1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "HalProxy.h"
18
19 #include <android/hardware/sensors/2.0/types.h>
20
21 #include <android-base/file.h>
22 #include "hardware_legacy/power.h"
23
24 #include <dlfcn.h>
25
26 #include <cinttypes>
27 #include <cmath>
28 #include <fstream>
29 #include <functional>
30 #include <thread>
31
32 namespace android {
33 namespace hardware {
34 namespace sensors {
35 namespace V2_1 {
36 namespace implementation {
37
38 using ::android::hardware::sensors::V1_0::Result;
39 using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
40 using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
41 using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
42 using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;
43
44 typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
45 typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*);
46
47 static constexpr int32_t kBitsAfterSubHalIndex = 24;
48
49 /**
50 * Set the subhal index as first byte of sensor handle and return this modified version.
51 *
52 * @param sensorHandle The sensor handle to modify.
53 * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
54 *
55 * @return The modified sensor handle.
56 */
setSubHalIndex(int32_t sensorHandle,size_t subHalIndex)57 int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
58 return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
59 }
60
61 /**
62 * Extract the subHalIndex from sensorHandle.
63 *
64 * @param sensorHandle The sensorHandle to extract from.
65 *
66 * @return The subhal index.
67 */
extractSubHalIndex(int32_t sensorHandle)68 size_t extractSubHalIndex(int32_t sensorHandle) {
69 return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
70 }
71
72 /**
73 * Convert nanoseconds to milliseconds.
74 *
75 * @param nanos The nanoseconds input.
76 *
77 * @return The milliseconds count.
78 */
msFromNs(int64_t nanos)79 int64_t msFromNs(int64_t nanos) {
80 constexpr int64_t nanosecondsInAMillsecond = 1000000;
81 return nanos / nanosecondsInAMillsecond;
82 }
83
HalProxy()84 HalProxy::HalProxy() {
85 const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf";
86 initializeSubHalListFromConfigFile(kMultiHalConfigFile);
87 init();
88 }
89
HalProxy(std::vector<ISensorsSubHalV2_0 * > & subHalList)90 HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) {
91 for (ISensorsSubHalV2_0* subHal : subHalList) {
92 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
93 }
94
95 init();
96 }
97
HalProxy(std::vector<ISensorsSubHalV2_0 * > & subHalList,std::vector<ISensorsSubHalV2_1 * > & subHalListV2_1)98 HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
99 std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) {
100 for (ISensorsSubHalV2_0* subHal : subHalList) {
101 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
102 }
103
104 for (ISensorsSubHalV2_1* subHal : subHalListV2_1) {
105 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
106 }
107
108 init();
109 }
110
~HalProxy()111 HalProxy::~HalProxy() {
112 stopThreads();
113 }
114
getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb)115 Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) {
116 std::vector<V2_1::SensorInfo> sensors;
117 for (const auto& iter : mSensors) {
118 sensors.push_back(iter.second);
119 }
120 _hidl_cb(sensors);
121 return Void();
122 }
123
getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb)124 Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) {
125 std::vector<V1_0::SensorInfo> sensors;
126 for (const auto& iter : mSensors) {
127 if (iter.second.type != SensorType::HINGE_ANGLE) {
128 sensors.push_back(convertToOldSensorInfo(iter.second));
129 }
130 }
131 _hidl_cb(sensors);
132 return Void();
133 }
134
setOperationMode(OperationMode mode)135 Return<Result> HalProxy::setOperationMode(OperationMode mode) {
136 Result result = Result::OK;
137 size_t subHalIndex;
138 for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
139 result = mSubHalList[subHalIndex]->setOperationMode(mode);
140 if (result != Result::OK) {
141 ALOGE("setOperationMode failed for SubHal: %s",
142 mSubHalList[subHalIndex]->getName().c_str());
143 break;
144 }
145 }
146
147 if (result != Result::OK) {
