1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "profile_compilation_info.h"
18
19 #include <sys/file.h>
20 #include <sys/stat.h>
21 #include <sys/types.h>
22 #include <unistd.h>
23 #include <zlib.h>
24
25 #include <algorithm>
26 #include <cerrno>
27 #include <climits>
28 #include <cstdlib>
29 #include <iostream>
30 #include <numeric>
31 #include <random>
32 #include <string>
33 #include <vector>
34
35 #include "android-base/file.h"
36
37 #include "base/arena_allocator.h"
38 #include "base/bit_utils.h"
39 #include "base/dumpable.h"
40 #include "base/file_utils.h"
41 #include "base/logging.h" // For VLOG.
42 #include "base/malloc_arena_pool.h"
43 #include "base/os.h"
44 #include "base/safe_map.h"
45 #include "base/scoped_flock.h"
46 #include "base/stl_util.h"
47 #include "base/systrace.h"
48 #include "base/time_utils.h"
49 #include "base/unix_file/fd_file.h"
50 #include "base/utils.h"
51 #include "base/zip_archive.h"
52 #include "dex/descriptors_names.h"
53 #include "dex/dex_file_loader.h"
54
55 namespace art {
56
57 const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
58 // Last profile version: New extensible profile format.
59 const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '5', '\0' };
60 const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '6', '\0' };
61
62 static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4,
63 "Invalid profile version size");
64 static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4,
65 "Invalid profile version size");
66
67 // The name of the profile entry in the dex metadata file.
68 // DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files).
69 const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof";
70
71 // A synthetic annotations that can be used to denote that no annotation should
72 // be associated with the profile samples. We use the empty string for the package name
73 // because that's an invalid package name and should never occur in practice.
74 const ProfileCompilationInfo::ProfileSampleAnnotation
75 ProfileCompilationInfo::ProfileSampleAnnotation::kNone =
76 ProfileCompilationInfo::ProfileSampleAnnotation("");
77
78 static constexpr char kSampleMetadataSeparator = ':';
79
80 // Note: This used to be PATH_MAX (usually 4096) but that seems excessive
81 // and we do not want to rely on that external constant anyway.
82 static constexpr uint16_t kMaxDexFileKeyLength = 1024;
83
84 // Extra descriptors are serialized with a `uint16_t` prefix. This defines the length limit.
85 static constexpr size_t kMaxExtraDescriptorLength = std::numeric_limits<uint16_t>::max();
86
87 // According to dex file specification, there can be more than 2^16 valid method indexes
88 // but bytecode uses only 16 bits, so higher method indexes are not very useful (though
89 // such methods could be reached through virtual or interface dispatch). Consequently,
90 // dex files with more than 2^16 method indexes are not really used and the profile file
91 // format does not support higher method indexes.
92 static constexpr uint32_t kMaxSupportedMethodIndex = 0xffffu;
93
94 // Debug flag to ignore checksums when testing if a method or a class is present in the profile.
95 // Used to facilitate testing profile guided compilation across a large number of apps
96 // using the same test profile.
97 static constexpr bool kDebugIgnoreChecksum = false;
98
99 static constexpr uint8_t kIsMissingTypesEncoding = 6;
100 static constexpr uint8_t kIsMegamorphicEncoding = 7;
101
102 static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t),
103 "InlineCache::kIndividualInlineCacheSize does not have the expect type size");
104 static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding,
105 "InlineCache::kIndividualInlineCacheSize is larger than expected");
106 static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding,
107 "InlineCache::kIndividualInlineCacheSize is larger than expected");
108
109 static constexpr uint32_t kSizeWarningThresholdBytes = 500000U;
110 static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U;
111
112 static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U;
113 static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U;
114
ChecksumMatch(uint32_t dex_file_checksum,uint32_t checksum)115 static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
116 return kDebugIgnoreChecksum || dex_file_checksum == checksum;
117 }
118
119 namespace {
120
121 // Deflate the input buffer `in_buffer`. It returns a buffer of
122 // compressed data for the input buffer of `*compressed_data_size` size.
DeflateBuffer(ArrayRef<const uint8_t> in_buffer,uint32_t * compressed_data_size)123 std::unique_ptr<uint8_t[]> DeflateBuffer(ArrayRef<const uint8_t> in_buffer,
124 /*out*/ uint32_t* compressed_data_size) {
125 z_stream strm;
126 strm.zalloc = Z_NULL;
127 strm.zfree = Z_NULL;
128 strm.opaque = Z_NULL;
129 int init_ret = deflateInit(&strm, 1);
130 if (init_ret != Z_OK) {
131 return nullptr;
132 }
133
134 uint32_t out_size = dchecked_integral_cast<uint32_t>(deflateBound(&strm, in_buffer.size()));
135
136 std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]);
137 strm.avail_in = in_buffer.size();
138 strm.next_in = const_cast<uint8_t*>(in_buffer.data());
139 strm.avail_out = out_size;
140 strm.next_out = &compressed_buffer[0];
141 int ret = deflate(&strm, Z_FINISH);
142 if (ret == Z_STREAM_ERROR) {
143 return nullptr;
144 }
145 *compressed_data_size = out_size - strm.avail_out;
146
147 int end_ret = deflateEnd(&strm);
148 if (end_ret != Z_OK) {
149 return nullptr;
150 }
151
152 return compressed_buffer;
153 }
154
155 // Inflate the data from `in_buffer` into `out_buffer`. The `out_buffer.size()`
156 // is the expected output size of the buffer. It returns Z_STREAM_END on success.
157 // On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent
158 // and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data.
InflateBuffer(ArrayRef<const uint8_t> in_buffer,ArrayRef<uint8_t> out_buffer)159 int InflateBuffer(ArrayRef<const uint8_t> in_buffer, /*out*/ ArrayRef<uint8_t> out_buffer) {
160 /* allocate inflate state */
161 z_stream strm;
162 strm.zalloc = Z_NULL;
163 strm.zfree = Z_NULL;
164 strm.opaque = Z_NULL;
165 strm.avail_in = in_buffer.size();
166 strm.next_in = const_cast<uint8_t*>(in_buffer.data());
167 strm.avail_out = out_buffer.size();
168 strm.next_out = out_buffer.data();
169
170 int init_ret = inflateInit(&strm);
171 if (init_ret != Z_OK) {
172 return init_ret;
173 }
174
175 int ret = inflate(&strm, Z_NO_FLUSH);
176 if (strm.avail_in != 0 || strm.avail_out != 0) {
177 return Z_DATA_ERROR;
178 }
179
180 int end_ret = inflateEnd(&strm);
181 if (end_ret != Z_OK) {
182 return end_ret;
183 }
184
185 return ret;
186 }
187
188 } // anonymous namespace
189
190 enum class ProfileCompilationInfo::ProfileLoadStatus : uint32_t {
191 kSuccess,
192 kIOError,
193 kBadMagic,
194 kVersionMismatch,
195 kBadData,
196 kMergeError, // Merging failed. There are too many extra descriptors
197 // or classes without TypeId referenced by a dex file.
198 };
199
200 enum class ProfileCompilationInfo::FileSectionType : uint32_t {
201 // The values of section enumerators and data format for individual sections
202 // must not be changed without changing the profile file version. New sections
203 // can be added at the end and they shall be ignored by old versions of ART.
204
205 // The list of the dex files included in the profile.
206 // There must be exactly one dex file section and it must be first.
207 kDexFiles = 0,
208
209 // Extra descriptors for referencing classes that do not have a `dex::TypeId`
210 // in the referencing dex file, such as classes from a different dex file
211 // (even outside of the dex files in the profile) or array classes that were
212 // used from other dex files or created through reflection.
213 kExtraDescriptors = 1,
214
215 // Classes included in the profile.
216 kClasses = 2,
217
218 // Methods included in the profile, their hotness flags and inline caches.
219 kMethods = 3,
220
221 // The aggregation counts of the profile, classes and methods. This section is
222 // an optional reserved section not implemented on client yet.
223 kAggregationCounts = 4,
224
225 // The number of known sections.
226 kNumberOfSections = 5
227 };
228
229 class ProfileCompilationInfo::FileSectionInfo {
230 public:
231 // Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileSectionInfo()232 FileSectionInfo() {}
233
234 // Constructor for writing to a file.
FileSectionInfo(FileSectionType type,uint32_t file_offset,uint32_t file_size,uint32_t inflated_size)235 FileSectionInfo(FileSectionType type,
236 uint32_t file_offset,
237 uint32_t file_size,
238 uint32_t inflated_size)
239 : type_(type),
240 file_offset_(file_offset),
241 file_size_(file_size),
242 inflated_size_(inflated_size) {}
243
SetFileOffset(uint32_t file_offset)244 void SetFileOffset(uint32_t file_offset) {
245 DCHECK_EQ(file_offset_, 0u);
246 DCHECK_NE(file_offset, 0u);
247 file_offset_ = file_offset;
248 }
249
GetType() const250 FileSectionType GetType() const {
251 return type_;
252 }
253
GetFileOffset() const254 uint32_t GetFileOffset() const {
255 return file_offset_;
256 }
257
GetFileSize() const258 uint32_t GetFileSize() const {
259 return file_size_;
260 }
261
GetInflatedSize() const262 uint32_t GetInflatedSize() const {
263 return inflated_size_;
264 }
265
GetMemSize() const266 uint32_t GetMemSize() const {
267 return inflated_size_ != 0u ? inflated_size_ : file_size_;
268 }
269
270 private:
271 FileSectionType type_;
272 uint32_t file_offset_;
273 uint32_t file_size_;
274 uint32_t inflated_size_; // If 0, do not inflate and use data from file directly.
275 };
276
277 // The file header.
278 class ProfileCompilationInfo::FileHeader {
279 public:
280 // Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileHeader()281 FileHeader() {
282 DCHECK(!IsValid());
283 }
284
285 // Constructor for writing to a file.
FileHeader(const uint8_t * version,uint32_t file_section_count)286 FileHeader(const uint8_t* version, uint32_t file_section_count)
287 : file_section_count_(file_section_count) {
288 static_assert(sizeof(magic_) == sizeof(kProfileMagic));
289 static_assert(sizeof(version_) == sizeof(kProfileVersion));
290 static_assert(sizeof(version_) == sizeof(kProfileVersionForBootImage));
291 memcpy(magic_, kProfileMagic, sizeof(kProfileMagic));
292 memcpy(version_, version, sizeof(version_));
293 DCHECK_LE(file_section_count, kMaxFileSectionCount);
294 DCHECK(IsValid());
295 }
296
IsValid() const297 bool IsValid() const {
298 return memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) == 0 &&
299 (memcmp(version_, kProfileVersion, kProfileVersionSize) == 0 ||
300 memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) == 0) &&
301 file_section_count_ != 0u && // The dex files section is mandatory.
302 file_section_count_ <= kMaxFileSectionCount;
303 }
304
GetVersion() const305 const uint8_t* GetVersion() const {
306 DCHECK(IsValid());
307 return version_;
308 }
309
310 ProfileLoadStatus InvalidHeaderMessage(/*out*/ std::string* error_msg) const;
311
GetFileSectionCount() const312 uint32_t GetFileSectionCount() const {
313 DCHECK(IsValid());
314 return file_section_count_;
315 }
316
317 private:
318 // The upper bound for file section count is used to ensure that there
319 // shall be no arithmetic overflow when calculating size of the header
320 // with section information.
321 static const uint32_t kMaxFileSectionCount;
322
323 uint8_t magic_[4] = {0, 0, 0, 0};
324 uint8_t version_[4] = {0, 0, 0, 0};
325 uint32_t file_section_count_ = 0u;
326 };
327
328 const uint32_t ProfileCompilationInfo::FileHeader::kMaxFileSectionCount =
329 (std::numeric_limits<uint32_t>::max() - sizeof(FileHeader)) / sizeof(FileSectionInfo);
330
331 ProfileCompilationInfo::ProfileLoadStatus
InvalidHeaderMessage(std::string * error_msg) const332 ProfileCompilationInfo::FileHeader::InvalidHeaderMessage(/*out*/ std::string* error_msg) const {
333 if (memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) != 0) {
334 *error_msg = "Profile missing magic.";
335 return ProfileLoadStatus::kBadMagic;
336 }
337 if (memcmp(version_, kProfileVersion, sizeof(kProfileVersion)) != 0 &&
338 memcmp(version_, kProfileVersion, sizeof(kProfileVersionForBootImage)) != 0) {
339 *error_msg = "Profile version mismatch.";
340 return ProfileLoadStatus::kVersionMismatch;
341 }
342 if (file_section_count_ == 0u) {
343 *error_msg = "Missing mandatory dex files section.";
344 return ProfileLoadStatus::kBadData;
345 }
346 DCHECK_GT(file_section_count_, kMaxFileSectionCount);
347 *error_msg ="Too many sections.";
348 return ProfileLoadStatus::kBadData;
349 }
350
351 /**
352 * Encapsulate the source of profile data for loading.
353 * The source can be either a plain file or a zip file.
354 * For zip files, the profile entry will be extracted to
355 * the memory map.
356 */
357 class ProfileCompilationInfo::ProfileSource {
358 public:
359 /**
360 * Create a profile source for the given fd. The ownership of the fd
361 * remains to the caller; as this class will not attempt to close it at any
362 * point.
363 */
Create(int32_t fd)364 static ProfileSource* Create(int32_t fd) {
365 DCHECK_GT(fd, -1);
366 return new ProfileSource(fd, MemMap::Invalid());
367 }
368
369 /**
370 * Create a profile source backed by a memory map. The map can be null in
371 * which case it will the treated as an empty source.
372 */
Create(MemMap && mem_map)373 static ProfileSource* Create(MemMap&& mem_map) {
374 return new ProfileSource(/*fd*/ -1, std::move(mem_map));
375 }
376
377 // Seek to the given offset in the source.
378 bool Seek(off_t offset);
379
380 /**
381 * Read bytes from this source.
382 * Reading will advance the current source position so subsequent
383 * invocations will read from the las position.
384 */
385 ProfileLoadStatus Read(void* buffer,
386 size_t byte_count,
387 const std::string& debug_stage,
388 std::string* error);
389
390 /** Return true if the source has 0 data. */
391 bool HasEmptyContent() const;
392
393 private:
ProfileSource(int32_t fd,MemMap && mem_map)394 ProfileSource(int32_t fd, MemMap&& mem_map)
395 : fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {}
396
IsMemMap() const397 bool IsMemMap() const {
398 return fd_ == -1;
399 }
400
401 int32_t fd_; // The fd is not owned by this class.
402 MemMap mem_map_;
403 size_t mem_map_cur_; // Current position in the map to read from.
404 };
405
406 // A helper structure to make sure we don't read past our buffers in the loops.
407 // Also used for writing but the buffer should be pre-sized correctly for that, so we
408 // DCHECK() we do not write beyond the end, rather than returning `false` on failure.
409 class ProfileCompilationInfo::SafeBuffer {
410 public:
SafeBuffer()411 SafeBuffer()
412 : storage_(nullptr),
413 ptr_current_(nullptr),
414 ptr_end_(nullptr) {}
415
SafeBuffer(size_t size)416 explicit SafeBuffer(size_t size)
417 : storage_(new uint8_t[size]),
418 ptr_current_(storage_.get()),
419 ptr_end_(ptr_current_ + size) {}
420
421 // Reads an uint value and advances the current pointer.
