identified by the 'proc_num' parameter) based upon the data provided by the
226  * platform while initialising the driver.
227  ******************************************************************************/
gicv3_rdistif_init(unsigned int proc_num)228 void gicv3_rdistif_init(unsigned int proc_num)
229 {
230 	uintptr_t gicr_base;
231 	unsigned int bitmap;
232 	uint32_t ctlr;
233 
234 	assert(gicv3_driver_data != NULL);
235 	assert(proc_num < gicv3_driver_data->rdistif_num);
236 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
237 	assert(gicv3_driver_data->gicd_base != 0U);
238 
239 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
240 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
241 
242 	assert(IS_IN_EL3());
243 
244 	/* Power on redistributor */
245 	gicv3_rdistif_on(proc_num);
246 
247 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
248 	assert(gicr_base != 0U);
249 
250 	/* Set the default attribute of all SGIs and (E)PPIs */
251 	gicv3_ppi_sgi_config_defaults(gicr_base);
252 
253 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
254 			gicv3_driver_data->interrupt_props,
255 			gicv3_driver_data->interrupt_props_num);
256 
257 	/* Enable interrupt groups as required, if not already */
258 	if ((ctlr & bitmap) != bitmap) {
259 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
260 	}
261 }
262 
263 /*******************************************************************************
264  * Functions to perform power operations on GIC Redistributor
265  ******************************************************************************/
gicv3_rdistif_off(unsigned int proc_num)266 void gicv3_rdistif_off(unsigned int proc_num)
267 {
268 }
269 
gicv3_rdistif_on(unsigned int proc_num)270 void gicv3_rdistif_on(unsigned int proc_num)
271 {
272 }
273 
274 /*******************************************************************************
275  * This function enables the GIC CPU interface of the calling CPU using only
276  * system register accesses.
277  ******************************************************************************/
gicv3_cpuif_enable(unsigned int proc_num)278 void gicv3_cpuif_enable(unsigned int proc_num)
279 {
280 	uintptr_t gicr_base;
281 	u_register_t scr_el3;
282 	unsigned int icc_sre_el3;
283 
284 	assert(gicv3_driver_data != NULL);
285 	assert(proc_num < gicv3_driver_data->rdistif_num);
286 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
287 	assert(IS_IN_EL3());
288 
289 	/* Mark the connected core as awake */
290 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
291 	gicv3_rdistif_mark_core_awake(gicr_base);
292 
293 	/* Disable the legacy interrupt bypass */
294 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
295 
296 	/*
297 	 * Enable system register access for EL3 and allow lower exception
298 	 * levels to configure the same for themselves. If the legacy mode is
299 	 * not supported, the SRE bit is RAO/WI
300 	 */
301 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
302 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
303 
304 	scr_el3 = read_scr_el3();
305 
306 	/*
307 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
308 	 * ICC_SRE_EL2 registers.
309 	 */
310 	write_scr_el3(scr_el3 | SCR_NS_BIT);
311 	isb();
312 
313 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
314 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
315 	isb();
316 
317 	/* Switch to secure state. */
318 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
319 	isb();
320 
321 	/* Write the secure ICC_SRE_EL1 register */
322 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
323 	isb();
324 
325 	/* Program the idle priority in the PMR */
326 	write_icc_pmr_el1(GIC_PRI_MASK);
327 
328 	/* Enable Group0 interrupts */
329 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
330 
331 	/* Enable Group1 Secure interrupts */
332 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
333 				IGRPEN1_EL3_ENABLE_G1S_BIT);
334 	isb();
335 	/* Add DSB to ensure visibility of System register writes */
336 	dsb();
337 }
338 
339 /*******************************************************************************
340  * This function disables the GIC CPU interface of the calling CPU using
341  * only system register accesses.
