1 /* 2 * Copyright (C) 2019 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // This header file defines an unified structure for a model under test, and provides helper 18 // functions checking test results. Multiple instances of the test model structure will be 19 // generated from the model specification files under nn/runtime/test/specs directory. 20 // Both CTS and VTS will consume this test structure and convert into their own model and 21 // request format. 22 23 #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_TOOLS_TEST_GENERATOR_TEST_HARNESS_TEST_HARNESS_H 24 #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_TOOLS_TEST_GENERATOR_TEST_HARNESS_TEST_HARNESS_H 25 26 #include <algorithm> 27 #include <cstdlib> 28 #include <cstring> 29 #include <functional> 30 #include <iostream> 31 #include <limits> 32 #include <map> 33 #include <memory> 34 #include <random> 35 #include <string> 36 #include <utility> 37 #include <vector> 38 39 namespace test_helper { 40 41 // This class is a workaround for two issues our code relies on: 42 // 1. sizeof(bool) is implementation defined. 43 // 2. vector<bool> does not allow direct pointer access via the data() method. 44 class bool8 { 45 public: bool8()46 bool8() : mValue() {} bool8(bool value)47 /* implicit */ bool8(bool value) : mValue(value) {} // NOLINT(google-explicit-constructor) 48 inline operator bool() const { return mValue != 0; } // NOLINT(google-explicit-constructor) 49 50 private: 51 uint8_t mValue; 52 }; 53 54 static_assert(sizeof(bool8) == 1, "size of bool8 must be 8 bits"); 55 56 // We need the following enum classes since the test harness can neither depend on NDK nor HIDL 57 // definitions. 58 59 enum class TestOperandType { 60 FLOAT32 = 0, 61 INT32 = 1, 62 UINT32 = 2, 63 TENSOR_FLOAT32 = 3, 64 TENSOR_INT32 = 4, 65 TENSOR_QUANT8_ASYMM = 5, 66 BOOL = 6, 67 TENSOR_QUANT16_SYMM = 7, 68 TENSOR_FLOAT16 = 8, 69 TENSOR_BOOL8 = 9, 70 FLOAT16 = 10, 71 TENSOR_QUANT8_SYMM_PER_CHANNEL = 11, 72 TENSOR_QUANT16_ASYMM = 12, 73 TENSOR_QUANT8_SYMM = 13, 74 TENSOR_QUANT8_ASYMM_SIGNED = 14, 75 SUBGRAPH = 15, 76 }; 77 78 enum class TestOperandLifeTime { 79 TEMPORARY_VARIABLE = 0, 80 SUBGRAPH_INPUT = 1, 81 SUBGRAPH_OUTPUT = 2, 82 CONSTANT_COPY = 3, 83 CONSTANT_REFERENCE = 4, 84 NO_VALUE = 5, 85 SUBGRAPH = 6, 86 // DEPRECATED. Use SUBGRAPH_INPUT. 87 // This value is used in pre-1.3 VTS tests. 88 MODEL_INPUT = SUBGRAPH_INPUT, 89 // DEPRECATED. Use SUBGRAPH_OUTPUT. 90 // This value is used in pre-1.3 VTS tests. 91 MODEL_OUTPUT = SUBGRAPH_OUTPUT, 92 }; 93 94 enum class TestOperationType { 95 ADD = 0, 96 AVERAGE_POOL_2D = 1, 97 CONCATENATION = 2, 98 CONV_2D = 3, 99 DEPTHWISE_CONV_2D = 4, 100 DEPTH_TO_SPACE = 5, 101 DEQUANTIZE = 6, 102 EMBEDDING_LOOKUP = 7, 103 FLOOR = 8, 104 FULLY_CONNECTED = 9, 105 HASHTABLE_LOOKUP = 10, 106 L2_NORMALIZATION = 11, 107 L2_POOL_2D = 12, 108 LOCAL_RESPONSE_NORMALIZATION = 13, 109 LOGISTIC = 14, 110 LSH_PROJECTION = 15, 111 LSTM = 16, 112 MAX_POOL_2D = 17, 113 MUL = 18, 114 RELU = 19, 115 RELU1 = 20, 116 RELU6 = 21, 117 RESHAPE = 22, 118 RESIZE_BILINEAR = 23, 119 RNN = 24, 120 SOFTMAX = 25, 121 SPACE_TO_DEPTH = 26, 122 SVDF = 27, 123 TANH = 28, 124 BATCH_TO_SPACE_ND = 29, 125 DIV = 30, 126 MEAN = 31, 127 PAD = 32, 128 