422 template <typename T>
ReadUintAndAdvance(T * value)423 bool ReadUintAndAdvance(/*out*/ T* value) {
424 static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
425 if (sizeof(T) > GetAvailableBytes()) {
426 return false;
427 }
428 *value = 0;
429 for (size_t i = 0; i < sizeof(T); i++) {
430 *value += ptr_current_[i] << (i * kBitsPerByte);
431 }
432 ptr_current_ += sizeof(T);
433 return true;
434 }
435
436 // Reads a length-prefixed string as `std::string_view` and advances the current pointer.
437 // The length is `uint16_t`.
ReadStringAndAdvance(std::string_view * value)438 bool ReadStringAndAdvance(/*out*/ std::string_view* value) {
439 uint16_t length;
440 if (!ReadUintAndAdvance(&length)) {
441 return false;
442 }
443 if (length > GetAvailableBytes()) {
444 return false;
445 }
446 const void* null_char = memchr(GetCurrentPtr(), 0, length);
447 if (null_char != nullptr) {
448 // Embedded nulls are invalid.
449 return false;
450 }
451 *value = std::string_view(reinterpret_cast<const char*>(GetCurrentPtr()), length);
452 Advance(length);
453 return true;
454 }
455
456 // Compares the given data with the content at the current pointer.
457 // If the contents are equal it advances the current pointer by data_size.
CompareAndAdvance(const uint8_t * data,size_t data_size)458 bool CompareAndAdvance(const uint8_t* data, size_t data_size) {
459 if (data_size > GetAvailableBytes()) {
460 return false;
461 }
462 if (memcmp(ptr_current_, data, data_size) == 0) {
463 ptr_current_ += data_size;
464 return true;
465 }
466 return false;
467 }
468
WriteAndAdvance(const void * data,size_t data_size)469 void WriteAndAdvance(const void* data, size_t data_size) {
470 DCHECK_LE(data_size, GetAvailableBytes());
471 memcpy(ptr_current_, data, data_size);
472 ptr_current_ += data_size;
473 }
474
475 template <typename T>
WriteUintAndAdvance(T value)476 void WriteUintAndAdvance(T value) {
477 static_assert(std::is_integral_v<T>);
478 WriteAndAdvance(&value, sizeof(value));
479 }
480
481 // Deflate a filled buffer. Replaces the internal buffer with a new one, also filled.
Deflate()482 bool Deflate() {
483 DCHECK_EQ(GetAvailableBytes(), 0u);
484 DCHECK_NE(Size(), 0u);
485 ArrayRef<const uint8_t> in_buffer(Get(), Size());
486 uint32_t output_size = 0;
487 std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(in_buffer, &output_size);
488 if (compressed_buffer == nullptr) {
489 return false;
490 }
491 storage_ = std::move(compressed_buffer);
492 ptr_current_ = storage_.get() + output_size;
493 ptr_end_ = ptr_current_;
494 return true;
495 }
496
497 // Inflate an unread buffer. Replaces the internal buffer with a new one, also unread.
Inflate(size_t uncompressed_data_size)498 bool Inflate(size_t uncompressed_data_size) {
499 DCHECK(ptr_current_ == storage_.get());
500 DCHECK_NE(Size(), 0u);
501 ArrayRef<const uint8_t> in_buffer(Get(), Size());
502 SafeBuffer uncompressed_buffer(uncompressed_data_size);
503 ArrayRef<uint8_t> out_buffer(uncompressed_buffer.Get(), uncompressed_data_size);
504 int ret = InflateBuffer(in_buffer, out_buffer);
505 if (ret != Z_STREAM_END) {
506 return false;
507 }
508 Swap(uncompressed_buffer);
509 DCHECK(ptr_current_ == storage_.get());
510 return true;
511 }
512
513 // Advances current pointer by data_size.
Advance(size_t data_size)514 void Advance(size_t data_size) {
515 DCHECK_LE(data_size, GetAvailableBytes());
516 ptr_current_ += data_size;
517 }
518
519 // Returns the count of unread bytes.
GetAvailableBytes() const520 size_t GetAvailableBytes() const {
521 DCHECK_LE(static_cast<void*>(ptr_current_), static_cast<void*>(ptr_end_));
522 return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
523 }
524
525 // Returns the current pointer.
GetCurrentPtr()526 uint8_t* GetCurrentPtr() {
527 return ptr_current_;
528 }
529
530 // Get the underlying raw buffer.
Get()531 uint8_t* Get() {
532 return storage_.get();
533 }
534
535 // Get the size of the raw buffer.
Size() const536 size_t Size() const {
537 return ptr_end_ - storage_.get();
538 }
539
Swap(SafeBuffer & other)540 void Swap(SafeBuffer& other) {
541 std::swap(storage_, other.storage_);
542 std::swap(ptr_current_, other.ptr_current_);
543 std::swap(ptr_end_, other.ptr_end_);
544 }
545
546 private:
547 std::unique_ptr<uint8_t[]> storage_;
548 uint8_t* ptr_current_;
549 uint8_t* ptr_end_;
550 };
551
ProfileCompilationInfo(ArenaPool * custom_arena_pool,bool for_boot_image)552 ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image)
553 : default_arena_pool_(),
554 allocator_(custom_arena_pool),
555 info_(allocator_.Adapter(kArenaAllocProfile)),
556 profile_key_map_(std::less<const std::string_view>(), allocator_.Adapter(kArenaAllocProfile)),
557 extra_descriptors_(),
558 extra_descriptors_indexes_(ExtraDescriptorHash(&extra_descriptors_),
559 ExtraDescriptorEquals(&extra_descriptors_)) {
560 memcpy(version_,
561 for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
562 kProfileVersionSize);
563 }
564
ProfileCompilationInfo(ArenaPool * custom_arena_pool)565 ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool)
566 : ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { }
567
ProfileCompilationInfo()568 ProfileCompilationInfo::ProfileCompilationInfo()
569 : ProfileCompilationInfo(/*for_boot_image=*/ false) { }
570
ProfileCompilationInfo(bool for_boot_image)571 ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image)
572 : ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { }
573
~ProfileCompilationInfo()574 ProfileCompilationInfo::~ProfileCompilationInfo() {
575 VLOG(profiler) << Dumpable<MemStats>(allocator_.GetMemStats());
576 }
577
AddClass(const dex::TypeIndex & type_idx)578 void ProfileCompilationInfo::DexPcData::AddClass(const dex::TypeIndex& type_idx) {
579 if (is_megamorphic || is_missing_types) {
580 return;
581 }
582
583 // Perform an explicit lookup for the type instead of directly emplacing the
584 // element. We do this because emplace() allocates the node before doing the
585 // lookup and if it then finds an identical element, it shall deallocate the
586 // node. For Arena allocations, that's essentially a leak.
587 auto lb = classes.lower_bound(type_idx);
588 if (lb != classes.end() && *lb == type_idx) {
589 // The type index exists.
590 return;
591 }
592
593 // Check if the adding the type will cause the cache to become megamorphic.
594 if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) {
595 is_megamorphic = true;
596 classes.clear();
597 return;
598 }
599
600 // The type does not exist and the inline cache will not be megamorphic.
601 classes.emplace_hint(lb, type_idx);
602 }
603
604 // Transform the actual dex location into a key used to index the dex file in the profile.
605 // See ProfileCompilationInfo#GetProfileDexFileBaseKey as well.
GetProfileDexFileAugmentedKey(const std::string & dex_location,const ProfileSampleAnnotation & annotation)606 std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey(
607 const std::string& dex_location,
608 const ProfileSampleAnnotation& annotation) {
609 std::string base_key = GetProfileDexFileBaseKey(dex_location);
610 return annotation == ProfileSampleAnnotation::kNone
611 ? base_key
612 : base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();;
613 }
614
615 // Transform the actual dex location into a base profile key (represented as relative paths).
616 // Note: this is OK because we don't store profiles of different apps into the same file.
617 // Apps with split apks don't cause trouble because each split has a different name and will not
618 // collide with other entries.
GetProfileDexFileBaseKeyView(std::string_view dex_location)619 std::string_view ProfileCompilationInfo::GetProfileDexFileBaseKeyView(
620 std::string_view dex_location) {
621 DCHECK(!dex_location.empty());
622 size_t last_sep_index = dex_location.find_last_of('/');
623 if (last_sep_index == std::string::npos) {
624 return dex_location;
625 } else {
626 DCHECK(last_sep_index < dex_location.size());
627 return dex_location.substr(last_sep_index + 1);
628 }
629 }
630
GetProfileDexFileBaseKey(const std::string & dex_location)631 std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) {
632 // Note: Conversions between std::string and std::string_view.
633 return std::string(GetProfileDexFileBaseKeyView(dex_location));
634 }
635
GetBaseKeyViewFromAugmentedKey(std::string_view profile_key)636 std::string_view ProfileCompilationInfo::GetBaseKeyViewFromAugmentedKey(
637 std::string_view profile_key) {
638 size_t pos = profile_key.rfind(kSampleMetadataSeparator);
639 return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos);
640 }
641
GetBaseKeyFromAugmentedKey(const std::string & profile_key)642 std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(
643 const std::string& profile_key) {
644 // Note: Conversions between std::string and std::string_view.
645 return std::string(GetBaseKeyViewFromAugmentedKey(profile_key));
646 }
647
MigrateAnnotationInfo(const std::string & base_key,const std::string & augmented_key)648 std::string ProfileCompilationInfo::MigrateAnnotationInfo(
649 const std::string& base_key,
650 const std::string& augmented_key) {
651 size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
652 return (pos == std::string::npos)
653 ? base_key
654 : base_key + augmented_key.substr(pos);
655 }
656
GetAnnotationFromKey(const std::string & augmented_key)657 ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey(
658 const std::string& augmented_key) {
659 size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
660 return (pos == std::string::npos)
661 ? ProfileSampleAnnotation::kNone
662 : ProfileSampleAnnotation(augmented_key.substr(pos + 1));
663 }
664
AddMethods(const std::vector<ProfileMethodInfo> & methods,MethodHotness::Flag flags,const ProfileSampleAnnotation & annotation)665 bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods,
666 MethodHotness::Flag flags,
667 const ProfileSampleAnnotation& annotation) {
668 for (const ProfileMethodInfo& method : methods) {
669 if (!AddMethod(method, flags, annotation)) {
670 return false;
671 }
672 }
673 return true;
674 }
675
FindOrCreateTypeIndex(const DexFile & dex_file,TypeReference class_ref)676 dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
677 TypeReference class_ref) {
678 DCHECK(class_ref.dex_file != nullptr);
679 DCHECK_LT(class_ref.TypeIndex().index_, class_ref.dex_file->NumTypeIds());
680 if (class_ref.dex_file == &dex_file) {
681 // We can use the type index from the `class_ref` as it's a valid index in the `dex_file`.
682 return class_ref.TypeIndex();
683 }
684 // Try to find a `TypeId` in the method's dex file.
685 const char* descriptor = class_ref.dex_file->StringByTypeIdx(class_ref.TypeIndex());
686 return FindOrCreateTypeIndex(dex_file, descriptor);
687 }
688
FindOrCreateTypeIndex(const DexFile & dex_file,const char * descriptor)689 dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
690 const char* descriptor) {
691 const dex::TypeId* type_id = dex_file.FindTypeId(descriptor);
692 if (type_id != nullptr) {
693 return dex_file.GetIndexForTypeId(*type_id);
694 }
695 // Try to find an existing extra descriptor.
696 uint32_t num_type_ids = dex_file.NumTypeIds();
697 uint32_t max_artificial_ids = DexFile::kDexNoIndex16 - num_type_ids;
698 std::string_view descriptor_view(descriptor);
699 // Check descriptor length for "extra descriptor". We are using `uint16_t` as prefix.
700 if (UNLIKELY(descriptor_view.size() > kMaxExtraDescriptorLength)) {
701 return dex::TypeIndex(); // Invalid.
702 }
703 auto it = extra_descriptors_indexes_.find(descriptor_view);
704 if (it != extra_descriptors_indexes_.end()) {
705 return (*it < max_artificial_ids) ? dex::TypeIndex(num_type_ids + *it) : dex::TypeIndex();
706 }
707 // Check if inserting the extra descriptor yields a valid artificial type index.
708 if (UNLIKELY(extra_descriptors_.size() >= max_artificial_ids)) {
709 return dex::TypeIndex(); // Invalid.
710 }
711 // Add the descriptor to extra descriptors and return the artificial type index.
712 ExtraDescriptorIndex new_extra_descriptor_index = AddExtraDescriptor(descriptor_view);
713 DCHECK_LT(new_extra_descriptor_index, max_artificial_ids);
714 return dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
715 }
716
AddClass(const DexFile & dex_file,const char * descriptor,const ProfileSampleAnnotation & annotation)717 bool ProfileCompilationInfo::AddClass(const DexFile& dex_file,
718 const char* descriptor,
719 const ProfileSampleAnnotation& annotation) {
720 DexFileData* const data = GetOrAddDexFileData(&dex_file, annotation);
721 if (data == nullptr) { // checksum mismatch
722 return false;
723 }
724 dex::TypeIndex type_index = FindOrCreateTypeIndex(dex_file, descriptor);
725 if (!type_index.IsValid()) {
726 return false;
727 }
728 data->class_set.insert(type_index);
729 return true;
730 }
731
MergeWith(const std::string & filename)732 bool ProfileCompilationInfo::MergeWith(const std::string& filename) {
733 std::string error;
734 #ifdef _WIN32
735 int flags = O_RDONLY;
736 #else
737 int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC;
738 #endif
739 ScopedFlock profile_file =
740 LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
741
742 if (profile_file.get() == nullptr) {
743 LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
744 return false;
745 }
746
747 int fd = profile_file->Fd();
748
749 ProfileLoadStatus status = LoadInternal(fd, &error);
750 if (status == ProfileLoadStatus::kSuccess) {
751 return true;
752 }
753
754 LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
755 return false;
756 }
757
Load(const std::string & filename,bool clear_if_invalid)758 bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) {
759 ScopedTrace trace(__PRETTY_FUNCTION__);
760 std::string error;
761
762 if (!IsEmpty()) {
763 return false;
764 }
765
766 #ifdef _WIN32
767 int flags = O_RDWR;
768 #else
769 int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
770 #endif
771 // There's no need to fsync profile data right away. We get many chances
772 // to write it again in case something goes wrong. We can rely on a simple
773 // close(), no sync, and let to the kernel decide when to write to disk.
774 ScopedFlock profile_file =
775 LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
776
777 if (profile_file.get() == nullptr) {
778 LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
779 return false;
780 }
781
782 int fd = profile_file->Fd();
783
784 ProfileLoadStatus status = LoadInternal(fd, &error);
785 if (status == ProfileLoadStatus::kSuccess) {
786 return true;
787 }
788
789 if (clear_if_invalid &&
790 ((status == ProfileLoadStatus::kBadMagic) ||
791 (status == ProfileLoadStatus::kVersionMismatch) ||
792 (status == ProfileLoadStatus::kBadData))) {
793 LOG(WARNING) << "Clearing bad or obsolete profile data from file "
794 << filename << ": " << error;
795 if (profile_file->ClearContent()) {
796 return true;
797 } else {
798 PLOG(WARNING) << "Could not clear profile file: " << filename;
799 return false;
800 }
801 }
802
803 LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
804 return false;
805 }
806
Save(const std::string & filename,uint64_t * bytes_written)807 bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) {
808 ScopedTrace trace(__PRETTY_FUNCTION__);
809 std::string error;
810 #ifdef _WIN32
811 int flags = O_WRONLY;
812 #else
813 int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC;
814 #endif
815 // There's no need to fsync profile data right away. We get many chances
816 // to write it again in case something goes wrong. We can rely on a simple
817 // close(), no sync, and let to the kernel decide when to write to disk.