342  ******************************************************************************/
gicv3_cpuif_disable(unsigned int proc_num)343 void gicv3_cpuif_disable(unsigned int proc_num)
344 {
345 	uintptr_t gicr_base;
346 
347 	assert(gicv3_driver_data != NULL);
348 	assert(proc_num < gicv3_driver_data->rdistif_num);
349 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
350 
351 	assert(IS_IN_EL3());
352 
353 	/* Disable legacy interrupt bypass */
354 	write_icc_sre_el3(read_icc_sre_el3() |
355 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
356 
357 	/* Disable Group0 interrupts */
358 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
359 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
360 
361 	/* Disable Group1 Secure and Non-Secure interrupts */
362 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
363 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
364 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
365 
366 	/* Synchronise accesses to group enable registers */
367 	isb();
368 	/* Add DSB to ensure visibility of System register writes */
369 	dsb();
370 
371 	/* Mark the connected core as asleep */
372 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
373 	assert(gicr_base != 0U);
374 	gicv3_rdistif_mark_core_asleep(gicr_base);
375 }
376 
377 /*******************************************************************************
378  * This function returns the id of the highest priority pending interrupt at
379  * the GIC cpu interface.
380  ******************************************************************************/
gicv3_get_pending_interrupt_id(void)381 unsigned int gicv3_get_pending_interrupt_id(void)
382 {
383 	unsigned int id;
384 
385 	assert(IS_IN_EL3());
386 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
387 
388 	/*
389 	 * If the ID is special identifier corresponding to G1S or G1NS
390 	 * interrupt, then read the highest pending group 1 interrupt.
391 	 */
392 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
393 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
394 	}
395 
396 	return id;
397 }
398 
399 /*******************************************************************************
400  * This function returns the type of the highest priority pending interrupt at
401  * the GIC cpu interface. The return values can be one of the following :
402  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
403  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
404  *   0 - 1019           : The interrupt type is secure Group 0.
405  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
406  *                            sufficient priority to be signaled
407  ******************************************************************************/
gicv3_get_pending_interrupt_type(void)408 unsigned int gicv3_get_pending_interrupt_type(void)
409 {
410 	assert(IS_IN_EL3());
411 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
412 }
413 
414 /*******************************************************************************
415  * This function returns the type of the interrupt id depending upon the group
416  * this interrupt has been configured under by the interrupt controller i.e.
417  * group0 or group1 Secure / Non Secure. The return value can be one of the
418  * following :
419  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
420  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
421  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
422  *                   interrupt.
423  ******************************************************************************/
gicv3_get_interrupt_type(unsigned int id,unsigned int proc_num)424 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
425 {
426 	unsigned int igroup, grpmodr;
427 	uintptr_t gicr_base;
428 
429 	assert(IS_IN_EL3());
430 	assert(gicv3_driver_data != NULL);
431 
432 	/* Ensure the parameters are valid */
433 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
434 	assert(proc_num < gicv3_driver_data->rdistif_num);
435 
436 	/* All LPI interrupts are Group 1 non secure */
437 	if (id >= MIN_LPI_ID) {
438 		return INTR_GROUP1NS;
439 	}
440 
441 	/* Check interrupt ID */
442 	if (is_sgi_ppi(id)) {
443 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
444 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
445 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
446 		igroup = gicr_get_igroupr(gicr_base, id);
447 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
448 	} else {
449 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
450 		assert(gicv3_driver_data->gicd_base != 0U);
451 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
452 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
453 	}
454 
455 	/*
456 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
457 	 * interrupt
458 	 */
459 	if (igroup != 0U) {
460 		return INTR_GROUP1NS;
461 	}
462 
463 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
464 	if (grpmodr != 0U) {
465 		return INTR_GROUP1S;
466 	}
467 
468 	/* Else it is a Group 0 Secure interrupt */
469 	return INTR_GROUP0;
470 }
471 
472 /*****************************************************************************
473  * Function to save and disable the GIC ITS register context. The power
474  * management of GIC ITS is implementation-defined and this function doesn't
475  * save any memory structures required to support ITS. As the sequence to save
476  * this state is implementation defined, it should be executed in platform
477  * specific code. Calling this function alone and then powering down the GIC and
478  * ITS without implementing the aforementioned platform specific code will
479  * corrupt the ITS state.
480  *
481  * This function must be invoked after the GIC CPU interface is disabled.