SPACE_TO_BATCH_ND = 33, 129 SQUEEZE = 34, 130 STRIDED_SLICE = 35, 131 SUB = 36, 132 TRANSPOSE = 37, 133 ABS = 38, 134 ARGMAX = 39, 135 ARGMIN = 40, 136 AXIS_ALIGNED_BBOX_TRANSFORM = 41, 137 BIDIRECTIONAL_SEQUENCE_LSTM = 42, 138 BIDIRECTIONAL_SEQUENCE_RNN = 43, 139 BOX_WITH_NMS_LIMIT = 44, 140 CAST = 45, 141 CHANNEL_SHUFFLE = 46, 142 DETECTION_POSTPROCESSING = 47, 143 EQUAL = 48, 144 EXP = 49, 145 EXPAND_DIMS = 50, 146 GATHER = 51, 147 GENERATE_PROPOSALS = 52, 148 GREATER = 53, 149 GREATER_EQUAL = 54, 150 GROUPED_CONV_2D = 55, 151 HEATMAP_MAX_KEYPOINT = 56, 152 INSTANCE_NORMALIZATION = 57, 153 LESS = 58, 154 LESS_EQUAL = 59, 155 LOG = 60, 156 LOGICAL_AND = 61, 157 LOGICAL_NOT = 62, 158 LOGICAL_OR = 63, 159 LOG_SOFTMAX = 64, 160 MAXIMUM = 65, 161 MINIMUM = 66, 162 NEG = 67, 163 NOT_EQUAL = 68, 164 PAD_V2 = 69, 165 POW = 70, 166 PRELU = 71, 167 QUANTIZE = 72, 168 QUANTIZED_16BIT_LSTM = 73, 169 RANDOM_MULTINOMIAL = 74, 170 REDUCE_ALL = 75, 171 REDUCE_ANY = 76, 172 REDUCE_MAX = 77, 173 REDUCE_MIN = 78, 174 REDUCE_PROD = 79, 175 REDUCE_SUM = 80, 176 ROI_ALIGN = 81, 177 ROI_POOLING = 82, 178 RSQRT = 83, 179 SELECT = 84, 180 SIN = 85, 181 SLICE = 86, 182 SPLIT = 87, 183 SQRT = 88, 184 TILE = 89, 185 TOPK_V2 = 90, 186 TRANSPOSE_CONV_2D = 91, 187 UNIDIRECTIONAL_SEQUENCE_LSTM = 92, 188 UNIDIRECTIONAL_SEQUENCE_RNN = 93, 189 RESIZE_NEAREST_NEIGHBOR = 94, 190 QUANTIZED_LSTM = 95, 191 IF = 96, 192 WHILE = 97, 193 ELU = 98, 194 HARD_SWISH = 99, 195 FILL = 100, 196 RANK = 101, 197 BATCH_MATMUL = 102, 198 PACK = 103, 199 MIRROR_PAD = 104, 200 REVERSE = 105, 201 #ifdef NN_EXPERIMENTAL_FEATURE 202 DENSIFY = 20000, 203 #endif // NN_EXPERIMENTAL_FEATURE 204 }; 205 206 // TODO(b/209797313): Deduplicate this enum class. 207 enum class TestHalVersion { UNKNOWN, V1_0, V1_1, V1_2, V1_3, AIDL_V1, AIDL_V2, AIDL_V3 }; 208 209 // Manages the data buffer for a test operand. 210 class TestBuffer { 211 public: 212 // The buffer must be aligned on a boundary of a byte size that is a multiple of the element 213 // type byte size. In NNAPI, 4-byte boundary should be sufficient for all current data types. 214 static constexpr size_t kAlignment = 4; 215 216 TestBuffer() = default; 217 218 // Create the buffer of a given size and initialize from data. 219 // If data is nullptr, the allocated memory stays uninitialized. mSize(size)220 explicit TestBuffer(size_t size, const void* data = nullptr) : mSize(size) { 221 if (size > 0) { 222 // The size for aligned_alloc must be an integral multiple of alignment. 223 mBuffer.reset(aligned_alloc(kAlignment, alignedSize()), free); 224 if (data) memcpy(mBuffer.get(), data, size); 225 } 226 } 227 228 // Explicitly create a deep copy. copy()229 TestBuffer copy() const { return TestBuffer(mSize, mBuffer.get()); } 230 231 // Factory method creating the buffer from a typed vector. 