818 ScopedFlock profile_file =
819 LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
820 if (profile_file.get() == nullptr) {
821 LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
822 return false;
823 }
824
825 int fd = profile_file->Fd();
826
827 // We need to clear the data because we don't support appending to the profiles yet.
828 if (!profile_file->ClearContent()) {
829 PLOG(WARNING) << "Could not clear profile file: " << filename;
830 return false;
831 }
832
833 // This doesn't need locking because we are trying to lock the file for exclusive
834 // access and fail immediately if we can't.
835 bool result = Save(fd);
836 if (result) {
837 int64_t size = OS::GetFileSizeBytes(filename.c_str());
838 if (size != -1) {
839 VLOG(profiler)
840 << "Successfully saved profile info to " << filename << " Size: "
841 << size;
842 if (bytes_written != nullptr) {
843 *bytes_written = static_cast<uint64_t>(size);
844 }
845 }
846 } else {
847 VLOG(profiler) << "Failed to save profile info to " << filename;
848 }
849 return result;
850 }
851
852 // Returns true if all the bytes were successfully written to the file descriptor.
WriteBuffer(int fd,const void * buffer,size_t byte_count)853 static bool WriteBuffer(int fd, const void* buffer, size_t byte_count) {
854 while (byte_count > 0) {
855 int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
856 if (bytes_written == -1) {
857 return false;
858 }
859 byte_count -= bytes_written; // Reduce the number of remaining bytes.
860 reinterpret_cast<const uint8_t*&>(buffer) += bytes_written; // Move the buffer forward.
861 }
862 return true;
863 }
864
865 /**
866 * Serialization format:
867 *
868 * The file starts with a header and section information:
869 * FileHeader
870 * FileSectionInfo[]
871 * The first FileSectionInfo must be for the DexFiles section.
872 *
873 * The rest of the file is allowed to contain different sections in any order,
874 * at arbitrary offsets, with any gaps betweeen them and each section can be
875 * either plaintext or separately zipped. However, we're writing sections
876 * without any gaps with the following order and compression:
877 * DexFiles - mandatory, plaintext
878 * ExtraDescriptors - optional, zipped
879 * Classes - optional, zipped
880 * Methods - optional, zipped
881 * AggregationCounts - optional, zipped, server-side
882 *
883 * DexFiles:
884 * number_of_dex_files
885 * (checksum,num_type_ids,num_method_ids,profile_key)[number_of_dex_files]
886 * where `profile_key` is a length-prefixed string, the length is `uint16_t`.
887 *
888 * ExtraDescriptors:
889 * number_of_extra_descriptors
890 * (extra_descriptor)[number_of_extra_descriptors]
891 * where `extra_descriptor` is a length-prefixed string, the length is `uint16_t`.
892 *
893 * Classes contains records for any number of dex files, each consisting of:
894 * profile_index // Index of the dex file in DexFiles section.
895 * number_of_classes
896 * type_index_diff[number_of_classes]
897 * where instead of storing plain sorted type indexes, we store their differences
898 * as smaller numbers are likely to compress better.
899 *
900 * Methods contains records for any number of dex files, each consisting of:
901 * profile_index // Index of the dex file in DexFiles section.
902 * following_data_size // For easy skipping of remaining data when dex file is filtered out.
903 * method_flags
904 * bitmap_data
905 * method_encoding[] // Until the size indicated by `following_data_size`.
906 * where `method_flags` is a union of flags recorded for methods in the referenced dex file,
907 * `bitmap_data` contains `num_method_ids` bits for each bit set in `method_flags` other
908 * than "hot" (the size of `bitmap_data` is rounded up to whole bytes) and `method_encoding[]`
909 * contains data for hot methods. The `method_encoding` is:
910 * method_index_diff
911 * number_of_inline_caches
912 * inline_cache_encoding[number_of_inline_caches]
913 * where differences in method indexes are used for better compression,
914 * and the `inline_cache_encoding` is
915 * dex_pc
916 * (M|dex_map_size)
917 * type_index_diff[dex_map_size]
918 * where `M` stands for special encodings indicating missing types (kIsMissingTypesEncoding)
919 * or memamorphic call (kIsMegamorphicEncoding) which both imply `dex_map_size == 0`.
920 **/
Save(int fd)921 bool ProfileCompilationInfo::Save(int fd) {
922 uint64_t start = NanoTime();
923 ScopedTrace trace(__PRETTY_FUNCTION__);
924 DCHECK_GE(fd, 0);
925
926 // Collect uncompressed section sizes.
927 // Use `uint64_t` and assume this cannot overflow as we would have run out of memory.
928 uint64_t extra_descriptors_section_size = 0u;
929 if (!extra_descriptors_.empty()) {
930 extra_descriptors_section_size += sizeof(uint16_t); // Number of descriptors.
931 for (const std::string& descriptor : extra_descriptors_) {
932 // Length-prefixed string, the length is `uint16_t`.
933 extra_descriptors_section_size += sizeof(uint16_t) + descriptor.size();
934 }
935 }
936 uint64_t dex_files_section_size = sizeof(ProfileIndexType); // Number of dex files.
937 uint64_t classes_section_size = 0u;
938 uint64_t methods_section_size = 0u;
939 DCHECK_LE(info_.size(), MaxProfileIndex());
940 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
941 if (dex_data->profile_key.size() > kMaxDexFileKeyLength) {
942 LOG(WARNING) << "DexFileKey exceeds allocated limit";
943 return false;
944 }
945 dex_files_section_size +=
946 3 * sizeof(uint32_t) + // Checksum, num_type_ids, num_method_ids.
947 // Length-prefixed string, the length is `uint16_t`.
948 sizeof(uint16_t) + dex_data->profile_key.size();
949 classes_section_size += dex_data->ClassesDataSize();
950 methods_section_size += dex_data->MethodsDataSize();
951 }
952
953 const uint32_t file_section_count =
954 /* dex files */ 1u +
955 /* extra descriptors */ (extra_descriptors_section_size != 0u ? 1u : 0u) +
956 /* classes */ (classes_section_size != 0u ? 1u : 0u) +
957 /* methods */ (methods_section_size != 0u ? 1u : 0u);
958 uint64_t header_and_infos_size =
959 sizeof(FileHeader) + file_section_count * sizeof(FileSectionInfo);
960
961 // Check size limit. Allow large profiles for non target builds for the case
962 // where we are merging many profiles to generate a boot image profile.
963 uint64_t total_uncompressed_size =
964 header_and_infos_size +
965 dex_files_section_size +
966 extra_descriptors_section_size +
967 classes_section_size +
968 methods_section_size;
969 VLOG(profiler) << "Required capacity: " << total_uncompressed_size << " bytes.";
970 if (total_uncompressed_size > GetSizeErrorThresholdBytes()) {
971 LOG(WARNING) << "Profile data size exceeds "
972 << GetSizeErrorThresholdBytes()
973 << " bytes. Profile will not be written to disk."
974 << " It requires " << total_uncompressed_size << " bytes.";
975 return false;
976 }
977
978 // Start with an invalid file header and section infos.
979 DCHECK_EQ(lseek(fd, 0, SEEK_CUR), 0);
980 constexpr uint32_t kMaxNumberOfSections = enum_cast<uint32_t>(FileSectionType::kNumberOfSections);
981 constexpr uint64_t kMaxHeaderAndInfosSize =
982 sizeof(FileHeader) + kMaxNumberOfSections * sizeof(FileSectionInfo);
983 DCHECK_LE(header_and_infos_size, kMaxHeaderAndInfosSize);
984 std::array<uint8_t, kMaxHeaderAndInfosSize> placeholder;
985 memset(placeholder.data(), 0, header_and_infos_size);
986 if (!WriteBuffer(fd, placeholder.data(), header_and_infos_size)) {
987 return false;
988 }
989
990 std::array<FileSectionInfo, kMaxNumberOfSections> section_infos;
991 size_t section_index = 0u;
992 uint32_t file_offset = header_and_infos_size;
993 auto add_section_info = [&](FileSectionType type, uint32_t file_size, uint32_t inflated_size) {
994 DCHECK_LT(section_index, section_infos.size());
995 section_infos[section_index] = FileSectionInfo(type, file_offset, file_size, inflated_size);
996 file_offset += file_size;
997 section_index += 1u;
998 };
999
1000 // Write the dex files section.
1001 {
1002 SafeBuffer buffer(dex_files_section_size);
1003 buffer.WriteUintAndAdvance(dchecked_integral_cast<ProfileIndexType>(info_.size()));
1004 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1005 buffer.WriteUintAndAdvance(dex_data->checksum);
1006 buffer.WriteUintAndAdvance(dex_data->num_type_ids);
1007 buffer.WriteUintAndAdvance(dex_data->num_method_ids);
1008 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(dex_data->profile_key.size()));
1009 buffer.WriteAndAdvance(dex_data->profile_key.c_str(), dex_data->profile_key.size());
1010 }
1011 DCHECK_EQ(buffer.GetAvailableBytes(), 0u);
1012 // Write the dex files section uncompressed.
1013 if (!WriteBuffer(fd, buffer.Get(), dex_files_section_size)) {
1014 return false;
1015 }
1016 add_section_info(FileSectionType::kDexFiles, dex_files_section_size, /*inflated_size=*/ 0u);
1017 }
1018
1019 // Write the extra descriptors section.
1020 if (extra_descriptors_section_size != 0u) {
1021 SafeBuffer buffer(extra_descriptors_section_size);
1022 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(extra_descriptors_.size()));
1023 for (const std::string& descriptor : extra_descriptors_) {
1024 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(descriptor.size()));
1025 buffer.WriteAndAdvance(descriptor.c_str(), descriptor.size());
1026 }
1027 if (!buffer.Deflate()) {
1028 return false;
1029 }
1030 if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1031 return false;
1032 }
1033 add_section_info(
1034 FileSectionType::kExtraDescriptors, buffer.Size(), extra_descriptors_section_size);
1035 }
1036
1037 // Write the classes section.
1038 if (classes_section_size != 0u) {
1039 SafeBuffer buffer(classes_section_size);
1040 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1041 dex_data->WriteClasses(buffer);
1042 }
1043 if (!buffer.Deflate()) {
1044 return false;
1045 }
1046 if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1047 return false;
1048 }
1049 add_section_info(FileSectionType::kClasses, buffer.Size(), classes_section_size);
1050 }
1051
1052 // Write the methods section.
1053 if (methods_section_size != 0u) {
1054 SafeBuffer buffer(methods_section_size);
1055 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1056 dex_data->WriteMethods(buffer);
1057 }
1058 if (!buffer.Deflate()) {
1059 return false;
1060 }
1061 if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1062 return false;
1063 }
1064 add_section_info(FileSectionType::kMethods, buffer.Size(), methods_section_size);
1065 }
1066
1067 if (file_offset > GetSizeWarningThresholdBytes()) {
1068 LOG(WARNING) << "Profile data size exceeds "
1069 << GetSizeWarningThresholdBytes()
1070 << " It has " << file_offset << " bytes";
1071 }
1072
1073 // Write section infos.
1074 if (lseek64(fd, sizeof(FileHeader), SEEK_SET) != sizeof(FileHeader)) {
1075 return false;
1076 }
1077 SafeBuffer section_infos_buffer(section_index * 4u * sizeof(uint32_t));
1078 for (size_t i = 0; i != section_index; ++i) {
1079 const FileSectionInfo& info = section_infos[i];
1080 section_infos_buffer.WriteUintAndAdvance(enum_cast<uint32_t>(info.GetType()));
1081 section_infos_buffer.WriteUintAndAdvance(info.GetFileOffset());
1082 section_infos_buffer.WriteUintAndAdvance(info.GetFileSize());
1083 section_infos_buffer.WriteUintAndAdvance(info.GetInflatedSize());
1084 }
1085 DCHECK_EQ(section_infos_buffer.GetAvailableBytes(), 0u);
1086 if (!WriteBuffer(fd, section_infos_buffer.Get(), section_infos_buffer.Size())) {
1087 return false;
1088 }
1089
1090 // Write header.
1091 FileHeader header(version_, section_index);
1092 if (lseek(fd, 0, SEEK_SET) != 0) {
1093 return false;
1094 }
1095 if (!WriteBuffer(fd, &header, sizeof(FileHeader))) {
1096 return false;
1097 }
1098
1099 uint64_t total_time = NanoTime() - start;
1100 VLOG(profiler) << "Compressed from "
1101 << std::to_string(total_uncompressed_size)
1102 << " to "
1103 << std::to_string(file_offset);
1104 VLOG(profiler) << "Time to save profile: " << std::to_string(total_time);
1105 return true;
1106 }
1107
GetOrAddDexFileData(const std::string & profile_key,uint32_t checksum,uint32_t num_type_ids,uint32_t num_method_ids)1108 ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
1109 const std::string& profile_key,
1110 uint32_t checksum,
1111 uint32_t num_type_ids,
1112 uint32_t num_method_ids) {
1113 DCHECK_EQ(profile_key_map_.size(), info_.size());
1114 auto profile_index_it = profile_key_map_.lower_bound(profile_key);
1115 if (profile_index_it == profile_key_map_.end() || profile_index_it->first != profile_key) {
1116 // We did not find the key. Create a new DexFileData if we did not reach the limit.
1117 DCHECK_LE(profile_key_map_.size(), MaxProfileIndex());
1118 if (profile_key_map_.size() == MaxProfileIndex()) {
1119 // Allow only a limited number dex files to be profiled. This allows us to save bytes
1120 // when encoding. For regular profiles this 2^8, and for boot profiles is 2^16
1121 // (well above what we expect for normal applications).
1122 LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong";
1123 return nullptr;
1124 }
1125 ProfileIndexType new_profile_index = dchecked_integral_cast<ProfileIndexType>(info_.size());
1126 std::unique_ptr<DexFileData> dex_file_data(new (&allocator_) DexFileData(
1127 &allocator_,
1128 profile_key,
1129 checksum,
1130 new_profile_index,
1131 num_type_ids,
1132 num_method_ids,
1133 IsForBootImage()));
1134 // Record the new data in `profile_key_map_` and `info_`.
1135 std::string_view new_key(dex_file_data->profile_key);
1136 profile_index_it = profile_key_map_.PutBefore(profile_index_it, new_key, new_profile_index);
1137 info_.push_back(std::move(dex_file_data));
1138 DCHECK_EQ(profile_key_map_.size(), info_.size());
1139 }
1140
1141 ProfileIndexType profile_index = profile_index_it->second;
1142 DexFileData* result = info_[profile_index].get();
1143
1144 // Check that the checksum matches.
1145 // This may different if for example the dex file was updated and we had a record of the old one.
1146 if (result->checksum != checksum) {
1147 LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
1148 return nullptr;
1149 }
1150
1151 // DCHECK that profile info map key is consistent with the one stored in the dex file data.
1152 // This should always be the case since since the cache map is managed by ProfileCompilationInfo.
1153 DCHECK_EQ(profile_key, result->profile_key);
1154 DCHECK_EQ(profile_index, result->profile_index);
1155
1156 if (num_type_ids != result->num_type_ids || num_method_ids != result->num_method_ids) {
1157 // This should not happen... added to help investigating b/65812889.