482  *****************************************************************************/
gicv3_its_save_disable(uintptr_t gits_base,gicv3_its_ctx_t * const its_ctx)483 void gicv3_its_save_disable(uintptr_t gits_base,
484 				gicv3_its_ctx_t * const its_ctx)
485 {
486 	unsigned int i;
487 
488 	assert(gicv3_driver_data != NULL);
489 	assert(IS_IN_EL3());
490 	assert(its_ctx != NULL);
491 	assert(gits_base != 0U);
492 
493 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
494 
495 	/* Disable the ITS */
496 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
497 
498 	/* Wait for quiescent state */
499 	gits_wait_for_quiescent_bit(gits_base);
500 
501 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
502 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
503 
504 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
505 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
506 	}
507 }
508 
509 /*****************************************************************************
510  * Function to restore the GIC ITS register context. The power
511  * management of GIC ITS is implementation defined and this function doesn't
512  * restore any memory structures required to support ITS. The assumption is
513  * that these structures are in memory and are retained during system suspend.
514  *
515  * This must be invoked before the GIC CPU interface is enabled.
516  *****************************************************************************/
gicv3_its_restore(uintptr_t gits_base,const gicv3_its_ctx_t * const its_ctx)517 void gicv3_its_restore(uintptr_t gits_base,
518 			const gicv3_its_ctx_t * const its_ctx)
519 {
520 	unsigned int i;
521 
522 	assert(gicv3_driver_data != NULL);
523 	assert(IS_IN_EL3());
524 	assert(its_ctx != NULL);
525 	assert(gits_base != 0U);
526 
527 	/* Assert that the GITS is disabled and quiescent */
528 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
529 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
530 
531 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
532 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
533 
534 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
535 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
536 	}
537 
538 	/* Restore the ITS CTLR but leave the ITS disabled */
539 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
540 }
541 
542 /*****************************************************************************
543  * Function to save the GIC Redistributor register context. This function
544  * must be invoked after CPU interface disable and prior to Distributor save.
545  *****************************************************************************/
gicv3_rdistif_save(unsigned int proc_num,gicv3_redist_ctx_t * const rdist_ctx)546 void gicv3_rdistif_save(unsigned int proc_num,
547 			gicv3_redist_ctx_t * const rdist_ctx)
548 {
549 	uintptr_t gicr_base;
550 	unsigned int i, ppi_regs_num, regs_num;
551 
552 	assert(gicv3_driver_data != NULL);
553 	assert(proc_num < gicv3_driver_data->rdistif_num);
554 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
555 	assert(IS_IN_EL3());
556 	assert(rdist_ctx != NULL);
557 
558 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
559 
560 #if GIC_EXT_INTID
561 	/* Calculate number of PPI registers */
562 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
563 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
564 	/* All other values except PPInum [0-2] are reserved */
565 	if (ppi_regs_num > 3U) {
566 		ppi_regs_num = 1U;
567 	}
568 #else
569 	ppi_regs_num = 1U;
570 #endif
571 	/*
572 	 * Wait for any write to GICR_CTLR to complete before trying to save any
573 	 * state.
574 	 */
575 	gicr_wait_for_pending_write(gicr_base);
576 
577 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
578 
579 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
580 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
581 
582 	/* 32 interrupt IDs per register */
583 	for (i = 0U; i < ppi_regs_num; ++i) {
584 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
585 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
586 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
587 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
588 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
589 	}
590 
591 	/* 16 interrupt IDs per GICR_ICFGR register */
592 	regs_num = ppi_regs_num << 1;
593 	for (i = 0U; i < regs_num; ++i) {
594 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
595 	}
596 
597 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
598 
599 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
600 	regs_num = ppi_regs_num << 3;
601 	for (i = 0U; i < regs_num; ++i) {
602 		rdist_ctx->gicr_ipriorityr[i] =
603 		gicr_ipriorityr_read(gicr_base, i);
604 	}
605 
606 	/*
607 	 * Call the pre-save hook that implements the IMP DEF sequence that may
608 	 * be required on some GIC implementations. As this may need to access
609 	 * the Redistributor registers, we pass it proc_num.
610 	 */
611 	gicv3_distif_pre_save(proc_num);
612 }
613 
614 /*****************************************************************************
615  * Function to restore the GIC Redistributor register context. We disable
616  * LPI and per-cpu interrupts before we start restore of the Redistributor.