232 template <typename T> createFromVector(const std::vector<T> & vec)233 static TestBuffer createFromVector(const std::vector<T>& vec) { 234 return TestBuffer(vec.size() * sizeof(T), vec.data()); 235 } 236 237 // Factory method for creating a randomized buffer with "size" number of 238 // bytes. createRandom(size_t size,std::default_random_engine * gen)239 static TestBuffer createRandom(size_t size, std::default_random_engine* gen) { 240 static_assert(kAlignment % sizeof(uint32_t) == 0); 241 TestBuffer testBuffer(size); 242 std::uniform_int_distribution<uint32_t> dist{}; 243 const size_t count = testBuffer.alignedSize() / sizeof(uint32_t); 244 std::generate_n(testBuffer.getMutable<uint32_t>(), count, [&] { return dist(*gen); }); 245 return testBuffer; 246 } 247 248 template <typename T> get()249 const T* get() const { 250 return reinterpret_cast<const T*>(mBuffer.get()); 251 } 252 253 template <typename T> getMutable()254 T* getMutable() { 255 return reinterpret_cast<T*>(mBuffer.get()); 256 } 257 258 // Returns the byte size of the buffer. size()259 size_t size() const { return mSize; } 260 261 // Returns the byte size that is aligned to kAlignment. alignedSize()262 size_t alignedSize() const { return ((mSize + kAlignment - 1) / kAlignment) * kAlignment; } 263 264 bool operator==(std::nullptr_t) const { return mBuffer == nullptr; } 265 bool operator!=(std::nullptr_t) const { return mBuffer != nullptr; } 266 267 private: 268 std::shared_ptr<void> mBuffer; 269 size_t mSize = 0; 270 }; 271 272 struct TestSymmPerChannelQuantParams { 273 std::vector<float> scales; 274 uint32_t channelDim = 0; 275 }; 276 277 struct TestOperand { 278 TestOperandType type; 279 std::vector<uint32_t> dimensions; 280 uint32_t numberOfConsumers; 281 float scale = 0.0f; 282 int32_t zeroPoint = 0; 283 TestOperandLifeTime lifetime; 284 TestSymmPerChannelQuantParams channelQuant; 285 286 // For SUBGRAPH_OUTPUT only. Set to true to skip the accuracy check on this operand. 287 bool isIgnored = false; 288 289 // For CONSTANT_COPY/REFERENCE and SUBGRAPH_INPUT, this is the data set in model and request. 290 // For SUBGRAPH_OUTPUT, 291 // - If isIgnored == false, this is the expected results. 292 // - If isIgnored == true, this is populated but ignored 293 // For TEMPORARY_VARIABLE and NO_VALUE, this is nullptr. 294 TestBuffer data; 295 }; 296 297 struct TestOperation { 298 TestOperationType type; 299 std::vector<uint32_t> inputs; 300 std::vector<uint32_t> outputs; 301 }; 302 303 struct TestSubgraph { 304 std::vector<TestOperand> operands; 305 std::vector<TestOperation> operations; 306 std::vector<uint32_t> inputIndexes; 307 std::vector<uint32_t> outputIndexes; 308 }; 309 310 struct TestModel { 311 TestSubgraph main; 312 std::vector<TestSubgraph> referenced; 313 bool isRelaxed = false; 314 315 // Additional testing information and flags associated with the TestModel. 316 317 // Specifies the RANDOM_MULTINOMIAL distribution tolerance. 318 // If set to greater than zero, the input is compared as log-probabilities 319 // to the output and must be within this tolerance to pass. 320 float expectedMultinomialDistributionTolerance = 0.0f; 321 322 // If set to true, the TestModel specifies a validation test that is expected to fail during 323 // compilation or execution. 324 bool expectFailure = false; 325 326 // The minimum supported HAL version. 327 TestHalVersion minSupportedVersion = TestHalVersion::UNKNOWN; 328 329 // Returns an int AIDL version number. HIDL versions are treated as AIDL version 0. getAidlVersionIntTestModel330 int32_t getAidlVersionInt() const { 331 switch (minSupportedVersion) { 332 case TestHalVersion::AIDL_V1: 333 return 1; 334 case TestHalVersion::AIDL_V2: 335 return 2; 336 case TestHalVersion::AIDL_V3: 337 return 3; 338 default: 339 // HIDL versions are treated as AIDL version 0 so that all AIDL services are newer. 