148 // Reset the subhal operation modes that have been flipped
149 for (size_t i = 0; i < subHalIndex; i++) {
150 mSubHalList[i]->setOperationMode(mCurrentOperationMode);
151 }
152 } else {
153 mCurrentOperationMode = mode;
154 }
155 return result;
156 }
157
activate(int32_t sensorHandle,bool enabled)158 Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
159 if (!isSubHalIndexValid(sensorHandle)) {
160 return Result::BAD_VALUE;
161 }
162 return getSubHalForSensorHandle(sensorHandle)
163 ->activate(clearSubHalIndex(sensorHandle), enabled);
164 }
165
initialize_2_1(const::android::hardware::MQDescriptorSync<V2_1::Event> & eventQueueDescriptor,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<V2_1::ISensorsCallback> & sensorsCallback)166 Return<Result> HalProxy::initialize_2_1(
167 const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
168 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
169 const sp<V2_1::ISensorsCallback>& sensorsCallback) {
170 sp<ISensorsCallbackWrapperBase> dynamicCallback =
171 new ISensorsCallbackWrapperV2_1(sensorsCallback);
172
173 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
174 auto eventQueue =
175 std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */);
176 std::unique_ptr<EventMessageQueueWrapperBase> queue =
177 std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue);
178
179 // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
180 auto hidlWakeLockQueue =
181 std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
182 std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
183 std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);
184
185 return initializeCommon(queue, wakeLockQueue, dynamicCallback);
186 }
187
initialize(const::android::hardware::MQDescriptorSync<V1_0::Event> & eventQueueDescriptor,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<V2_0::ISensorsCallback> & sensorsCallback)188 Return<Result> HalProxy::initialize(
189 const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
190 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
191 const sp<V2_0::ISensorsCallback>& sensorsCallback) {
192 sp<ISensorsCallbackWrapperBase> dynamicCallback =
193 new ISensorsCallbackWrapperV2_0(sensorsCallback);
194
195 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
196 auto eventQueue =
197 std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */);
198 std::unique_ptr<EventMessageQueueWrapperBase> queue =
199 std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue);
200
201 // Create the Wake Lock FMQ from the wakeLockDescriptor. Reset the read/write positions.
202 auto hidlWakeLockQueue =
203 std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
204 std::unique_ptr<WakeLockMessageQueueWrapperBase> wakeLockQueue =
205 std::make_unique<WakeLockMessageQueueWrapperHidl>(hidlWakeLockQueue);
206
207 return initializeCommon(queue, wakeLockQueue, dynamicCallback);
208 }
209
initializeCommon(std::unique_ptr<EventMessageQueueWrapperBase> & eventQueue,std::unique_ptr<WakeLockMessageQueueWrapperBase> & wakeLockQueue,const sp<ISensorsCallbackWrapperBase> & sensorsCallback)210 Return<Result> HalProxy::initializeCommon(
211 std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
212 std::unique_ptr<WakeLockMessageQueueWrapperBase>& wakeLockQueue,
213 const sp<ISensorsCallbackWrapperBase>& sensorsCallback) {
214 Result result = Result::OK;
215
216 stopThreads();
217 resetSharedWakelock();
218
219 // So that the pending write events queue can be cleared safely and when we start threads
220 // again we do not get new events until after initialize resets the subhals.
221 disableAllSensors();
222
223 // Clears the queue if any events were pending write before.
224 mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>();
225 mSizePendingWriteEventsQueue = 0;
226
227 // Clears previously connected dynamic sensors
228 mDynamicSensors.clear();
229
230 mDynamicSensorsCallback = sensorsCallback;
231
232 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
233 mEventQueue = std::move(eventQueue);
234
235 // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
236 // events have been successfully read and handled by the framework.