617  * This function must be invoked after Distributor restore but prior to
618  * CPU interface enable. The pending and active interrupts are restored
619  * after the interrupts are fully configured and enabled.
620  *****************************************************************************/
gicv3_rdistif_init_restore(unsigned int proc_num,const gicv3_redist_ctx_t * const rdist_ctx)621 void gicv3_rdistif_init_restore(unsigned int proc_num,
622 				const gicv3_redist_ctx_t * const rdist_ctx)
623 {
624 	uintptr_t gicr_base;
625 	unsigned int i, ppi_regs_num, regs_num;
626 
627 	assert(gicv3_driver_data != NULL);
628 	assert(proc_num < gicv3_driver_data->rdistif_num);
629 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
630 	assert(IS_IN_EL3());
631 	assert(rdist_ctx != NULL);
632 
633 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
634 
635 #if GIC_EXT_INTID
636 	/* Calculate number of PPI registers */
637 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
638 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
639 	/* All other values except PPInum [0-2] are reserved */
640 	if (ppi_regs_num > 3U) {
641 		ppi_regs_num = 1U;
642 	}
643 #else
644 	ppi_regs_num = 1U;
645 #endif
646 	/* Power on redistributor */
647 	gicv3_rdistif_on(proc_num);
648 
649 	/*
650 	 * Call the post-restore hook that implements the IMP DEF sequence that
651 	 * may be required on some GIC implementations. As this may need to
652 	 * access the Redistributor registers, we pass it proc_num.
653 	 */
654 	gicv3_distif_post_restore(proc_num);
655 
656 	/*
657 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
658 	 * This is a more scalable approach as it avoids clearing the enable
659 	 * bits in the GICD_CTLR.
660 	 */
661 	for (i = 0U; i < ppi_regs_num; ++i) {
662 		gicr_write_icenabler(gicr_base, i, ~0U);
663 	}
664 
665 	/* Wait for pending writes to GICR_ICENABLER */
666 	gicr_wait_for_pending_write(gicr_base);
667 
668 	/*
669 	 * Disable the LPIs to avoid unpredictable behavior when writing to
670 	 * GICR_PROPBASER and GICR_PENDBASER.
671 	 */
672 	gicr_write_ctlr(gicr_base,
673 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
674 
675 	/* Restore registers' content */
676 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
677 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
678 
679 	/* 32 interrupt IDs per register */
680 	for (i = 0U; i < ppi_regs_num; ++i) {
681 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
682 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
683 	}
684 
685 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
686 	regs_num = ppi_regs_num << 3;
687 	for (i = 0U; i < regs_num; ++i) {
688 		gicr_ipriorityr_write(gicr_base, i,
689 					rdist_ctx->gicr_ipriorityr[i]);
690 	}
691 
692 	/* 16 interrupt IDs per GICR_ICFGR register */
693 	regs_num = ppi_regs_num << 1;
694 	for (i = 0U; i < regs_num; ++i) {
695 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
696 	}
697 
698 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
699 
700 	/* Restore after group and priorities are set.
701 	 * 32 interrupt IDs per register
702 	 */
703 	for (i = 0U; i < ppi_regs_num; ++i) {
704 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
705 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
706 	}
707 
708 	/*
709 	 * Wait for all writes to the Distributor to complete before enabling
710 	 * the SGI and (E)PPIs.
711 	 */
712 	gicr_wait_for_upstream_pending_write(gicr_base);
713 
714 	/* 32 interrupt IDs per GICR_ISENABLER register */
715 	for (i = 0U; i < ppi_regs_num; ++i) {
716 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
717 	}
718 
719 	/*
720 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
721 	 * the first write to GICR_CTLR was still in flight (this write only
722 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
723 	 * bit).
724 	 */
725 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
726 	gicr_wait_for_pending_write(gicr_base);
727 }
728 
729 /*****************************************************************************
730  * Function to save the GIC Distributor register context. This function
731  * must be invoked after CPU interface disable and Redistributor save.