340 return 0; 341 } 342 } 343 forEachSubgraphTestModel344 void forEachSubgraph(const std::function<void(const TestSubgraph&)>& handler) const { 345 handler(main); 346 for (const TestSubgraph& subgraph : referenced) { 347 handler(subgraph); 348 } 349 } 350 forEachSubgraphTestModel351 void forEachSubgraph(const std::function<void(TestSubgraph&)>& handler) { 352 handler(main); 353 for (TestSubgraph& subgraph : referenced) { 354 handler(subgraph); 355 } 356 } 357 358 // Explicitly create a deep copy. copyTestModel359 TestModel copy() const { 360 TestModel newTestModel(*this); 361 newTestModel.forEachSubgraph([](TestSubgraph& subgraph) { 362 for (TestOperand& operand : subgraph.operands) { 363 operand.data = operand.data.copy(); 364 } 365 }); 366 return newTestModel; 367 } 368 hasQuant8CoupledOperandsTestModel369 bool hasQuant8CoupledOperands() const { 370 bool result = false; 371 forEachSubgraph([&result](const TestSubgraph& subgraph) { 372 if (result) { 373 return; 374 } 375 for (const TestOperation& operation : subgraph.operations) { 376 /* 377 * There are several ops that are exceptions to the general quant8 378 * types coupling: 379 * HASHTABLE_LOOKUP -- due to legacy reasons uses 380 * TENSOR_QUANT8_ASYMM tensor as if it was TENSOR_BOOL. It 381 * doesn't make sense to have coupling in this case. 382 * LSH_PROJECTION -- hashes an input tensor treating it as raw 383 * bytes. We can't expect same results for coupled inputs. 384 * PAD_V2 -- pad_value is set using int32 scalar, so coupling 385 * produces a wrong result. 386 * CAST -- converts tensors without taking into account input's 387 * scale and zero point. Coupled models shouldn't produce same 388 * results. 389 * QUANTIZED_16BIT_LSTM -- the op is made for a specific use case, 390 * supporting signed quantization is not worth the compications. 391 */ 392 if (operation.type == TestOperationType::HASHTABLE_LOOKUP || 393 operation.type == TestOperationType::LSH_PROJECTION || 394 operation.type == TestOperationType::PAD_V2 || 395 operation.type == TestOperationType::CAST || 396 operation.type == TestOperationType::QUANTIZED_16BIT_LSTM) { 397 continue; 398 } 399 for (const auto operandIndex : operation.inputs) { 400 if (subgraph.operands[operandIndex].type == 401 TestOperandType::TENSOR_QUANT8_ASYMM) { 402 result = true; 403 return; 404 } 405 } 406 for (const auto operandIndex : operation.outputs) { 407 if (subgraph.operands[operandIndex].type == 408 TestOperandType::TENSOR_QUANT8_ASYMM) { 409 result = true; 410 return; 411 } 412 } 413 } 414 }); 415 return result; 416 } 417 hasScalarOutputsTestModel418 bool hasScalarOutputs() const { 419 bool result = false; 420 forEachSubgraph([&result](const TestSubgraph& subgraph) { 421 if (result) { 422 return; 423 } 424 for (const TestOperation& operation : subgraph.operations) { 425 // RANK op returns a scalar and therefore shouldn't be tested 426 // for dynamic output shape support. 427 if (operation.type == TestOperationType::RANK) { 428 result = true; 429 return; 430 } 431 // Control flow operations do not support referenced model 432 // outputs with dynamic shapes. 