237 mWakeLockQueue = std::move(wakeLockQueue);
238
239 if (mEventQueueFlag != nullptr) {
240 EventFlag::deleteEventFlag(&mEventQueueFlag);
241 }
242 if (mWakelockQueueFlag != nullptr) {
243 EventFlag::deleteEventFlag(&mWakelockQueueFlag);
244 }
245 if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
246 result = Result::BAD_VALUE;
247 }
248 if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
249 result = Result::BAD_VALUE;
250 }
251 if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
252 result = Result::BAD_VALUE;
253 }
254
255 mThreadsRun.store(true);
256
257 mPendingWritesThread = std::thread(startPendingWritesThread, this);
258 mWakelockThread = std::thread(startWakelockThread, this);
259
260 for (size_t i = 0; i < mSubHalList.size(); i++) {
261 Result currRes = mSubHalList[i]->initialize(this, this, i);
262 if (currRes != Result::OK) {
263 result = currRes;
264 ALOGE("Subhal '%s' failed to initialize with reason %" PRId32 ".",
265 mSubHalList[i]->getName().c_str(), static_cast<int32_t>(currRes));
266 }
267 }
268
269 mCurrentOperationMode = OperationMode::NORMAL;
270
271 return result;
272 }
273
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)274 Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
275 int64_t maxReportLatencyNs) {
276 if (!isSubHalIndexValid(sensorHandle)) {
277 return Result::BAD_VALUE;
278 }
279 return getSubHalForSensorHandle(sensorHandle)
280 ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
281 }
282
flush(int32_t sensorHandle)283 Return<Result> HalProxy::flush(int32_t sensorHandle) {
284 if (!isSubHalIndexValid(sensorHandle)) {
285 return Result::BAD_VALUE;
286 }
287 return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
288 }
289
injectSensorData_2_1(const V2_1::Event & event)290 Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) {
291 return injectSensorData(convertToOldEvent(event));
292 }
293
injectSensorData(const V1_0::Event & event)294 Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) {
295 Result result = Result::OK;
296 if (mCurrentOperationMode == OperationMode::NORMAL &&
297 event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
298 ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
299 " mode was NORMAL.");
300 result = Result::BAD_VALUE;
301 }
302 if (result == Result::OK) {
303 V1_0::Event subHalEvent = event;
304 if (!isSubHalIndexValid(event.sensorHandle)) {
305 return Result::BAD_VALUE;
306 }
307 subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
308 result = getSubHalForSensorHandle(event.sensorHandle)
309 ->injectSensorData(convertToNewEvent(subHalEvent));
310 }
311 return result;
312 }
313
registerDirectChannel(const SharedMemInfo & mem,ISensorsV2_0::registerDirectChannel_cb _hidl_cb)314 Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
315 ISensorsV2_0::registerDirectChannel_cb _hidl_cb) {
316 if (mDirectChannelSubHal == nullptr) {
317 _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
318 } else {
319 mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
320 }
321 return Return<void>();
322 }
323
unregisterDirectChannel(int32_t channelHandle)324 Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
325 Result result;
326 if (mDirectChannelSubHal == nullptr) {
327 result = Result::INVALID_OPERATION;
328 } else {
329 result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
330 }
331 return result;
332 }
333
configDirectReport(int32_t sensorHandle,int32_t channelHandle,RateLevel rate,ISensorsV2_0::configDirectReport_cb _hidl_cb)334 Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
335 RateLevel rate,
336 ISensorsV2_0::configDirectReport_cb _hidl_cb) {
337 if (mDirectChannelSubHal == nullptr) {
338 _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
339 } else if (sensorHandle == -1 && rate != RateLevel::STOP) {
340 _hidl_cb(Result::BAD_VALUE, -1 /* reportToken */);
341 } else {
342 // -1 denotes all sensors should be disabled
343 if (sensorHandle != -1) {
344 sensorHandle = clearSubHalIndex(sensorHandle);
345 }
346 mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
347 }
348 return Return<void>();
349 }
350
debug(const hidl_handle & fd,const hidl_vec<hidl_string> &)351 Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& /*args*/) {
352 if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
353 ALOGE("%s: missing fd for writing", __FUNCTION__);
354 return Void();
355 }
356
357 int writeFd = fd->data[0];
358
359 std::ostringstream stream;
360 stream << "===HalProxy===" << std::endl;
361 stream << "Internal values:" << std::endl;
362 stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
363 int64_t now = getTimeNow();
364 stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
365 << " ms ago" << std::endl;
366 stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
367 << " ms ago" << std::endl;
368 // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