732  *****************************************************************************/
gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)733 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
734 {
735 	assert(gicv3_driver_data != NULL);
736 	assert(gicv3_driver_data->gicd_base != 0U);
737 	assert(IS_IN_EL3());
738 	assert(dist_ctx != NULL);
739 
740 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
741 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
742 #if GIC_EXT_INTID
743 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
744 #endif
745 
746 	/* Wait for pending write to complete */
747 	gicd_wait_for_pending_write(gicd_base);
748 
749 	/* Save the GICD_CTLR */
750 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
751 
752 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
753 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
754 
755 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
756 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
757 
758 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
759 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
760 
761 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
762 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
763 
764 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
765 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
766 
767 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
768 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
769 
770 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
771 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
772 
773 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
774 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
775 
776 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
777 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
778 
779 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
780 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
781 
782 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
783 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
784 
785 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
786 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
787 
788 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
789 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
790 
791 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
792 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
793 
794 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
795 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
796 
797 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
798 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
799 
800 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
801 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
802 
803 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
804 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
805 
806 	/*
807 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
808 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
809 	 * driver.
810 	 */
811 }
812 
813 /*****************************************************************************
814  * Function to restore the GIC Distributor register context. We disable G0, G1S
815  * and G1NS interrupt groups before we start restore of the Distributor. This
816  * function must be invoked prior to Redistributor restore and CPU interface
817  * enable. The pending and active interrupts are restored after the interrupts
818  * are fully configured and enabled.
819  *****************************************************************************/
gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)820 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
821 {
822 	assert(gicv3_driver_data != NULL);
823 	assert(gicv3_driver_data->gicd_base != 0U);
824 	assert(IS_IN_EL3());
825 	assert(dist_ctx != NULL);
826 
827 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
828 
829 	/*
830 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
831 	 * the ARE_S bit. The Distributor might generate a system error
832 	 * otherwise.
833 	 */
834 	gicd_clr_ctlr(gicd_base,
835 		      CTLR_ENABLE_G0_BIT |
836 		      CTLR_ENABLE_G1S_BIT |
837 		      CTLR_ENABLE_G1NS_BIT,
838 		      RWP_TRUE);
839 
840 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
841 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
842 
843 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
844 #if GIC_EXT_INTID
845 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
846 #endif
847 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
848 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
849 
850 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
851 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
852 
853 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
854 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
855 
856 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
857 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
858 
859 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
860 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
861 
862 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
863 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
864 
865 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
866 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
867 
868 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
869 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
870 
871 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
872 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
873 
874 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
875 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
876 
877 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
878 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
879 
880 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
881 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
882 
883 	/*
884 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
885 	 * the interrupts are configured.
886 	 */
887 
888 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
889 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
890 
891 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
892 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
893 
894 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
895 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
896 
897 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
898 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
899 
900 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
901 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
902 
903 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
904 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
905 
906 	/* Restore the GICD_CTLR */
907 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
908 	gicd_wait_for_pending_write(gicd_base);
909 }
910 
911 /*******************************************************************************
912  * This function gets the priority of the interrupt the processor is currently
913  * servicing.
914  ******************************************************************************/
gicv3_get_running_priority(void)915 unsigned int gicv3_get_running_priority(void)
916 {
917 	return (unsigned int)read_icc_rpr_el1();
918 }
919 
920 /*******************************************************************************
921  * This function checks if the interrupt identified by id is active (whether the
922  * state is either active, or active and pending). The proc_num is used if the
923  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
924  * interface.
925  ******************************************************************************/
gicv3_get_interrupt_active(unsigned int id,unsigned int proc_num)926 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
927 {
928 	assert(gicv3_driver_data != NULL);
929 	assert(gicv3_driver_data->gicd_base != 0U);
930 	assert(proc_num < gicv3_driver_data->rdistif_num);
931 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
932 
933 	/* Check interrupt ID */
934 	if (is_sgi_ppi(id)) {
935 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
936 		return gicr_get_isactiver(
937 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
938 	}
939 
940 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
941 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
942 }
943 
944 /*******************************************************************************
945  * This function enables the interrupt identified by id. The proc_num
946  * is used if the interrupt is SGI or PPI, and programs the corresponding
947  * Redistributor interface.