433 if (operation.type == TestOperationType::IF || 434 operation.type == TestOperationType::WHILE) { 435 result = true; 436 return; 437 } 438 } 439 }); 440 return result; 441 } 442 isInfiniteLoopTimeoutTestTestModel443 bool isInfiniteLoopTimeoutTest() const { 444 // This should only match the TestModel generated from while_infinite_loop.mod.py. 445 return expectFailure && main.operations[0].type == TestOperationType::WHILE; 446 } 447 }; 448 449 // Manages all generated test models. 450 class TestModelManager { 451 public: 452 // Returns the singleton manager. get()453 static TestModelManager& get() { 454 static TestModelManager instance; 455 return instance; 456 } 457 458 // Registers a TestModel to the manager. Returns a placeholder integer for global variable 459 // initialization. add(std::string name,const TestModel & testModel)460 int add(std::string name, const TestModel& testModel) { 461 mTestModels.emplace(std::move(name), &testModel); 462 return 0; 463 } 464 465 // Returns a vector of selected TestModels for which the given "filter" returns true. 466 using TestParam = std::pair<std::string, const TestModel*>; getTestModels(const std::function<bool (const TestModel &)> & filter)467 std::vector<TestParam> getTestModels(const std::function<bool(const TestModel&)>& filter) { 468 std::vector<TestParam> testModels; 469 testModels.reserve(mTestModels.size()); 470 std::copy_if(mTestModels.begin(), mTestModels.end(), std::back_inserter(testModels), 471 [&filter](const auto& nameTestPair) { return filter(*nameTestPair.second); }); 472 return testModels; 473 } 474 475 // Returns a vector of selected TestModels for which the given "filter" returns true. getTestModels(const std::function<bool (const std::string &)> & filter)476 std::vector<TestParam> getTestModels(const std::function<bool(const std::string&)>& filter) { 477 std::vector<TestParam> testModels; 478 testModels.reserve(mTestModels.size()); 479 std::copy_if(mTestModels.begin(), mTestModels.end(), std::back_inserter(testModels), 480 [&filter](const auto& nameTestPair) { return filter(nameTestPair.first); }); 481 return testModels; 482 } 483 484 private: 485 TestModelManager() = default; 486 TestModelManager(const TestModelManager&) = delete; 487 TestModelManager& operator=(const TestModelManager&) = delete; 488 489 // Contains all TestModels generated from nn/runtime/test/specs directory. 490 // The TestModels are sorted by name to ensure a predictable order. 491 std::map<std::string, const TestModel*> mTestModels; 492 }; 493 494 struct AccuracyCriterion { 495 // We expect the driver results to be unbiased. 496 // Formula: abs(sum_{i}(diff) / sum(1)) <= bias, where 497 // * fixed point: diff = actual - expected 498 // * floating point: diff = (actual - expected) / max(1, abs(expected)) 499 float bias = std::numeric_limits<float>::max(); 500 501 // Set the threshold on Mean Square Error (MSE). 502 // Formula: sum_{i}(diff ^ 2) / sum(1) <= mse 503 float mse = std::numeric_limits<float>::max(); 504 505 // We also set accuracy thresholds on each element to detect any particular edge cases that may 506 // be shadowed in bias or MSE. We use the similar approach as our CTS unit tests, but with much 507 // relaxed criterion. 