369 stream << " Wakelock ref count: " << mWakelockRefCount << std::endl;
370 stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
371 << std::endl;
372 stream << " Most events seen on pending write events queue: "
373 << mMostEventsObservedPendingWriteEventsQueue << std::endl;
374 if (!mPendingWriteEventsQueue.empty()) {
375 stream << " Size of events list on front of pending writes queue: "
376 << mPendingWriteEventsQueue.front().first.size() << std::endl;
377 }
378 stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
379 stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
380 stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
381 for (auto& subHal : mSubHalList) {
382 stream << " Name: " << subHal->getName() << std::endl;
383 stream << " Debug dump: " << std::endl;
384 android::base::WriteStringToFd(stream.str(), writeFd);
385 subHal->debug(fd, {});
386 stream.str("");
387 stream << std::endl;
388 }
389 android::base::WriteStringToFd(stream.str(), writeFd);
390 return Return<void>();
391 }
392
onDynamicSensorsConnected(const hidl_vec<SensorInfo> & dynamicSensorsAdded,int32_t subHalIndex)393 Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
394 int32_t subHalIndex) {
395 std::vector<SensorInfo> sensors;
396 {
397 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
398 for (SensorInfo sensor : dynamicSensorsAdded) {
399 if (!subHalIndexIsClear(sensor.sensorHandle)) {
400 ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
401 sensor.name.c_str());
402 } else {
403 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
404 mDynamicSensors[sensor.sensorHandle] = sensor;
405 sensors.push_back(sensor);
406 }
407 }
408 }
409 mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
410 return Return<void>();
411 }
412
onDynamicSensorsDisconnected(const hidl_vec<int32_t> & dynamicSensorHandlesRemoved,int32_t subHalIndex)413 Return<void> HalProxy::onDynamicSensorsDisconnected(
414 const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
415 // TODO(b/143302327): Block this call until all pending events are flushed from queue
416 std::vector<int32_t> sensorHandles;
417 {
418 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
419 for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
420 if (!subHalIndexIsClear(sensorHandle)) {
421 ALOGE("Dynamic sensorHandle removed had first byte not 0.");
422 } else {
423 sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
424 if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
425 mDynamicSensors.erase(sensorHandle);
426 sensorHandles.push_back(sensorHandle);
427 }
428 }
429 }
430 }
431 mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
432 return Return<void>();
433 }
434
initializeSubHalListFromConfigFile(const char * configFileName)435 void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
436 std::ifstream subHalConfigStream(configFileName);
437 if (!subHalConfigStream) {
438 ALOGE("Failed to load subHal config file: %s", configFileName);
439 } else {
440 std::string subHalLibraryFile;
441 while (subHalConfigStream >> subHalLibraryFile) {
442 void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
443 if (handle == nullptr) {
444 ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
445 } else {
446 SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
447 (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
448 if (sensorsHalGetSubHalPtr != nullptr) {
449 std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
450 *sensorsHalGetSubHalPtr;
451 uint32_t version;
452 ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version);
453 if (version != SUB_HAL_2_0_VERSION) {
454 ALOGE("SubHal version was not 2.0 for library: %s",
455 subHalLibraryFile.c_str());
456 } else {
457 ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
458 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
459 }
460 } else {
461 SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr =
462 (SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1");
463
464 if (getSubHalV2_1Ptr == nullptr) {
465 ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
466 subHalLibraryFile.c_str());
467 } else {
468 std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 =
469 *getSubHalV2_1Ptr;
470 uint32_t version;
471 ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version);
472 if (version != SUB_HAL_2_1_VERSION) {
473 ALOGE("SubHal version was not 2.1 for library: %s",
474 subHalLibraryFile.c_str());
475 } else {
476 ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
477 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
478 }
479 }
480 }
481 }
482 }
483 }
484 }
485
initializeSensorList()486 void HalProxy::initializeSensorList() {
487 for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
488 auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) {
489 for (SensorInfo sensor : list) {
490 if (!subHalIndexIsClear(sensor.sensorHandle)) {