1158 LOG(ERROR) << "num_type_ids or num_method_ids mismatch for dex " << profile_key
1159 << ", types: expected=" << num_type_ids << " v. actual=" << result->num_type_ids
1160 << ", methods: expected=" << num_method_ids << " actual=" << result->num_method_ids;
1161 return nullptr;
1162 }
1163
1164 return result;
1165 }
1166
FindDexData(const std::string & profile_key,uint32_t checksum,bool verify_checksum) const1167 const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
1168 const std::string& profile_key,
1169 uint32_t checksum,
1170 bool verify_checksum) const {
1171 const auto profile_index_it = profile_key_map_.find(profile_key);
1172 if (profile_index_it == profile_key_map_.end()) {
1173 return nullptr;
1174 }
1175
1176 ProfileIndexType profile_index = profile_index_it->second;
1177 const DexFileData* result = info_[profile_index].get();
1178 if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) {
1179 return nullptr;
1180 }
1181 DCHECK_EQ(profile_key, result->profile_key);
1182 DCHECK_EQ(profile_index, result->profile_index);
1183 return result;
1184 }
1185
FindDexDataUsingAnnotations(const DexFile * dex_file,const ProfileSampleAnnotation & annotation) const1186 const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations(
1187 const DexFile* dex_file,
1188 const ProfileSampleAnnotation& annotation) const {
1189 if (annotation == ProfileSampleAnnotation::kNone) {
1190 std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
1191 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1192 if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
1193 if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1194 return nullptr;
1195 }
1196 return dex_data.get();
1197 }
1198 }
1199 } else {
1200 std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation);
1201 return FindDexData(profile_key, dex_file->GetLocationChecksum());
1202 }
1203
1204 return nullptr;
1205 }
1206
FindAllDexData(const DexFile * dex_file,std::vector<const ProfileCompilationInfo::DexFileData * > * result) const1207 void ProfileCompilationInfo::FindAllDexData(
1208 const DexFile* dex_file,
1209 /*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const {
1210 std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
1211 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1212 if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
1213 if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1214 result->push_back(dex_data.get());
1215 }
1216 }
1217 }
1218 }
1219
AddExtraDescriptor(std::string_view extra_descriptor)1220 ProfileCompilationInfo::ExtraDescriptorIndex ProfileCompilationInfo::AddExtraDescriptor(
1221 std::string_view extra_descriptor) {
1222 DCHECK_LE(extra_descriptor.size(), kMaxExtraDescriptorLength);
1223 DCHECK(extra_descriptors_indexes_.find(extra_descriptor) == extra_descriptors_indexes_.end());
1224 ExtraDescriptorIndex new_extra_descriptor_index = extra_descriptors_.size();
1225 DCHECK_LE(new_extra_descriptor_index, kMaxExtraDescriptors);
1226 if (UNLIKELY(new_extra_descriptor_index == kMaxExtraDescriptors)) {
1227 return kMaxExtraDescriptors; // Cannot add another extra descriptor.
1228 }
1229 // Add the extra descriptor and record the new index.
1230 extra_descriptors_.emplace_back(extra_descriptor);
1231 extra_descriptors_indexes_.insert(new_extra_descriptor_index);
1232 return new_extra_descriptor_index;
1233 }
1234
AddMethod(const ProfileMethodInfo & pmi,MethodHotness::Flag flags,const ProfileSampleAnnotation & annotation)1235 bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi,
1236 MethodHotness::Flag flags,
1237 const ProfileSampleAnnotation& annotation) {
1238 DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation);
1239 if (data == nullptr) { // checksum mismatch
1240 return false;
1241 }
1242 if (!data->AddMethod(flags, pmi.ref.index)) {
1243 return false;
1244 }
1245 if ((flags & MethodHotness::kFlagHot) == 0) {
1246 // The method is not hot, do not add inline caches.
1247 return true;
1248 }
1249
1250 // Add inline caches.
1251 InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index);
1252 DCHECK(inline_cache != nullptr);
1253
1254 for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
1255 if (cache.is_missing_types) {
1256 FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes();
1257 continue;
1258 }
1259 if (cache.is_megamorphic) {
1260 FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMegamorphic();
1261 continue;
1262 }
1263 for (const TypeReference& class_ref : cache.classes) {
1264 DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc);
1265 if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) {
1266 // Don't bother adding classes if we are missing types or already megamorphic.
1267 break;
1268 }
1269 dex::TypeIndex type_index = FindOrCreateTypeIndex(*pmi.ref.dex_file, class_ref);
1270 if (type_index.IsValid()) {
1271 dex_pc_data->AddClass(type_index);
1272 } else {
1273 // Could not create artificial type index.
1274 dex_pc_data->SetIsMissingTypes();
1275 }
1276 }
1277 }
1278 return true;
1279 }
1280
1281 // TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
1282 // return a unique pointer to a ProfileCompilationInfo upon success.
Load(int fd,bool merge_classes,const ProfileLoadFilterFn & filter_fn)1283 bool ProfileCompilationInfo::Load(
1284 int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) {
1285 std::string error;
1286
1287 ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn);
1288
1289 if (status == ProfileLoadStatus::kSuccess) {
1290 return true;
1291 } else {
1292 LOG(WARNING) << "Error when reading profile: " << error;
1293 return false;
1294 }
1295 }
1296
VerifyProfileData(const std::vector<const DexFile * > & dex_files)1297 bool ProfileCompilationInfo::VerifyProfileData(const std::vector<const DexFile*>& dex_files) {
1298 std::unordered_map<std::string_view, const DexFile*> key_to_dex_file;
1299 for (const DexFile* dex_file : dex_files) {
1300 key_to_dex_file.emplace(GetProfileDexFileBaseKeyView(dex_file->GetLocation()), dex_file);
1301 }
1302 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1303 // We need to remove any annotation from the key during verification.
1304 const auto it = key_to_dex_file.find(GetBaseKeyViewFromAugmentedKey(dex_data->profile_key));
1305 if (it == key_to_dex_file.end()) {
1306 // It is okay if profile contains data for additional dex files.
1307 continue;
1308 }
1309 const DexFile* dex_file = it->second;
1310 const std::string& dex_location = dex_file->GetLocation();
1311 if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1312 LOG(ERROR) << "Dex checksum mismatch while verifying profile "
1313 << "dex location " << dex_location << " (checksum="
1314 << dex_file->GetLocationChecksum() << ", profile checksum="
1315 << dex_data->checksum;
1316 return false;
1317 }
1318
1319 if (dex_data->num_method_ids != dex_file->NumMethodIds() ||
1320 dex_data->num_type_ids != dex_file->NumTypeIds()) {
1321 LOG(ERROR) << "Number of type or method ids in dex file and profile don't match."
1322 << "dex location " << dex_location
1323 << " dex_file.NumTypeIds=" << dex_file->NumTypeIds()
1324 << " .v dex_data.num_type_ids=" << dex_data->num_type_ids
1325 << ", dex_file.NumMethodIds=" << dex_file->NumMethodIds()
1326 << " v. dex_data.num_method_ids=" << dex_data->num_method_ids;
1327 return false;
1328 }
1329
1330 // Class and method data should be valid. Verify only in debug builds.
1331 if (kIsDebugBuild) {
1332 // Verify method_encoding.
1333 for (const auto& method_it : dex_data->method_map) {
1334 CHECK_LT(method_it.first, dex_data->num_method_ids);
1335
1336 // Verify class indices of inline caches.
1337 const InlineCacheMap &inline_cache_map = method_it.second;
1338 for (const auto& inline_cache_it : inline_cache_map) {
1339 const DexPcData& dex_pc_data = inline_cache_it.second;
1340 if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) {
1341 // No class indices to verify.
1342 CHECK(dex_pc_data.classes.empty());
1343 continue;
1344 }
1345
1346 for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
1347 if (type_index.index_ >= dex_data->num_type_ids) {
1348 CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
1349 }
1350 }
1351 }
1352 }
1353 // Verify class_ids.
1354 for (const dex::TypeIndex& type_index : dex_data->class_set) {
1355 if (type_index.index_ >= dex_data->num_type_ids) {
1356 CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
1357 }
1358 }
1359 }
1360 }
1361 return true;
1362 }
1363
OpenSource(int32_t fd,std::unique_ptr<ProfileSource> * source,std::string * error)1364 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource(
1365 int32_t fd,
1366 /*out*/ std::unique_ptr<ProfileSource>* source,
1367 /*out*/ std::string* error) {
1368 if (IsProfileFile(fd)) {
1369 source->reset(ProfileSource::Create(fd));
1370 return ProfileLoadStatus::kSuccess;
1371 } else {
1372 std::unique_ptr<ZipArchive> zip_archive(
1373 ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error));
1374 if (zip_archive.get() == nullptr) {
1375 *error = "Could not open the profile zip archive";
1376 return ProfileLoadStatus::kBadData;
1377 }
1378 std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error));
1379 if (zip_entry == nullptr) {
1380 // Allow archives without the profile entry. In this case, create an empty profile.
1381 // This gives more flexible when ure-using archives that may miss the entry.
1382 // (e.g. dex metadata files)
1383 LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry
1384 << " in the zip archive. Creating an empty profile.";
1385 source->reset(ProfileSource::Create(MemMap::Invalid()));
1386 return ProfileLoadStatus::kSuccess;
1387 }
1388 if (zip_entry->GetUncompressedLength() == 0) {
1389 *error = "Empty profile entry in the zip archive.";
1390 return ProfileLoadStatus::kBadData;
1391 }
1392
1393 // TODO(calin) pass along file names to assist with debugging.
1394 MemMap map = zip_entry->MapDirectlyOrExtract(
1395 kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource));
1396
1397 if (map.IsValid()) {
1398 source->reset(ProfileSource::Create(std::move(map)));
1399 return ProfileLoadStatus::kSuccess;
1400 } else {
1401 return ProfileLoadStatus::kBadData;
1402 }
1403 }
1404 }
1405
Seek(off_t offset)1406 bool ProfileCompilationInfo::ProfileSource::Seek(off_t offset) {
1407 DCHECK_GE(offset, 0);
1408 if (IsMemMap()) {
1409 if (offset > static_cast<int64_t>(mem_map_.Size())) {
1410 return false;
1411 }
1412 mem_map_cur_ = offset;
1413 return true;
1414 } else {
1415 if (lseek64(fd_, offset, SEEK_SET) != offset) {
1416 return false;
1417 }
1418 return true;
1419 }
1420 }
1421
Read(void * buffer,size_t byte_count,const std::string & debug_stage,std::string * error)1422 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read(
1423 void* buffer,
1424 size_t byte_count,
1425 const std::string& debug_stage,
1426 std::string* error) {
1427 if (IsMemMap()) {
1428 DCHECK_LE(mem_map_cur_, mem_map_.Size());
1429 if (byte_count > mem_map_.Size() - mem_map_cur_) {
1430 return ProfileLoadStatus::kBadData;
1431 }
1432 memcpy(buffer, mem_map_.Begin() + mem_map_cur_, byte_count);
1433 mem_map_cur_ += byte_count;
1434 } else {
1435 while (byte_count > 0) {
1436 int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));;
1437 if (bytes_read == 0) {
1438 *error += "Profile EOF reached prematurely for " + debug_stage;
1439 return ProfileLoadStatus::kBadData;
1440 } else if (bytes_read < 0) {
1441 *error += "Profile IO error for " + debug_stage + strerror(errno);
1442 return ProfileLoadStatus::kIOError;
1443 }
1444 byte_count -= bytes_read;
1445 reinterpret_cast<uint8_t*&>(buffer) += bytes_read;
1446 }
1447 }
1448 return ProfileLoadStatus::kSuccess;
1449 }
1450
1451
HasEmptyContent() const1452 bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const {
1453 if (IsMemMap()) {
1454 return !mem_map_.IsValid() || mem_map_.Size() == 0;
1455 } else {
1456 struct stat stat_buffer;
1457 if (fstat(fd_, &stat_buffer) != 0) {
1458 return false;
1459 }
1460 return stat_buffer.st_size == 0;
1461 }
1462 }
1463
ReadSectionData(ProfileSource & source,const FileSectionInfo & section_info,SafeBuffer * buffer,std::string * error)1464 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadSectionData(
1465 ProfileSource& source,
1466 const FileSectionInfo& section_info,
1467 /*out*/ SafeBuffer* buffer,
1468 /*out*/ std::string* error) {
1469 DCHECK_EQ(buffer->Size(), 0u);
1470 if (!source.Seek(section_info.GetFileOffset())) {
1471 *error = "Failed to seek to section data.";
1472 return ProfileLoadStatus::kIOError;
1473 }
1474 SafeBuffer temp_buffer(section_info.GetFileSize());
1475 ProfileLoadStatus status = source.Read(
1476 temp_buffer.GetCurrentPtr(), temp_buffer.GetAvailableBytes(), "ReadSectionData", error);
1477 if (status != ProfileLoadStatus::kSuccess) {
1478 return status;
1479 }
1480 if (section_info.GetInflatedSize() != 0u &&
1481 !temp_buffer.Inflate(section_info.GetInflatedSize())) {
1482 *error += "Error uncompressing section data.";
1483 return ProfileLoadStatus::kBadData;
1484 }
1485 buffer->Swap(temp_buffer);
1486 return ProfileLoadStatus::kSuccess;
1487 }
1488
ReadDexFilesSection(ProfileSource & source,const FileSectionInfo & section_info,const ProfileLoadFilterFn & filter_fn,dchecked_vector<ProfileIndexType> * dex_profile_index_remap,std::string * error)1489 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadDexFilesSection(
1490 ProfileSource& source,
1491 const FileSectionInfo& section_info,
1492 const ProfileLoadFilterFn& filter_fn,
1493 /*out*/ dchecked_vector<ProfileIndexType>* dex_profile_index_remap,
1494 /*out*/ std::string* error) {
1495 DCHECK(section_info.GetType() == FileSectionType::kDexFiles);
1496 SafeBuffer buffer;
1497 ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1498 if (status != ProfileLoadStatus::kSuccess) {
1499 return status;
1500 }
1501
1502 ProfileIndexType num_dex_files;
1503 if (!buffer.ReadUintAndAdvance(&num_dex_files)) {
1504 *error = "Error reading number of dex files.";
1505 return ProfileLoadStatus::kBadData;
1506 }
1507 if (num_dex_files >= MaxProfileIndex()) {
1508 *error = "Too many dex files.";
1509 return ProfileLoadStatus::kBadData;
1510 }
1511
1512 DCHECK(dex_profile_index_remap->empty());
1513 for (ProfileIndexType i = 0u; i != num_dex_files; ++i) {
1514 uint32_t checksum, num_type_ids, num_method_ids;
1515 if (!buffer.ReadUintAndAdvance(&checksum) ||
1516 !buffer.ReadUintAndAdvance(&num_type_ids) ||
1517 !buffer.ReadUintAndAdvance(&num_method_ids)) {
1518 *error = "Error reading dex file data.";
1519 return ProfileLoadStatus::kBadData;
1520 }
1521 std::string_view profile_key_view;
1522 if (!buffer.ReadStringAndAdvance(&profile_key_view)) {
1523 *error += "Missing terminating null character for profile key.";
1524 return ProfileLoadStatus::kBadData;
1525 }
1526 if (profile_key_view.size() == 0u || profile_key_view.size() > kMaxDexFileKeyLength) {
1527 *error = "ProfileKey has an invalid size: " + std::to_string(profile_key_view.size());
1528 return ProfileLoadStatus::kBadData;
1529 }
1530 std::string profile_key(profile_key_view);
1531 if (!filter_fn(profile_key, checksum)) {
1532 // Do not load data for this key. Store invalid index to `dex_profile_index_remap`.