508 // Formula: abs(actual - expected) <= atol + rtol * abs(expected) 509 // where atol stands for Absolute TOLerance and rtol for Relative TOLerance. 510 float atol = 0.0f; 511 float rtol = 0.0f; 512 }; 513 514 struct AccuracyCriteria { 515 AccuracyCriterion float32; 516 AccuracyCriterion float16; 517 AccuracyCriterion int32; 518 AccuracyCriterion quant8Asymm; 519 AccuracyCriterion quant8AsymmSigned; 520 AccuracyCriterion quant8Symm; 521 AccuracyCriterion quant16Asymm; 522 AccuracyCriterion quant16Symm; 523 float bool8AllowedErrorRatio = 0.1f; 524 bool allowInvalidFpValues = true; 525 }; 526 527 // Check the output results against the expected values in test model by calling 528 // GTEST_ASSERT/EXPECT. The index of the results corresponds to the index in 529 // model.main.outputIndexes. E.g., results[i] corresponds to model.main.outputIndexes[i]. 530 void checkResults(const TestModel& model, const std::vector<TestBuffer>& results); 531 void checkResults(const TestModel& model, const std::vector<TestBuffer>& results, 532 const AccuracyCriteria& criteria); 533 534 bool isQuantizedType(TestOperandType type); 535 536 TestModel convertQuant8AsymmOperandsToSigned(const TestModel& testModel); 537 538 std::ostream& operator<<(std::ostream& os, const TestOperandType& type); 539 std::ostream& operator<<(std::ostream& os, const TestOperationType& type); 540 541 // Dump a test model in the format of a spec file for debugging and visualization purpose. 542 class SpecDumper { 543 public: SpecDumper(const TestModel & testModel,std::ostream & os)544 SpecDumper(const TestModel& testModel, std::ostream& os) : kTestModel(testModel), mOs(os) {} 545 void dumpTestModel(); 546 void dumpResults(const std::string& name, const std::vector<TestBuffer>& results); 547 548 private: 549 // Dump a test model operand. 550 // e.g. op0 = Input("op0", "TENSOR_FLOAT32", "{1, 2, 6, 1}") 551 // e.g. op1 = Parameter("op1", "INT32", "{}", [2]) 552 void dumpTestOperand(const TestOperand& operand, uint32_t index); 553 554 // Dump a test model operation. 555 // e.g. model = model.Operation("CONV_2D", op0, op1, op2, op3, op4, op5, op6).To(op7) 556 void dumpTestOperation(const TestOperation& operation); 557 558 // Dump a test buffer as a python 1D list. 559 // e.g. [1, 2, 3, 4, 5] 560 // 561 // If useHexFloat is set to true and the operand type is float, the buffer values will be 562 // dumped in hex representation. 563 void dumpTestBuffer(TestOperandType type, const TestBuffer& buffer, bool useHexFloat); 564 565 const TestModel& kTestModel; 566 std::ostream& mOs; 567 }; 568 569 // Convert the test model to an equivalent float32 model. It will return std::nullopt if the 570 // conversion is not supported, or if there is no equivalent float32 model. 571 std::optional<TestModel> convertToFloat32Model(const TestModel& testModel); 572 573 // Used together with convertToFloat32Model. Convert the results computed from the float model to 574 // the actual data type in the original model. 575 void setExpectedOutputsFromFloat32Results(const std::vector<TestBuffer>& results, TestModel* model); 576 577 } // namespace test_helper 578 579 #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_TOOLS_TEST_GENERATOR_TEST_HARNESS_TEST_HARNESS_H 580