948  ******************************************************************************/
gicv3_enable_interrupt(unsigned int id,unsigned int proc_num)949 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
950 {
951 	assert(gicv3_driver_data != NULL);
952 	assert(gicv3_driver_data->gicd_base != 0U);
953 	assert(proc_num < gicv3_driver_data->rdistif_num);
954 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
955 
956 	/*
957 	 * Ensure that any shared variable updates depending on out of band
958 	 * interrupt trigger are observed before enabling interrupt.
959 	 */
960 	dsbishst();
961 
962 	/* Check interrupt ID */
963 	if (is_sgi_ppi(id)) {
964 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
965 		gicr_set_isenabler(
966 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
967 	} else {
968 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
969 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
970 	}
971 }
972 
973 /*******************************************************************************
974  * This function disables the interrupt identified by id. The proc_num
975  * is used if the interrupt is SGI or PPI, and programs the corresponding
976  * Redistributor interface.
977  ******************************************************************************/
gicv3_disable_interrupt(unsigned int id,unsigned int proc_num)978 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
979 {
980 	assert(gicv3_driver_data != NULL);
981 	assert(gicv3_driver_data->gicd_base != 0U);
982 	assert(proc_num < gicv3_driver_data->rdistif_num);
983 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
984 
985 	/*
986 	 * Disable interrupt, and ensure that any shared variable updates
987 	 * depending on out of band interrupt trigger are observed afterwards.
988 	 */
989 
990 	/* Check interrupt ID */
991 	if (is_sgi_ppi(id)) {
992 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
993 		gicr_set_icenabler(
994 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
995 
996 		/* Write to clear enable requires waiting for pending writes */
997 		gicr_wait_for_pending_write(
998 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
999 	} else {
1000 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1001 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1002 
1003 		/* Write to clear enable requires waiting for pending writes */
1004 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1005 	}
1006 
1007 	dsbishst();
1008 }
1009 
1010 /*******************************************************************************
1011  * This function sets the interrupt priority as supplied for the given interrupt
1012  * id.
1013  ******************************************************************************/
gicv3_set_interrupt_priority(unsigned int id,unsigned int proc_num,unsigned int priority)1014 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1015 		unsigned int priority)
1016 {
1017 	uintptr_t gicr_base;
1018 
1019 	assert(gicv3_driver_data != NULL);
1020 	assert(gicv3_driver_data->gicd_base != 0U);
1021 	assert(proc_num < gicv3_driver_data->rdistif_num);
1022 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1023 
1024 	/* Check interrupt ID */
1025 	if (is_sgi_ppi(id)) {
1026 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1027 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1028 		gicr_set_ipriorityr(gicr_base, id, priority);
1029 	} else {
1030 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1031 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1032 	}
1033 }
1034 
1035 /*******************************************************************************
1036  * This function assigns group for the interrupt identified by id. The proc_num
1037  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1038  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1039  ******************************************************************************/
gicv3_set_interrupt_type(unsigned int id,unsigned int proc_num,unsigned int type)1040 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1041 		unsigned int type)
1042 {
1043 	bool igroup = false, grpmod = false;
1044 	uintptr_t gicr_base;
1045 
1046 	assert(gicv3_driver_data != NULL);
1047 	assert(gicv3_driver_data->gicd_base != 0U);
1048 	assert(proc_num < gicv3_driver_data->rdistif_num);
1049 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1050 
1051 	switch (type) {
1052 	case INTR_GROUP1S:
1053 		igroup = false;
1054 		grpmod = true;
1055 		break;
1056 	case INTR_GROUP0:
1057 		igroup = false;
1058 		grpmod = false;
1059 		break;
1060 	case INTR_GROUP1NS:
1061 		igroup = true;
1062 		grpmod = false;
1063 		break;
1064 	default:
1065 		assert(false);
1066 		break;
1067 	}
1068 
1069 	/* Check interrupt ID */
1070 	if (is_sgi_ppi(id)) {
1071 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1072 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1073 
1074 		igroup ? gicr_set_igroupr(gicr_base, id) :
1075 			 gicr_clr_igroupr(gicr_base, id);
1076 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1077 			 gicr_clr_igrpmodr(gicr_base, id);
1078 	} else {
1079 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1080 
1081 		/* Serialize read-modify-write to Distributor registers */
1082 		spin_lock(&gic_lock);
1083 
1084 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1085 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1086 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1087 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1088 
1089 		spin_unlock(&gic_lock);
1090 	}
1091 }
1092 
1093 /*******************************************************************************
1094  * This function raises the specified Secure Group 0 SGI.