1533 VLOG(compiler) << "Profile: Filtered out " << profile_key << " 0x" << std::hex << checksum;
1534 dex_profile_index_remap->push_back(MaxProfileIndex());
1535 continue;
1536 }
1537 DexFileData* data = GetOrAddDexFileData(profile_key, checksum, num_type_ids, num_method_ids);
1538 if (data == nullptr) {
1539 if (UNLIKELY(profile_key_map_.size() == MaxProfileIndex()) &&
1540 profile_key_map_.find(profile_key) == profile_key_map_.end()) {
1541 *error = "Too many dex files.";
1542 } else {
1543 *error = "Checksum, NumTypeIds, or NumMethodIds mismatch for " + profile_key;
1544 }
1545 return ProfileLoadStatus::kBadData;
1546 }
1547 dex_profile_index_remap->push_back(data->profile_index);
1548 }
1549 if (buffer.GetAvailableBytes() != 0u) {
1550 *error = "Unexpected data at end of dex files section.";
1551 return ProfileLoadStatus::kBadData;
1552 }
1553 return ProfileLoadStatus::kSuccess;
1554 }
1555
ReadExtraDescriptorsSection(ProfileSource & source,const FileSectionInfo & section_info,dchecked_vector<ExtraDescriptorIndex> * extra_descriptors_remap,std::string * error)1556 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadExtraDescriptorsSection(
1557 ProfileSource& source,
1558 const FileSectionInfo& section_info,
1559 /*out*/ dchecked_vector<ExtraDescriptorIndex>* extra_descriptors_remap,
1560 /*out*/ std::string* error) {
1561 DCHECK(section_info.GetType() == FileSectionType::kExtraDescriptors);
1562 SafeBuffer buffer;
1563 ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1564 if (status != ProfileLoadStatus::kSuccess) {
1565 return status;
1566 }
1567
1568 uint16_t num_extra_descriptors;
1569 if (!buffer.ReadUintAndAdvance(&num_extra_descriptors)) {
1570 *error = "Error reading number of extra descriptors.";
1571 return ProfileLoadStatus::kBadData;
1572 }
1573
1574 // Note: We allow multiple extra descriptors sections in a single profile file
1575 // but that can lead to `kMergeError` if there are too many extra descriptors.
1576 // Other sections can reference only extra descriptors from preceding sections.
1577 extra_descriptors_remap->reserve(
1578 std::min<size_t>(extra_descriptors_remap->size() + num_extra_descriptors,
1579 std::numeric_limits<uint16_t>::max()));
1580 for (uint16_t i = 0; i != num_extra_descriptors; ++i) {
1581 std::string_view extra_descriptor;
1582 if (!buffer.ReadStringAndAdvance(&extra_descriptor)) {
1583 *error += "Missing terminating null character for extra descriptor.";
1584 return ProfileLoadStatus::kBadData;
1585 }
1586 if (!IsValidDescriptor(std::string(extra_descriptor).c_str())) {
1587 *error += "Invalid extra descriptor.";
1588 return ProfileLoadStatus::kBadData;
1589 }
1590 // Try to match an existing extra descriptor.
1591 auto it = extra_descriptors_indexes_.find(extra_descriptor);
1592 if (it != extra_descriptors_indexes_.end()) {
1593 extra_descriptors_remap->push_back(*it);
1594 continue;
1595 }
1596 // Try to insert a new extra descriptor.
1597 ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(extra_descriptor);
1598 if (extra_descriptor_index == kMaxExtraDescriptors) {
1599 *error = "Too many extra descriptors.";
1600 return ProfileLoadStatus::kMergeError;
1601 }
1602 extra_descriptors_remap->push_back(extra_descriptor_index);
1603 }
1604 return ProfileLoadStatus::kSuccess;
1605 }
1606
ReadClassesSection(ProfileSource & source,const FileSectionInfo & section_info,const dchecked_vector<ProfileIndexType> & dex_profile_index_remap,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)1607 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadClassesSection(
1608 ProfileSource& source,
1609 const FileSectionInfo& section_info,
1610 const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
1611 const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
1612 /*out*/ std::string* error) {
1613 DCHECK(section_info.GetType() == FileSectionType::kClasses);
1614 SafeBuffer buffer;
1615 ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1616 if (status != ProfileLoadStatus::kSuccess) {
1617 return status;
1618 }
1619
1620 while (buffer.GetAvailableBytes() != 0u) {
1621 ProfileIndexType profile_index;
1622 if (!buffer.ReadUintAndAdvance(&profile_index)) {
1623 *error = "Error profile index in classes section.";
1624 return ProfileLoadStatus::kBadData;
1625 }
1626 if (profile_index >= dex_profile_index_remap.size()) {
1627 *error = "Invalid profile index in classes section.";
1628 return ProfileLoadStatus::kBadData;
1629 }
1630 profile_index = dex_profile_index_remap[profile_index];
1631 if (profile_index == MaxProfileIndex()) {
1632 status = DexFileData::SkipClasses(buffer, error);
1633 } else {
1634 status = info_[profile_index]->ReadClasses(buffer, extra_descriptors_remap, error);
1635 }
1636 if (status != ProfileLoadStatus::kSuccess) {
1637 return status;
1638 }
1639 }
1640 return ProfileLoadStatus::kSuccess;
1641 }
1642
ReadMethodsSection(ProfileSource & source,const FileSectionInfo & section_info,const dchecked_vector<ProfileIndexType> & dex_profile_index_remap,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)1643 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadMethodsSection(
1644 ProfileSource& source,
1645 const FileSectionInfo& section_info,
1646 const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
1647 const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
1648 /*out*/ std::string* error) {
1649 DCHECK(section_info.GetType() == FileSectionType::kMethods);
1650 SafeBuffer buffer;
1651 ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1652 if (status != ProfileLoadStatus::kSuccess) {
1653 return status;
1654 }
1655
1656 while (buffer.GetAvailableBytes() != 0u) {
1657 ProfileIndexType profile_index;
1658 if (!buffer.ReadUintAndAdvance(&profile_index)) {
1659 *error = "Error profile index in methods section.";
1660 return ProfileLoadStatus::kBadData;
1661 }
1662 if (profile_index >= dex_profile_index_remap.size()) {
1663 *error = "Invalid profile index in methods section.";
1664 return ProfileLoadStatus::kBadData;
1665 }
1666 profile_index = dex_profile_index_remap[profile_index];
1667 if (profile_index == MaxProfileIndex()) {
1668 status = DexFileData::SkipMethods(buffer, error);
1669 } else {
1670 status = info_[profile_index]->ReadMethods(buffer, extra_descriptors_remap, error);
1671 }
1672 if (status != ProfileLoadStatus::kSuccess) {
1673 return status;
1674 }
1675 }
1676 return ProfileLoadStatus::kSuccess;
1677 }
1678
1679 // TODO(calin): fail fast if the dex checksums don't match.
LoadInternal(int32_t fd,std::string * error,bool merge_classes,const ProfileLoadFilterFn & filter_fn)1680 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal(
1681 int32_t fd,
1682 std::string* error,
1683 bool merge_classes,
1684 const ProfileLoadFilterFn& filter_fn) {
1685 ScopedTrace trace(__PRETTY_FUNCTION__);
1686 DCHECK_GE(fd, 0);
1687
1688 std::unique_ptr<ProfileSource> source;
1689 ProfileLoadStatus status = OpenSource(fd, &source, error);
1690 if (status != ProfileLoadStatus::kSuccess) {
1691 return status;
1692 }
1693
1694 // We allow empty profile files.
1695 // Profiles may be created by ActivityManager or installd before we manage to
1696 // process them in the runtime or profman.
1697 if (source->HasEmptyContent()) {
1698 return ProfileLoadStatus::kSuccess;
1699 }
1700
1701 // Read file header.
1702 FileHeader header;
1703 status = source->Read(&header, sizeof(FileHeader), "ReadProfileHeader", error);
1704 if (status != ProfileLoadStatus::kSuccess) {
1705 return status;
1706 }
1707 if (!header.IsValid()) {
1708 return header.InvalidHeaderMessage(error);
1709 }
1710 if (memcmp(header.GetVersion(), version_, kProfileVersionSize) != 0) {
1711 *error = IsForBootImage() ? "Expected boot profile, got app profile."
1712 : "Expected app profile, got boot profile.";
1713 return ProfileLoadStatus::kMergeError;
1714 }
1715
1716 // Check if there are too many section infos.
1717 uint32_t section_count = header.GetFileSectionCount();
1718 uint32_t uncompressed_data_size = sizeof(FileHeader) + section_count * sizeof(FileSectionInfo);
1719 if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
1720 LOG(ERROR) << "Profile data size exceeds " << GetSizeErrorThresholdBytes()
1721 << " bytes. It has " << uncompressed_data_size << " bytes.";
1722 return ProfileLoadStatus::kBadData;
1723 }
1724
1725 // Read section infos.
1726 dchecked_vector<FileSectionInfo> section_infos(section_count);
1727 status = source->Read(
1728 section_infos.data(), section_count * sizeof(FileSectionInfo), "ReadSectionInfos", error);
1729 if (status != ProfileLoadStatus::kSuccess) {
1730 return status;
1731 }
1732
1733 // Finish uncompressed data size calculation.
1734 for (const FileSectionInfo& section_info : section_infos) {
1735 uint32_t mem_size = section_info.GetMemSize();
1736 if (UNLIKELY(mem_size > std::numeric_limits<uint32_t>::max() - uncompressed_data_size)) {
1737 *error = "Total memory size overflow.";
1738 return ProfileLoadStatus::kBadData;
1739 }
1740 uncompressed_data_size += mem_size;
1741 }
1742
1743 // Allow large profiles for non target builds for the case where we are merging many profiles
1744 // to generate a boot image profile.
1745 if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
1746 LOG(ERROR) << "Profile data size exceeds "
1747 << GetSizeErrorThresholdBytes()
1748 << " bytes. It has " << uncompressed_data_size << " bytes.";
1749 return ProfileLoadStatus::kBadData;
1750 }
1751 if (uncompressed_data_size > GetSizeWarningThresholdBytes()) {
1752 LOG(WARNING) << "Profile data size exceeds "
1753 << GetSizeWarningThresholdBytes()
1754 << " bytes. It has " << uncompressed_data_size << " bytes.";
1755 }
1756
1757 // Process the mandatory dex files section.
1758 DCHECK_NE(section_count, 0u); // Checked by `header.IsValid()` above.
1759 const FileSectionInfo& dex_files_section_info = section_infos[0];
1760 if (dex_files_section_info.GetType() != FileSectionType::kDexFiles) {
1761 *error = "First section is not dex files section.";
1762 return ProfileLoadStatus::kBadData;
1763 }
1764 dchecked_vector<ProfileIndexType> dex_profile_index_remap;
1765 status = ReadDexFilesSection(
1766 *source, dex_files_section_info, filter_fn, &dex_profile_index_remap, error);
1767 if (status != ProfileLoadStatus::kSuccess) {
1768 DCHECK(!error->empty());
1769 return status;
1770 }
1771
1772 // Process all other sections.
1773 dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
1774 for (uint32_t i = 1u; i != section_count; ++i) {
1775 const FileSectionInfo& section_info = section_infos[i];
1776 DCHECK(status == ProfileLoadStatus::kSuccess);
1777 switch (section_info.GetType()) {
1778 case FileSectionType::kDexFiles:
1779 *error = "Unsupported additional dex files section.";
1780 status = ProfileLoadStatus::kBadData;
1781 break;
1782 case FileSectionType::kExtraDescriptors:
1783 status = ReadExtraDescriptorsSection(
1784 *source, section_info, &extra_descriptors_remap, error);
1785 break;
1786 case FileSectionType::kClasses:
1787 // Skip if all dex files were filtered out.
1788 if (!info_.empty() && merge_classes) {
1789 status = ReadClassesSection(
1790 *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
1791 }
1792 break;
1793 case FileSectionType::kMethods:
1794 // Skip if all dex files were filtered out.
1795 if (!info_.empty()) {
1796 status = ReadMethodsSection(
1797 *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
1798 }
1799 break;
1800 case FileSectionType::kAggregationCounts:
1801 // This section is only used on server side.
1802 break;
1803 default:
1804 // Unknown section. Skip it. New versions of ART are allowed
1805 // to add sections that shall be ignored by old versions.
1806 break;
1807 }
1808 if (status != ProfileLoadStatus::kSuccess) {
1809 DCHECK(!error->empty());
1810 return status;
1811 }
1812 }
1813
1814 return ProfileLoadStatus::kSuccess;
1815 }
1816
MergeWith(const ProfileCompilationInfo & other,bool merge_classes)1817 bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other,
1818 bool merge_classes) {
1819 if (!SameVersion(other)) {
1820 LOG(WARNING) << "Cannot merge different profile versions";
1821 return false;
1822 }
1823
1824 // First verify that all checksums match. This will avoid adding garbage to
1825 // the current profile info.
1826 // Note that the number of elements should be very small, so this should not
1827 // be a performance issue.
1828 for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1829 // verify_checksum is false because we want to differentiate between a missing dex data and
1830 // a mismatched checksum.
1831 const DexFileData* dex_data = FindDexData(other_dex_data->profile_key,
1832 /* checksum= */ 0u,
1833 /* verify_checksum= */ false);
1834 if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
1835 LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
1836 return false;
1837 }
1838 }
1839 // All checksums match. Import the data.
1840
1841 // The other profile might have a different indexing of dex files.
1842 // That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
1843 // That means that the order in with the methods are added to the profile matters for the
1844 // actual indices.
1845 // The reason we cannot rely on the actual multidex index is that a single profile may store
1846 // data from multiple splits. This means that a profile may contain a classes2.dex from split-A
1847 // and one from split-B.
1848
1849 // First, build a mapping from other_dex_profile_index to this_dex_profile_index.
1850 dchecked_vector<ProfileIndexType> dex_profile_index_remap;
1851 dex_profile_index_remap.reserve(other.info_.size());
1852 for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1853 const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
1854 other_dex_data->checksum,
1855 other_dex_data->num_type_ids,
1856 other_dex_data->num_method_ids);
1857 if (dex_data == nullptr) {
1858 // Could happen if we exceed the number of allowed dex files or there is
1859 // a mismatch in `num_type_ids` or `num_method_ids`.
1860 return false;
1861 }
1862 DCHECK_EQ(other_dex_data->profile_index, dex_profile_index_remap.size());
1863 dex_profile_index_remap.push_back(dex_data->profile_index);
1864 }
1865
1866 // Then merge extra descriptors.
1867 dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
1868 extra_descriptors_remap.reserve(other.extra_descriptors_.size());
1869 for (const std::string& other_extra_descriptor : other.extra_descriptors_) {
1870 auto it = extra_descriptors_indexes_.find(std::string_view(other_extra_descriptor));
1871 if (it != extra_descriptors_indexes_.end()) {
1872 extra_descriptors_remap.push_back(*it);
1873 } else {
1874 ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(other_extra_descriptor);
1875 if (extra_descriptor_index == kMaxExtraDescriptors) {
1876 // Too many extra descriptors.
1877 return false;
1878 }
1879 extra_descriptors_remap.push_back(extra_descriptor_index);
1880 }
1881 }
1882
1883 // Merge the actual profile data.
1884 for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1885 DexFileData* dex_data = info_[dex_profile_index_remap[other_dex_data->profile_index]].get();
1886 DCHECK_EQ(dex_data, FindDexData(other_dex_data->profile_key, other_dex_data->checksum));
1887
1888 // Merge the classes.
1889 uint32_t num_type_ids = dex_data->num_type_ids;
1890 DCHECK_EQ(num_type_ids, other_dex_data->num_type_ids);
1891 if (merge_classes) {
1892 // Classes are ordered by the `TypeIndex`, so we have the classes with a `TypeId`
1893 // in the dex file first, followed by classes using extra descriptors.
1894 auto it = other_dex_data->class_set.lower_bound(dex::TypeIndex(num_type_ids));
1895 dex_data->class_set.insert(other_dex_data->class_set.begin(), it);
1896 for (auto end = other_dex_data->class_set.end(); it != end; ++it) {
1897 ExtraDescriptorIndex new_extra_descriptor_index =
1898 extra_descriptors_remap[it->index_ - num_type_ids];
1899 if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
1900 // Cannot represent the type with new extra descriptor index.
1901 return false;
1902 }
1903 dex_data->class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
1904 }
1905 }
1906
1907 // Merge the methods and the inline caches.
1908 for (const auto& other_method_it : other_dex_data->method_map) {
1909 uint16_t other_method_index = other_method_it.first;
1910 InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index);
1911 if (inline_cache == nullptr) {
1912 return false;
1913 }
1914 const auto& other_inline_cache = other_method_it.second;
1915 for (const auto& other_ic_it : other_inline_cache) {
1916 uint16_t other_dex_pc = other_ic_it.first;
1917 const ArenaSet<dex::TypeIndex>& other_class_set = other_ic_it.second.classes;
1918 DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc);
1919 if (other_ic_it.second.is_missing_types) {
1920 dex_pc_data->SetIsMissingTypes();
1921 } else if (other_ic_it.second.is_megamorphic) {
1922 dex_pc_data->SetIsMegamorphic();
1923 } else {
1924 for (dex::TypeIndex type_index : other_class_set) {
1925 if (type_index.index_ >= num_type_ids) {
1926 ExtraDescriptorIndex new_extra_descriptor_index =
1927 extra_descriptors_remap[type_index.index_ - num_type_ids];
1928 if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
1929 // Cannot represent the type with new extra descriptor index.
1930 return false;
1931 }
1932 type_index = dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
1933 }
1934 dex_pc_data->AddClass(type_index);
1935 }
1936 }
1937 }
1938 }
1939
1940 // Merge the method bitmaps.
1941 dex_data->MergeBitmap(*other_dex_data);
1942 }
1943
1944 return true;
1945 }
1946
GetMethodHotness(const MethodReference & method_ref,const ProfileSampleAnnotation & annotation) const1947 ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
1948 const MethodReference& method_ref,
1949 const ProfileSampleAnnotation& annotation) const {
1950 const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation);
1951 return dex_data != nullptr
1952 ? dex_data->GetHotnessInfo(method_ref.index)
1953 : MethodHotness();
1954 }
1955
ContainsClass(const DexFile & dex_file,dex::TypeIndex type_idx,const ProfileSampleAnnotation & annotation) const1956 bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file,
1957 dex::TypeIndex type_idx,
1958 const ProfileSampleAnnotation& annotation) const {
1959 const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
1960 return (dex_data != nullptr) && dex_data->ContainsClass(type_idx);
1961 }
1962
GetNumberOfMethods() const1963 uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
1964 uint32_t total = 0;
1965 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1966 total += dex_data->method_map.size();
1967 }
1968 return total;
1969 }
1970
GetNumberOfResolvedClasses() const1971 uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
1972 uint32_t total = 0;
1973 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1974 total += dex_data->class_set.size();
1975 }
1976 return total;
1977 }
1978
DumpInfo(const std::vector<const DexFile * > & dex_files,bool print_full_dex_location) const1979 std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>& dex_files,
1980 bool print_full_dex_location) const {
1981 std::ostringstream os;
1982
1983 os << "ProfileInfo [";
1984
1985 for (size_t k = 0; k < kProfileVersionSize - 1; k++) {
1986 // Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0'
1987 // which we don't want to print.
1988 os << static_cast<char>(version_[k]);
1989 }
1990 os << "]\n";
1991
1992 if (info_.empty()) {
1993 os << "-empty-";
1994 return os.str();
1995 }
1996
1997 if (!extra_descriptors_.empty()) {
1998 os << "\nextra descriptors:";
1999 for (const std::string& str : extra_descriptors_) {
2000 os << "\n\t" << str;
2001 }
2002 os << "\n";
2003 }
2004
2005 const std::string kFirstDexFileKeySubstitute = "!classes.dex";
2006
2007 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2008 os << "\n";
2009 if (print_full_dex_location) {
2010 os << dex_data->profile_key;
2011 } else {
2012 // Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
2013 std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix(
2014 GetBaseKeyFromAugmentedKey(dex_data->profile_key));
2015 os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
2016 }
2017 os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
2018 os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec;
2019 os << " [num_type_ids=" << dex_data->num_type_ids << "]";
2020 os << " [num_method_ids=" << dex_data->num_method_ids << "]";
2021 const DexFile* dex_file = nullptr;
2022 for (const DexFile* current : dex_files) {
2023 if (GetBaseKeyViewFromAugmentedKey(dex_data->profile_key) ==
2024 GetProfileDexFileBaseKeyView(current->GetLocation()) &&
2025 ChecksumMatch(dex_data->checksum, current->GetLocationChecksum())) {
2026 dex_file = current;
2027 break;
2028 }
2029 }
2030 os << "\n\thot methods: ";
2031 for (const auto& method_it : dex_data->method_map) {
2032 if (dex_file != nullptr) {
2033 os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
2034 } else {
2035 os << method_it.first;
2036 }
2037
2038 os << "[";
2039 for (const auto& inline_cache_it : method_it.second) {
2040 os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
2041 if (inline_cache_it.second.is_missing_types) {
2042 os << "MT";
2043 } else if (inline_cache_it.second.is_megamorphic) {
2044 os << "MM";
2045 } else {
2046 const char* separator = "";
2047 for (dex::TypeIndex type_index : inline_cache_it.second.classes) {
2048 os << separator << type_index.index_;
2049 separator = ",";
2050 }
2051 }
2052 os << "}";
2053 }
2054 os << "], ";
2055 }
2056 bool startup = true;
2057 while (true) {
2058 os << "\n\t" << (startup ? "startup methods: " : "post startup methods: ");
2059 for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2060 MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx));
2061 if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) {
2062 if (dex_file != nullptr) {
2063 os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true);
2064 } else {
2065 os << method_idx << ", ";
2066 }
2067 }
2068 }
2069 if (startup == false) {
2070 break;
2071 }
2072 startup = false;
2073 }
2074 os << "\n\tclasses: ";
2075 for (dex::TypeIndex type_index : dex_data->class_set) {
2076 if (dex_file != nullptr) {
2077 os << "\n\t\t" << PrettyDescriptor(GetTypeDescriptor(dex_file, type_index));
2078 } else {
2079 os << type_index.index_ << ",";
2080 }
2081 }
2082 }
2083 return os.str();
2084 }
2085
GetClassesAndMethods(const DexFile & dex_file,std::set<dex::TypeIndex> * class_set,std::set<uint16_t> * hot_method_set,std::set<uint16_t> * startup_method_set,std::set<uint16_t> * post_startup_method_method_set,const ProfileSampleAnnotation & annotation) const2086 bool ProfileCompilationInfo::GetClassesAndMethods(
2087 const DexFile& dex_file,
2088 /*out*/std::set<dex::TypeIndex>* class_set,
2089 /*out*/std::set<uint16_t>* hot_method_set,
2090 /*out*/std::set<uint16_t>* startup_method_set,
2091 /*out*/std::set<uint16_t>* post_startup_method_method_set,
2092 const ProfileSampleAnnotation& annotation) const {
2093 std::set<std::string> ret;
2094 const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
2095 if (dex_data == nullptr) {
2096 return false;
2097 }
2098 for (const auto& it : dex_data->method_map) {
2099 hot_method_set->insert(it.first);
2100 }
2101 for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2102 MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
2103 if (hotness.IsStartup()) {
2104 startup_method_set->insert(method_idx);
2105 }
2106 if (hotness.IsPostStartup()) {
2107 post_startup_method_method_set->insert(method_idx);
2108 }
2109 }
2110 for (const dex::TypeIndex& type_index : dex_data->class_set) {
2111 class_set->insert(type_index);
2112 }
2113 return true;
2114 }
2115
SameVersion(const ProfileCompilationInfo & other) const2116 bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const {
2117 return memcmp(version_, other.version_, kProfileVersionSize) == 0;
2118 }
2119
Equals(const ProfileCompilationInfo & other)2120 bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
2121 // No need to compare profile_key_map_. That's only a cache for fast search.
2122 // All the information is already in the info_ vector.
2123 if (!SameVersion(other)) {
2124 return false;
2125 }
2126 if (info_.size() != other.info_.size()) {
2127 return false;
2128 }
2129 for (size_t i = 0; i < info_.size(); i++) {
2130 const DexFileData& dex_data = *info_[i];
2131 const DexFileData& other_dex_data = *other.info_[i];
2132 if (!(dex_data == other_dex_data)) {
2133 return false;
2134 }
2135 }
2136
2137 return true;
2138 }
2139
2140 // Naive implementation to generate a random profile file suitable for testing.
GenerateTestProfile(int fd,uint16_t number_of_dex_files,uint16_t method_percentage,uint16_t class_percentage,uint32_t random_seed)2141 bool ProfileCompilationInfo::GenerateTestProfile(int fd,
2142 uint16_t number_of_dex_files,
2143 uint16_t method_percentage,
2144 uint16_t class_percentage,
2145 uint32_t random_seed) {
2146 const std::string base_dex_location = "base.apk";
2147 ProfileCompilationInfo info;
2148 // The limits are defined by the dex specification.
2149 const uint16_t max_methods = std::numeric_limits<uint16_t>::max();
2150 const uint16_t max_classes = std::numeric_limits<uint16_t>::max();
2151 uint16_t number_of_methods = max_methods * method_percentage / 100;
2152 uint16_t number_of_classes = max_classes * class_percentage / 100;
2153
2154 std::srand(random_seed);
2155
2156 // Make sure we generate more samples with a low index value.
2157 // This makes it more likely to hit valid method/class indices in small apps.
2158 const uint16_t kFavorFirstN = 10000;
2159 const uint16_t kFavorSplit = 2;
2160
2161 for (uint16_t i = 0; i < number_of_dex_files; i++) {
2162 std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str());
2163 std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
2164
2165 DexFileData* const data =
2166 info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_classes, max_methods);
2167 for (uint16_t m = 0; m < number_of_methods; m++) {
2168 uint16_t method_idx = rand() % max_methods;
2169 if (m < (number_of_methods / kFavorSplit)) {
2170 method_idx %= kFavorFirstN;
2171 }
2172 // Alternate between startup and post startup.
2173 uint32_t flags = MethodHotness::kFlagHot;
2174 flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup;
2175 data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_idx);
2176 }
2177
2178 for (uint16_t c = 0; c < number_of_classes; c++) {
2179 uint16_t type_idx = rand() % max_classes;
2180 if (c < (number_of_classes / kFavorSplit)) {
2181 type_idx %= kFavorFirstN;
2182 }
2183 data->class_set.insert(dex::TypeIndex(type_idx));
2184 }
2185 }
2186 return info.Save(fd);
2187 }
2188
2189 // Naive implementation to generate a random profile file suitable for testing.
2190 // Description of random selection:
2191 // * Select a random starting point S.
2192 // * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the
2193 // probably of 1/(N - i - number of methods/classes needed to add in profile).
GenerateTestProfile(int fd,std::vector<std::unique_ptr<const DexFile>> & dex_files,uint16_t method_percentage,uint16_t class_percentage,uint32_t random_seed)2194 bool ProfileCompilationInfo::GenerateTestProfile(
2195 int fd,
2196 std::vector<std::unique_ptr<const DexFile>>& dex_files,
2197 uint16_t method_percentage,
2198 uint16_t class_percentage,
2199 uint32_t random_seed) {
2200 ProfileCompilationInfo info;
2201 std::default_random_engine rng(random_seed);
2202 auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) {
2203 CHECK_LE(take, out_of);
2204 std::vector<uint32_t> vec(out_of);
2205 std::iota(vec.begin(), vec.end(), 0u);
2206 std::shuffle(vec.begin(), vec.end(), rng);
2207 vec.erase(vec.begin() + take, vec.end());
2208 std::sort(vec.begin(), vec.end());
2209 return vec;
2210 };
2211 for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
2212 const std::string& profile_key = dex_file->GetLocation();
2213 uint32_t checksum = dex_file->GetLocationChecksum();
2214
2215 uint32_t number_of_classes = dex_file->NumClassDefs();
2216 uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100;
2217
2218 DexFileData* const data = info.GetOrAddDexFileData(
2219 profile_key, checksum, dex_file->NumTypeIds(), dex_file->NumMethodIds());
2220 for (uint32_t class_index : create_shuffled_range(classes_required_in_profile,
2221 number_of_classes)) {
2222 data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_);
2223 }
2224
2225 uint32_t number_of_methods = dex_file->NumMethodIds();
2226 uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100;
2227 for (uint32_t method_index : create_shuffled_range(methods_required_in_profile,
2228 number_of_methods)) {
2229 // Alternate between startup and post startup.
2230 uint32_t flags = MethodHotness::kFlagHot;
2231 flags |= ((method_index & 1) != 0)
2232 ? MethodHotness::kFlagPostStartup
2233 : MethodHotness::kFlagStartup;
2234 data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_index);
2235 }
2236 }
2237 return info.Save(fd);
2238 }
2239
IsEmpty() const2240 bool ProfileCompilationInfo::IsEmpty() const {
2241 DCHECK_EQ(info_.size(), profile_key_map_.size());
2242 // Note that this doesn't look at the bitmap region, so we will return true
2243 // when the profile contains only non-hot methods. This is generally ok
2244 // as for speed-profile to be useful we do need hot methods and resolved classes.
2245 return GetNumberOfMethods() == 0 && GetNumberOfResolvedClasses() == 0;
2246 }
2247
2248 ProfileCompilationInfo::InlineCacheMap*
FindOrAddHotMethod(uint16_t method_index)2249 ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) {
2250 if (method_index >= num_method_ids) {
2251 LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids;
2252 return nullptr;
2253 }
2254 return &(method_map.FindOrAdd(
2255 method_index,
2256 InlineCacheMap(std::less<uint16_t>(), allocator_->Adapter(kArenaAllocProfile)))->second);
2257 }
2258
2259 // Mark a method as executed at least once.