1095  *
1096  * The target parameter must be a valid MPIDR in the system.
1097  ******************************************************************************/
gicv3_raise_secure_g0_sgi(unsigned int sgi_num,u_register_t target)1098 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
1099 {
1100 	unsigned int tgt, aff3, aff2, aff1, aff0;
1101 	uint64_t sgi_val;
1102 
1103 	/* Verify interrupt number is in the SGI range */
1104 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1105 
1106 	/* Extract affinity fields from target */
1107 	aff0 = MPIDR_AFFLVL0_VAL(target);
1108 	aff1 = MPIDR_AFFLVL1_VAL(target);
1109 	aff2 = MPIDR_AFFLVL2_VAL(target);
1110 	aff3 = MPIDR_AFFLVL3_VAL(target);
1111 
1112 	/*
1113 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1114 	 * this PE.
1115 	 */
1116 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1117 	tgt = BIT_32(aff0);
1118 
1119 	/* Raise SGI to PE specified by its affinity */
1120 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1121 			tgt);
1122 
1123 	/*
1124 	 * Ensure that any shared variable updates depending on out of band
1125 	 * interrupt trigger are observed before raising SGI.
1126 	 */
1127 	dsbishst();
1128 	write_icc_sgi0r_el1(sgi_val);
1129 	isb();
1130 }
1131 
1132 /*******************************************************************************
1133  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1134  * The interrupt routing is specified in routing mode and mpidr.
1135  *
1136  * The routing mode can be either of:
1137  *  - GICV3_IRM_ANY
1138  *  - GICV3_IRM_PE
1139  *
1140  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1141  * and is ignored for routing mode GICV3_IRM_ANY.
1142  ******************************************************************************/
gicv3_set_spi_routing(unsigned int id,unsigned int irm,u_register_t mpidr)1143 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1144 {
1145 	unsigned long long aff;
1146 	uint64_t router;
1147 
1148 	assert(gicv3_driver_data != NULL);
1149 	assert(gicv3_driver_data->gicd_base != 0U);
1150 
1151 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1152 
1153 	assert(IS_SPI(id));
1154 
1155 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1156 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1157 
1158 	/*
1159 	 * In implementations that do not require 1 of N distribution of SPIs,
1160 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1161 	 */
1162 	if (irm == GICV3_IRM_ANY) {
1163 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1164 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1165 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1166 			panic();
1167 		}
1168 	}
1169 }
1170 
1171 /*******************************************************************************
1172  * This function clears the pending status of an interrupt identified by id.
1173  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1174  * corresponding Redistributor interface.
1175  ******************************************************************************/
gicv3_clear_interrupt_pending(unsigned int id,unsigned int proc_num)1176 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1177 {
1178 	assert(gicv3_driver_data != NULL);
1179 	assert(gicv3_driver_data->gicd_base != 0U);
1180 	assert(proc_num < gicv3_driver_data->rdistif_num);
1181 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1182 
1183 	/*
1184 	 * Clear pending interrupt, and ensure that any shared variable updates
1185 	 * depending on out of band interrupt trigger are observed afterwards.
1186 	 */
1187 
1188 	/* Check interrupt ID */
1189 	if (is_sgi_ppi(id)) {
1190 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1191 		gicr_set_icpendr(
1192 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1193 	} else {
1194 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1195 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1196 	}
1197 
1198 	dsbishst();
1199 }
1200 
1201 /*******************************************************************************
1202  * This function sets the pending status of an interrupt identified by id.
1203  * The proc_num is used if the interrupt is SGI or PPI and programs the
1204  * corresponding Redistributor interface.