AddMethod(MethodHotness::Flag flags,size_t index)2260 bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) {
2261 if (index >= num_method_ids || index > kMaxSupportedMethodIndex) {
2262 LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids
2263 << ", max: " << kMaxSupportedMethodIndex;
2264 return false;
2265 }
2266
2267 SetMethodHotness(index, flags);
2268
2269 if ((flags & MethodHotness::kFlagHot) != 0) {
2270 ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index);
2271 DCHECK(result != nullptr);
2272 }
2273 return true;
2274 }
2275
SetMethodHotness(size_t index,MethodHotness::Flag flags)2276 void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index,
2277 MethodHotness::Flag flags) {
2278 DCHECK_LT(index, num_method_ids);
2279 ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2280 if ((flags & flag) != 0) {
2281 method_bitmap.StoreBit(MethodFlagBitmapIndex(
2282 static_cast<MethodHotness::Flag>(flag), index), /*value=*/ true);
2283 }
2284 return true;
2285 });
2286 }
2287
GetHotnessInfo(uint32_t dex_method_index) const2288 ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo(
2289 uint32_t dex_method_index) const {
2290 MethodHotness ret;
2291 ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2292 if (method_bitmap.LoadBit(MethodFlagBitmapIndex(
2293 static_cast<MethodHotness::Flag>(flag), dex_method_index))) {
2294 ret.AddFlag(static_cast<MethodHotness::Flag>(flag));
2295 }
2296 return true;
2297 });
2298 auto it = method_map.find(dex_method_index);
2299 if (it != method_map.end()) {
2300 ret.SetInlineCacheMap(&it->second);
2301 ret.AddFlag(MethodHotness::kFlagHot);
2302 }
2303 return ret;
2304 }
2305
2306 // To simplify the implementation we use the MethodHotness flag values as indexes into the internal
2307 // bitmap representation. As such, they should never change unless the profile version is updated
2308 // and the implementation changed accordingly.
2309 static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0);
2310 static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0);
2311 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1);
2312 static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2);
2313 static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2);
2314 static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3);
2315 static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4);
2316 static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5);
2317 static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6);
2318 static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7);
2319 static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8);
2320 static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9);
2321 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10);
2322 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15);
2323 static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15);
2324
GetUsedBitmapFlags() const2325 uint16_t ProfileCompilationInfo::DexFileData::GetUsedBitmapFlags() const {
2326 uint32_t used_flags = 0u;
2327 ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2328 size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2329 if (method_bitmap.HasSomeBitSet(index * num_method_ids, num_method_ids)) {
2330 used_flags |= flag;
2331 }
2332 return true;
2333 });
2334 return dchecked_integral_cast<uint16_t>(used_flags);
2335 }
2336
2337 ProfileCompilationInfo::DexPcData*
FindOrAddDexPc(InlineCacheMap * inline_cache,uint32_t dex_pc)2338 ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) {
2339 return &(inline_cache->FindOrAdd(dex_pc, DexPcData(inline_cache->get_allocator()))->second);
2340 }
2341
GetClassDescriptors(const std::vector<const DexFile * > & dex_files,const ProfileSampleAnnotation & annotation)2342 HashSet<std::string> ProfileCompilationInfo::GetClassDescriptors(
2343 const std::vector<const DexFile*>& dex_files,
2344 const ProfileSampleAnnotation& annotation) {
2345 HashSet<std::string> ret;
2346 for (const DexFile* dex_file : dex_files) {
2347 const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation);
2348 if (data != nullptr) {
2349 for (dex::TypeIndex type_idx : data->class_set) {
2350 ret.insert(GetTypeDescriptor(dex_file, type_idx));
2351 }
2352 } else {
2353 VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation();
2354 }
2355 }
2356 return ret;
2357 }
2358
IsProfileFile(int fd)2359 bool ProfileCompilationInfo::IsProfileFile(int fd) {
2360 // First check if it's an empty file as we allow empty profile files.
2361 // Profiles may be created by ActivityManager or installd before we manage to
2362 // process them in the runtime or profman.
2363 struct stat stat_buffer;
2364 if (fstat(fd, &stat_buffer) != 0) {
2365 return false;
2366 }
2367
2368 if (stat_buffer.st_size == 0) {
2369 return true;
2370 }
2371
2372 // The files is not empty. Check if it contains the profile magic.
2373 size_t byte_count = sizeof(kProfileMagic);
2374 uint8_t buffer[sizeof(kProfileMagic)];
2375 if (!android::base::ReadFullyAtOffset(fd, buffer, byte_count, /*offset=*/ 0)) {
2376 return false;
2377 }
2378
2379 // Reset the offset to prepare the file for reading.
2380 off_t rc = TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET));
2381 if (rc == static_cast<off_t>(-1)) {
2382 PLOG(ERROR) << "Failed to reset the offset";
2383 return false;
2384 }
2385
2386 return memcmp(buffer, kProfileMagic, byte_count) == 0;
2387 }
2388
UpdateProfileKeys(const std::vector<std::unique_ptr<const DexFile>> & dex_files)2389 bool ProfileCompilationInfo::UpdateProfileKeys(
2390 const std::vector<std::unique_ptr<const DexFile>>& dex_files) {
2391 for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
2392 for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2393 if (dex_data->checksum == dex_file->GetLocationChecksum() &&
2394 dex_data->num_type_ids == dex_file->NumTypeIds() &&
2395 dex_data->num_method_ids == dex_file->NumMethodIds()) {
2396 std::string new_profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
2397 std::string dex_data_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key);
2398 if (dex_data_base_key != new_profile_key) {
2399 if (profile_key_map_.find(new_profile_key) != profile_key_map_.end()) {
2400 // We can't update the key if the new key belongs to a different dex file.
2401 LOG(ERROR) << "Cannot update profile key to " << new_profile_key
2402 << " because the new key belongs to another dex file.";
2403 return false;
2404 }
2405 profile_key_map_.erase(dex_data->profile_key);
2406 // Retain the annotation (if any) during the renaming by re-attaching the info
2407 // form the old key.
2408 dex_data->profile_key = MigrateAnnotationInfo(new_profile_key, dex_data->profile_key);
2409 profile_key_map_.Put(dex_data->profile_key, dex_data->profile_index);
2410 }
2411 }
2412 }
2413 }
2414 return true;
2415 }
2416
ProfileFilterFnAcceptAll(const std::string & dex_location ATTRIBUTE_UNUSED,uint32_t checksum ATTRIBUTE_UNUSED)2417 bool ProfileCompilationInfo::ProfileFilterFnAcceptAll(
2418 const std::string& dex_location ATTRIBUTE_UNUSED,
2419 uint32_t checksum ATTRIBUTE_UNUSED) {
2420 return true;
2421 }
2422
ClearData()2423 void ProfileCompilationInfo::ClearData() {
2424 profile_key_map_.clear();
2425 info_.clear();
2426 extra_descriptors_indexes_.clear();
2427 extra_descriptors_.clear();
2428 }
2429
ClearDataAndAdjustVersion(bool for_boot_image)2430 void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) {
2431 ClearData();
2432 memcpy(version_,
2433 for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
2434 kProfileVersionSize);
2435 }
2436
IsForBootImage() const2437 bool ProfileCompilationInfo::IsForBootImage() const {
2438 return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0;
2439 }
2440
GetVersion() const2441 const uint8_t* ProfileCompilationInfo::GetVersion() const {
2442 return version_;
2443 }
2444
ContainsClass(dex::TypeIndex type_index) const2445 bool ProfileCompilationInfo::DexFileData::ContainsClass(dex::TypeIndex type_index) const {
2446 return class_set.find(type_index) != class_set.end();
2447 }
2448
ClassesDataSize() const2449 uint32_t ProfileCompilationInfo::DexFileData::ClassesDataSize() const {
2450 return class_set.empty()
2451 ? 0u
2452 : sizeof(ProfileIndexType) + // Which dex file.
2453 sizeof(uint16_t) + // Number of classes.
2454 sizeof(uint16_t) * class_set.size(); // Type index diffs.
2455 }
2456
WriteClasses(SafeBuffer & buffer) const2457 void ProfileCompilationInfo::DexFileData::WriteClasses(SafeBuffer& buffer) const {
2458 if (class_set.empty()) {
2459 return;
2460 }
2461 buffer.WriteUintAndAdvance(profile_index);
2462 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(class_set.size()));
2463 WriteClassSet(buffer, class_set);
2464 }
2465
ReadClasses(SafeBuffer & buffer,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)2466 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadClasses(
2467 SafeBuffer& buffer,
2468 const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
2469 std::string* error) {
2470 uint16_t classes_size;
2471 if (!buffer.ReadUintAndAdvance(&classes_size)) {
2472 *error = "Error reading classes size.";
2473 return ProfileLoadStatus::kBadData;
2474 }
2475 uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
2476 std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
2477 uint16_t type_index = 0u;
2478 for (size_t i = 0; i != classes_size; ++i) {
2479 uint16_t type_index_diff;
2480 if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
2481 *error = "Error reading class type index diff.";
2482 return ProfileLoadStatus::kBadData;
2483 }
2484 if (type_index_diff == 0u && i != 0u) {
2485 *error = "Duplicate type index.";
2486 return ProfileLoadStatus::kBadData;
2487 }
2488 if (type_index_diff >= num_valid_type_indexes - type_index) {
2489 *error = "Invalid type index.";
2490 return ProfileLoadStatus::kBadData;
2491 }
2492 type_index += type_index_diff;
2493 if (type_index >= num_type_ids) {
2494 uint32_t new_extra_descriptor_index = extra_descriptors_remap[type_index - num_type_ids];
2495 if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
2496 *error = "Remapped type index out of range.";
2497 return ProfileLoadStatus::kMergeError;
2498 }
2499 class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
2500 } else {
2501 class_set.insert(dex::TypeIndex(type_index));
2502 }
2503 }
2504 return ProfileLoadStatus::kSuccess;
2505 }
2506
SkipClasses(SafeBuffer & buffer,std::string * error)2507 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipClasses(
2508 SafeBuffer& buffer,
2509 std::string* error) {
2510 uint16_t classes_size;
2511 if (!buffer.ReadUintAndAdvance(&classes_size)) {
2512 *error = "Error reading classes size to skip.";
2513 return ProfileLoadStatus::kBadData;
2514 }
2515 size_t following_data_size = static_cast<size_t>(classes_size) * sizeof(uint16_t);
2516 if (following_data_size > buffer.GetAvailableBytes()) {
2517 *error = "Classes data size to skip exceeds remaining data.";
2518 return ProfileLoadStatus::kBadData;
2519 }
2520 buffer.Advance(following_data_size);
2521 return ProfileLoadStatus::kSuccess;
2522 }
2523
MethodsDataSize(uint16_t * method_flags,size_t * saved_bitmap_bit_size) const2524 uint32_t ProfileCompilationInfo::DexFileData::MethodsDataSize(
2525 /*out*/ uint16_t* method_flags,
2526 /*out*/ size_t* saved_bitmap_bit_size) const {
2527 uint16_t local_method_flags = GetUsedBitmapFlags();
2528 size_t local_saved_bitmap_bit_size = POPCOUNT(local_method_flags) * num_method_ids;
2529 if (!method_map.empty()) {
2530 local_method_flags |= enum_cast<uint16_t>(MethodHotness::kFlagHot);
2531 }
2532 size_t size = 0u;
2533 if (local_method_flags != 0u) {
2534 size_t num_hot_methods = method_map.size();
2535 size_t num_dex_pc_entries = 0u;
2536 size_t num_class_entries = 0u;
2537 for (const auto& method_entry : method_map) {
2538 const InlineCacheMap& inline_cache_map = method_entry.second;
2539 num_dex_pc_entries += inline_cache_map.size();
2540 for (const auto& inline_cache_entry : inline_cache_map) {
2541 const DexPcData& dex_pc_data = inline_cache_entry.second;
2542 num_class_entries += dex_pc_data.classes.size();
2543 }
2544 }
2545
2546 constexpr size_t kPerHotMethodSize =
2547 sizeof(uint16_t) + // Method index diff.
2548 sizeof(uint16_t); // Inline cache size.
2549 constexpr size_t kPerDexPcEntrySize =
2550 sizeof(uint16_t) + // Dex PC.
2551 sizeof(uint8_t); // Number of inline cache classes.
2552 constexpr size_t kPerClassEntrySize =
2553 sizeof(uint16_t); // Type index diff.
2554
2555 size_t saved_bitmap_byte_size = BitsToBytesRoundUp(local_saved_bitmap_bit_size);
2556 size = sizeof(ProfileIndexType) + // Which dex file.
2557 sizeof(uint32_t) + // Total size of following data.
2558 sizeof(uint16_t) + // Method flags.
2559 saved_bitmap_byte_size + // Bitmap data.
2560 num_hot_methods * kPerHotMethodSize + // Data for hot methods.
2561 num_dex_pc_entries * kPerDexPcEntrySize + // Data for dex pc entries.
2562 num_class_entries * kPerClassEntrySize; // Data for inline cache class entries.
2563 }
2564 if (method_flags != nullptr) {
2565 *method_flags = local_method_flags;
2566 }
2567 if (saved_bitmap_bit_size != nullptr) {
2568 *saved_bitmap_bit_size = local_saved_bitmap_bit_size;
2569 }
2570 return size;
2571 }
2572
WriteMethods(SafeBuffer & buffer) const2573 void ProfileCompilationInfo::DexFileData::WriteMethods(SafeBuffer& buffer) const {
2574 uint16_t method_flags;
2575 size_t saved_bitmap_bit_size;
2576 uint32_t methods_data_size = MethodsDataSize(&method_flags, &saved_bitmap_bit_size);
2577 if (methods_data_size == 0u) {
2578 return; // No data to write.
2579 }
2580 DCHECK_GE(buffer.GetAvailableBytes(), methods_data_size);
2581 uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - methods_data_size;
2582
2583 // Write the profile index.
2584 buffer.WriteUintAndAdvance(profile_index);
2585 // Write the total size of the following methods data (without the profile index
2586 // and the total size itself) for easy skipping when the dex file is filtered out.
2587 uint32_t following_data_size = methods_data_size - sizeof(ProfileIndexType) - sizeof(uint32_t);
2588 buffer.WriteUintAndAdvance(following_data_size);
2589 // Write the used method flags.
2590 buffer.WriteUintAndAdvance(method_flags);
2591
2592 // Write the bitmap data.
2593 size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
2594 DCHECK_LE(saved_bitmap_byte_size, buffer.GetAvailableBytes());
2595 BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
2596 size_t saved_bitmap_index = 0u;
2597 ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2598 if ((method_flags & flag) != 0u) {
2599 size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2600 BitMemoryRegion src = method_bitmap.Subregion(index * num_method_ids, num_method_ids);
2601 saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids).CopyBits(src);
2602 ++saved_bitmap_index;
2603 }
2604 return true;
2605 });
2606 DCHECK_EQ(saved_bitmap_index * num_method_ids, saved_bitmap_bit_size);
2607 // Clear the padding bits.
2608 size_t padding_bit_size = saved_bitmap_byte_size * kBitsPerByte - saved_bitmap_bit_size;
2609 BitMemoryRegion padding_region(buffer.GetCurrentPtr(), saved_bitmap_bit_size, padding_bit_size);
2610 padding_region.StoreBits(/*bit_offset=*/ 0u, /*value=*/ 0u, /*bit_length=*/ padding_bit_size);
2611 buffer.Advance(saved_bitmap_byte_size);
2612
2613 uint16_t last_method_index = 0;
2614 for (const auto& method_entry : method_map) {
2615 uint16_t method_index = method_entry.first;
2616 const InlineCacheMap& inline_cache_map = method_entry.second;
2617
2618 // Store the difference between the method indices for better compression.
2619 // The SafeMap is ordered by method_id, so the difference will always be non negative.
2620 DCHECK_GE(method_index, last_method_index);
2621 uint16_t diff_with_last_method_index = method_index - last_method_index;
2622 last_method_index = method_index;
2623 buffer.WriteUintAndAdvance(diff_with_last_method_index);
2624
2625 // Add inline cache map size.
2626 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(inline_cache_map.size()));
2627
2628 // Add inline cache entries.
2629 for (const auto& inline_cache_entry : inline_cache_map) {
2630 uint16_t dex_pc = inline_cache_entry.first;
2631 const DexPcData& dex_pc_data = inline_cache_entry.second;
2632 const ArenaSet<dex::TypeIndex>& classes = dex_pc_data.classes;
2633
2634 // Add the dex pc.
2635 buffer.WriteUintAndAdvance(dex_pc);
2636
2637 // Add the megamorphic/missing_types encoding if needed and continue.
2638 // In either cases we don't add any classes to the profiles and so there's
2639 // no point to continue.
2640 // TODO: in case we miss types there is still value to add the rest of the
2641 // classes. (This requires changing profile version or using a new section type.)
2642 if (dex_pc_data.is_missing_types) {
2643 // At this point the megamorphic flag should not be set.
2644 DCHECK(!dex_pc_data.is_megamorphic);
2645 DCHECK_EQ(classes.size(), 0u);
2646 buffer.WriteUintAndAdvance(kIsMissingTypesEncoding);
2647 continue;
2648 } else if (dex_pc_data.is_megamorphic) {
2649 DCHECK_EQ(classes.size(), 0u);
2650 buffer.WriteUintAndAdvance(kIsMegamorphicEncoding);
2651 continue;
2652 }
2653
2654 DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize);
2655 DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";
2656
2657 // Add the number of classes for the dex PC.
2658 buffer.WriteUintAndAdvance(dchecked_integral_cast<uint8_t>(classes.size()));
2659 // Store the class set.
2660 WriteClassSet(buffer, classes);
2661 }
2662 }
2663
2664 // Check if we've written the right number of bytes.
2665 DCHECK_EQ(buffer.GetAvailableBytes(), expected_available_bytes_at_end);
2666 }
2667
ReadMethods(SafeBuffer & buffer,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)2668 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadMethods(
2669 SafeBuffer& buffer,
2670 const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
2671 std::string* error) {
2672 uint32_t following_data_size;
2673 if (!buffer.ReadUintAndAdvance(&following_data_size)) {
2674 *error = "Error reading methods data size.";
2675 return ProfileLoadStatus::kBadData;
2676 }
2677 if (following_data_size > buffer.GetAvailableBytes()) {
2678 *error = "Methods data size exceeds available data size.";
2679 return ProfileLoadStatus::kBadData;
2680 }
2681 uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - following_data_size;
2682
2683 // Read method flags.
2684 uint16_t method_flags;
2685 if (!buffer.ReadUintAndAdvance(&method_flags)) {
2686 *error = "Error reading method flags.";
2687 return ProfileLoadStatus::kBadData;
2688 }
2689 if (!is_for_boot_image && method_flags >= (MethodHotness::kFlagLastRegular << 1)) {
2690 // The profile we're loading contains data for boot image.
2691 *error = "Method flags contain boot image profile flags for non-boot image profile.";
2692 return ProfileLoadStatus::kBadData;
2693 }
2694
2695 // Read method bitmap.
2696 size_t saved_bitmap_bit_size = POPCOUNT(method_flags & ~MethodHotness::kFlagHot) * num_method_ids;
2697 size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
2698 if (sizeof(uint16_t) + saved_bitmap_byte_size > following_data_size) {
2699 *error = "Insufficient available data for method bitmap.";
2700 return ProfileLoadStatus::kBadData;
2701 }
2702 BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
2703 size_t saved_bitmap_index = 0u;
2704 ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2705 if ((method_flags & flag) != 0u) {
2706 size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2707 BitMemoryRegion src =
2708 saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids);
2709 method_bitmap.Subregion(index * num_method_ids, num_method_ids).OrBits(src);
2710 ++saved_bitmap_index;
2711 }
2712 return true;
2713 });
2714 buffer.Advance(saved_bitmap_byte_size);
2715
2716 // Load hot methods.
2717 if ((method_flags & MethodHotness::kFlagHot) != 0u) {
2718 uint32_t num_valid_method_indexes =
2719 std::min<uint32_t>(kMaxSupportedMethodIndex + 1u, num_method_ids);
2720 uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
2721 std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
2722 uint16_t method_index = 0;
2723 bool first_diff = true;
2724 while (buffer.GetAvailableBytes() > expected_available_bytes_at_end) {
2725 uint16_t diff_with_last_method_index;
2726 if (!buffer.ReadUintAndAdvance(&diff_with_last_method_index)) {
2727 *error = "Error reading method index diff.";
2728 return ProfileLoadStatus::kBadData;
2729 }
2730 if (diff_with_last_method_index == 0u && !first_diff) {
2731 *error = "Duplicate method index.";
2732 return ProfileLoadStatus::kBadData;
2733 }
2734 first_diff = false;
2735 if (diff_with_last_method_index >= num_valid_method_indexes - method_index) {
2736 *error = "Invalid method index.";
2737 return ProfileLoadStatus::kBadData;
2738 }
2739 method_index += diff_with_last_method_index;
2740 InlineCacheMap* inline_cache = FindOrAddHotMethod(method_index);
2741 DCHECK(inline_cache != nullptr);
2742
2743 // Load inline cache map size.
2744 uint16_t inline_cache_size;
2745 if (!buffer.ReadUintAndAdvance(&inline_cache_size)) {
2746 *error = "Error reading inline cache size.";
2747 return ProfileLoadStatus::kBadData;
2748 }
2749 for (uint16_t ic_index = 0; ic_index != inline_cache_size; ++ic_index) {
2750 // Load dex pc.
2751 uint16_t dex_pc;
2752 if (!buffer.ReadUintAndAdvance(&dex_pc)) {
2753 *error = "Error reading inline cache dex pc.";
2754 return ProfileLoadStatus::kBadData;
2755 }
2756 DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc);
2757 DCHECK(dex_pc_data != nullptr);
2758
2759 // Load inline cache classes.
2760 uint8_t inline_cache_classes_size;
2761 if (!buffer.ReadUintAndAdvance(&inline_cache_classes_size)) {
2762 *error = "Error reading inline cache classes size.";
2763 return ProfileLoadStatus::kBadData;
2764 }
2765 if (inline_cache_classes_size == kIsMissingTypesEncoding) {
2766 dex_pc_data->SetIsMissingTypes();
2767 } else if (inline_cache_classes_size == kIsMegamorphicEncoding) {
2768 dex_pc_data->SetIsMegamorphic();
2769 } else if (inline_cache_classes_size >= kIndividualInlineCacheSize) {
2770 *error = "Inline cache size too large.";
2771 return ProfileLoadStatus::kBadData;
2772 } else {
2773 uint16_t type_index = 0u;
2774 for (size_t i = 0; i != inline_cache_classes_size; ++i) {
2775 uint16_t type_index_diff;
2776 if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
2777 *error = "Error reading inline cache type index diff.";
2778 return ProfileLoadStatus::kBadData;
2779 }
2780 if (type_index_diff == 0u && i != 0u) {
2781 *error = "Duplicate inline cache type index.";
2782 return ProfileLoadStatus::kBadData;
2783 }
2784 if (type_index_diff >= num_valid_type_indexes - type_index) {
2785 *error = "Invalid inline cache type index.";
2786 return ProfileLoadStatus::kBadData;
2787 }
2788 type_index += type_index_diff;
2789 if (type_index >= num_type_ids) {
2790 ExtraDescriptorIndex new_extra_descriptor_index =
2791 extra_descriptors_remap[type_index - num_type_ids];
2792 if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
2793 *error = "Remapped inline cache type index out of range.";
2794 return ProfileLoadStatus::kMergeError;
2795 }
2796 dex_pc_data->AddClass(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
2797 } else {
2798 dex_pc_data->AddClass(dex::TypeIndex(type_index));
2799 }
2800 }
2801 }
2802 }
2803 }
2804 }
2805
2806 if (buffer.GetAvailableBytes() != expected_available_bytes_at_end) {
2807 *error = "Methods data did not end at expected position.";
2808 return ProfileLoadStatus::kBadData;
2809 }
2810
2811 return ProfileLoadStatus::kSuccess;
2812 }
2813
SkipMethods(SafeBuffer & buffer,std::string * error)2814 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipMethods(
2815 SafeBuffer& buffer,
2816 std::string* error) {
2817 uint32_t following_data_size;
2818 if (!buffer.ReadUintAndAdvance(&following_data_size)) {
2819 *error = "Error reading methods data size to skip.";
2820 return ProfileLoadStatus::kBadData;
2821 }
2822 if (following_data_size > buffer.GetAvailableBytes()) {
2823 *error = "Methods data size to skip exceeds remaining data.";
2824 return ProfileLoadStatus::kBadData;
2825 }
2826 buffer.Advance(following_data_size);
2827 return ProfileLoadStatus::kSuccess;
2828 }
2829
WriteClassSet(SafeBuffer & buffer,const ArenaSet<dex::TypeIndex> & class_set)2830 void ProfileCompilationInfo::DexFileData::WriteClassSet(
2831 SafeBuffer& buffer,
2832 const ArenaSet<dex::TypeIndex>& class_set) {
2833 // Store the difference between the type indexes for better compression.
2834 uint16_t last_type_index = 0u;
2835 for (const dex::TypeIndex& type_index : class_set) {
2836 DCHECK_GE(type_index.index_, last_type_index);
2837 uint16_t diff_with_last_type_index = type_index.index_ - last_type_index;
2838 last_type_index = type_index.index_;
2839 buffer.WriteUintAndAdvance(diff_with_last_type_index);
2840 }
2841 }
2842
GetSizeWarningThresholdBytes() const2843 size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const {
2844 return IsForBootImage() ? kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes;
2845 }
2846
GetSizeErrorThresholdBytes() const2847 size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const {
2848 return IsForBootImage() ? kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes;
2849 }
2850
operator <<(std::ostream & stream,ProfileCompilationInfo::DexReferenceDumper dumper)2851 std::ostream& operator<<(std::ostream& stream,
2852 ProfileCompilationInfo::DexReferenceDumper dumper) {
2853 stream << "[profile_key=" << dumper.GetProfileKey()
2854 << ",dex_checksum=" << std::hex << dumper.GetDexChecksum() << std::dec
2855 << ",num_type_ids=" << dumper.GetNumTypeIds()
2856 << ",num_method_ids=" << dumper.GetNumMethodIds()
2857 << "]";
2858 return stream;
2859 }
2860
FlattenProfileData()2861 FlattenProfileData::FlattenProfileData() :
2862 max_aggregation_for_methods_(0),
2863 max_aggregation_for_classes_(0) {
2864 }
2865
ItemMetadata()2866 FlattenProfileData::ItemMetadata::ItemMetadata() :
2867 flags_(0) {
2868 }
2869
ItemMetadata(const ItemMetadata & other)2870 FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) :
2871 flags_(other.flags_),
2872 annotations_(other.annotations_) {
2873 }
2874
ExtractProfileData(const std::vector<std::unique_ptr<const DexFile>> & dex_files) const2875 std::unique_ptr<FlattenProfileData> ProfileCompilationInfo::ExtractProfileData(
2876 const std::vector<std::unique_ptr<const DexFile>>& dex_files) const {
2877
2878 std::unique_ptr<FlattenProfileData> result(new FlattenProfileData());
2879
2880 auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
2881
2882 // Iterate through all the dex files, find the methods/classes associated with each of them,
2883 // and add them to the flatten result.
2884 for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
2885 // Find all the dex data for the given dex file.
2886 // We may have multiple dex data if the methods or classes were added using
2887 // different annotations.
2888 std::vector<const DexFileData*> all_dex_data;
2889 FindAllDexData(dex_file.get(), &all_dex_data);
2890 for (const DexFileData* dex_data : all_dex_data) {
2891 // Extract the annotation from the key as we want to store it in the flatten result.
2892 ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key);
2893
2894 // Check which methods from the current dex files are in the profile.
2895 for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2896 MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
2897 if (!hotness.IsInProfile()) {
2898 // Not in the profile, continue.
2899 continue;
2900 }
2901 // The method is in the profile, create metadata item for it and added to the result.
2902 MethodReference ref(dex_file.get(), method_idx);
2903 FlattenProfileData::ItemMetadata& metadata =
2904 result->method_metadata_.GetOrCreate(ref, create_metadata_fn);
2905 metadata.flags_ |= hotness.flags_;
2906 metadata.annotations_.push_back(annotation);
2907 // Update the max aggregation counter for methods.
2908 // This is essentially a cache, to avoid traversing all the methods just to find out
2909 // this value.
2910 result->max_aggregation_for_methods_ = std::max(
2911 result->max_aggregation_for_methods_,
2912 static_cast<uint32_t>(metadata.annotations_.size()));
2913 }
2914
2915 // Check which classes from the current dex files are in the profile.
2916 for (const dex::TypeIndex& type_index : dex_data->class_set) {
2917 if (type_index.index_ >= dex_file->NumTypeIds()) {
2918 // Not a valid `dex::TypeIndex` for `TypeReference`.
2919 // TODO: Rewrite the API to use descriptors or the `ProfileCompilationInfo` directly
2920 // instead of the `FlattenProfileData` helper class.
2921 continue;
2922 }
2923 TypeReference ref(dex_file.get(), type_index);
2924 FlattenProfileData::ItemMetadata& metadata =
2925 result->class_metadata_.GetOrCreate(ref, create_metadata_fn);
2926 metadata.annotations_.push_back(annotation);
2927 // Update the max aggregation counter for classes.
2928 result->max_aggregation_for_classes_ = std::max(
2929 result->max_aggregation_for_classes_,
2930 static_cast<uint32_t>(metadata.annotations_.size()));
2931 }
2932 }
2933 }
2934
2935 return result;
2936 }
2937
MergeData(const FlattenProfileData & other)2938 void FlattenProfileData::MergeData(const FlattenProfileData& other) {
2939 auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
2940 for (const auto& it : other.method_metadata_) {
2941 const MethodReference& otherRef = it.first;
2942 const FlattenProfileData::ItemMetadata otherData = it.second;
2943 const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
2944 otherData.GetAnnotations();
2945
2946 FlattenProfileData::ItemMetadata& metadata =
2947 method_metadata_.GetOrCreate(otherRef, create_metadata_fn);
2948 metadata.flags_ |= otherData.GetFlags();
2949 metadata.annotations_.insert(
2950 metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
2951
2952 max_aggregation_for_methods_ = std::max(
2953 max_aggregation_for_methods_,
2954 static_cast<uint32_t>(metadata.annotations_.size()));
2955 }
2956 for (const auto& it : other.class_metadata_) {
2957 const TypeReference& otherRef = it.first;
2958 const FlattenProfileData::ItemMetadata otherData = it.second;
2959 const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
2960 otherData.GetAnnotations();
2961
2962 FlattenProfileData::ItemMetadata& metadata =
2963 class_metadata_.GetOrCreate(otherRef, create_metadata_fn);
2964 metadata.flags_ |= otherData.GetFlags();
2965 metadata.annotations_.insert(
2966 metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
2967
2968 max_aggregation_for_classes_ = std::max(
2969 max_aggregation_for_classes_,
2970 static_cast<uint32_t>(metadata.annotations_.size()));
2971 }
2972 }
2973
2974 } // namespace art
2975