1205  ******************************************************************************/
gicv3_set_interrupt_pending(unsigned int id,unsigned int proc_num)1206 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1207 {
1208 	assert(gicv3_driver_data != NULL);
1209 	assert(gicv3_driver_data->gicd_base != 0U);
1210 	assert(proc_num < gicv3_driver_data->rdistif_num);
1211 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1212 
1213 	/*
1214 	 * Ensure that any shared variable updates depending on out of band
1215 	 * interrupt trigger are observed before setting interrupt pending.
1216 	 */
1217 	dsbishst();
1218 
1219 	/* Check interrupt ID */
1220 	if (is_sgi_ppi(id)) {
1221 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1222 		gicr_set_ispendr(
1223 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1224 	} else {
1225 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1226 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1227 	}
1228 }
1229 
1230 /*******************************************************************************
1231  * This function sets the PMR register with the supplied value. Returns the
1232  * original PMR.
1233  ******************************************************************************/
gicv3_set_pmr(unsigned int mask)1234 unsigned int gicv3_set_pmr(unsigned int mask)
1235 {
1236 	unsigned int old_mask;
1237 
1238 	old_mask = (unsigned int)read_icc_pmr_el1();
1239 
1240 	/*
1241 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1242 	 * before potential out of band interrupt trigger because of PMR update.
1243 	 * PMR system register writes are self-synchronizing, so no ISB required
1244 	 * thereafter.
1245 	 */
1246 	dsbishst();
1247 	write_icc_pmr_el1(mask);
1248 
1249 	return old_mask;
1250 }
1251 
1252 /*******************************************************************************
1253  * This function delegates the responsibility of discovering the corresponding
1254  * Redistributor frames to each CPU itself. It is a modified version of
1255  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1256  * unlike the previous way in which only the Primary CPU did the discovery of
1257  * all the Redistributor frames for every CPU. It also handles the scenario in
1258  * which the frames of various CPUs are not contiguous in physical memory.
1259  ******************************************************************************/
gicv3_rdistif_probe(const uintptr_t gicr_frame)1260 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1261 {
1262 	u_register_t mpidr, mpidr_self;
1263 	unsigned int proc_num;
1264 	uint64_t typer_val;
1265 	uintptr_t rdistif_base;
1266 	bool gicr_frame_found = false;
1267 
1268 	assert(gicv3_driver_data->gicr_base == 0U);
1269 
1270 	/* Ensure this function is called with Data Cache enabled */
1271 #ifndef __aarch64__
1272 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1273 #else
1274 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1275 #endif /* !__aarch64__ */
1276 
1277 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1278 	rdistif_base = gicr_frame;
1279 	do {
1280 		typer_val = gicr_read_typer(rdistif_base);
1281 		mpidr = mpidr_from_gicr_typer(typer_val);
1282 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1283 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1284 		} else {
1285 			proc_num = (unsigned int)(typer_val >>
1286 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1287 		}
1288 		if (mpidr == mpidr_self) {
1289 			/* The base address doesn't need to be initialized on
1290 			 * every warm boot.
1291 			 */
1292 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1293 								!= 0U) {
1294 				return 0;
1295 			}
1296 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1297 			rdistif_base;
1298 			gicr_frame_found = true;
1299 			break;
1300 		}
1301 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1302 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1303 
1304 	if (!gicr_frame_found) {
1305 		return -1;
1306 	}
1307 
1308 	/*
1309 	 * Flush the driver data to ensure coherency. This is
1310 	 * not required if platform has HW_ASSISTED_COHERENCY
1311 	 * enabled.
1312 	 */
1313 #if !HW_ASSISTED_COHERENCY
1314 	/*
1315 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1316 	 */
1317 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1318 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1319 #endif
1320 	return 0; /* Found matching GICR frame */
1321 }
1322 
1323 /******************************************************************************
1324  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1325  * and false for (E)SPIs IDs.
1326  *****************************************************************************/
is_sgi_ppi(unsigned int id)1327 static bool is_sgi_ppi(unsigned int id)
1328 {
1329 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1330 	if (IS_SGI_PPI(id)) {
1331 		return true;
1332 	}
1333 
1334 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1335 	if (IS_SPI(id)) {
1336 		return false;
1337 	}
1338 
1339 	assert(false);
1340 	panic();
1341 }
1342