491 ALOGE("SubHal sensorHandle's first byte was not 0");
492 } else {
493 ALOGV("Loaded sensor: %s", sensor.name.c_str());
494 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
495 setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]);
496 mSensors[sensor.sensorHandle] = sensor;
497 }
498 }
499 });
500 if (!result.isOk()) {
501 ALOGE("getSensorsList call failed for SubHal: %s",
502 mSubHalList[subHalIndex]->getName().c_str());
503 }
504 }
505 }
506
getHandleForSubHalSharedObject(const std::string & filename)507 void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
508 static const std::string kSubHalShareObjectLocations[] = {
509 "", // Default locations will be searched
510 #ifdef __LP64__
511 "/vendor/lib64/hw/", "/odm/lib64/hw/"
512 #else
513 "/vendor/lib/hw/", "/odm/lib/hw/"
514 #endif
515 };
516
517 for (const std::string& dir : kSubHalShareObjectLocations) {
518 void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
519 if (handle != nullptr) {
520 return handle;
521 }
522 }
523 return nullptr;
524 }
525
init()526 void HalProxy::init() {
527 initializeSensorList();
528 }
529
stopThreads()530 void HalProxy::stopThreads() {
531 mThreadsRun.store(false);
532 if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
533 size_t numToRead = mEventQueue->availableToRead();
534 std::vector<Event> events(numToRead);
535 mEventQueue->read(events.data(), numToRead);
536 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
537 }
538 if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
539 uint32_t kZero = 0;
540 mWakeLockQueue->write(&kZero);
541 mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
542 }
543 mWakelockCV.notify_one();
544 mEventQueueWriteCV.notify_one();
545 if (mPendingWritesThread.joinable()) {
546 mPendingWritesThread.join();
547 }
548 if (mWakelockThread.joinable()) {
549 mWakelockThread.join();
550 }
551 }
552
disableAllSensors()553 void HalProxy::disableAllSensors() {
554 for (const auto& sensorEntry : mSensors) {
555 int32_t sensorHandle = sensorEntry.first;
556 activate(sensorHandle, false /* enabled */);
557 }
558 std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
559 for (const auto& sensorEntry : mDynamicSensors) {
560 int32_t sensorHandle = sensorEntry.first;
561 activate(sensorHandle, false /* enabled */);
562 }
563 }
564
startPendingWritesThread(HalProxy * halProxy)565 void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
566 halProxy->handlePendingWrites();
567 }
568
handlePendingWrites()569 void HalProxy::handlePendingWrites() {
570 // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
571 // one.
572 std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
573 while (mThreadsRun.load()) {
574 mEventQueueWriteCV.wait(
575 lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
576 if (mThreadsRun.load()) {
577 std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
578 size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
579 size_t eventQueueSize = mEventQueue->getQuantumCount();
580 size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
581 lock.unlock();
582 if (!mEventQueue->writeBlocking(
583 pendingWriteEvents.data(), numToWrite,
584 static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
585 static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
586 kPendingWriteTimeoutNs, mEventQueueFlag)) {
587 ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
588 if (numWakeupEvents > 0) {
589 if (pendingWriteEvents.size() > eventQueueSize) {
590 decrementRefCountAndMaybeReleaseWakelock(
591 countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
592 } else {
593 decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
594 }
595 }
596 }
597 lock.lock();
598 mSizePendingWriteEventsQueue -= numToWrite;
599 if (pendingWriteEvents.size() > eventQueueSize) {
600 // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
601 // all the events ahead of it down to fill gap off array at front after the erase.
602 pendingWriteEvents.erase(pendingWriteEvents.begin(),
603 pendingWriteEvents.begin() + eventQueueSize);
604 } else {
605 mPendingWriteEventsQueue.pop();
606 }
607 }
608 }
609 }
610
startWakelockThread(HalProxy * halProxy)611 void HalProxy::startWakelockThread(HalProxy* halProxy) {
612 halProxy->handleWakelocks();
613 }
614
handleWakelocks()615 void HalProxy::handleWakelocks() {
616 std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
617 while (mThreadsRun.load()) {
618 mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
619 if (mThreadsRun.load()) {
620 int64_t timeLeft;
621 if (sharedWakelockDidTimeout(&timeLeft)) {
622 resetSharedWakelock();
623 } else {
624 uint32_t numWakeLocksProcessed;
625 lock.unlock();
626 bool success = mWakeLockQueue->readBlocking(
627 &numWakeLocksProcessed, 1, 0,
628 static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
629 lock.lock();
630 if (success) {
631 decrementRefCountAndMaybeReleaseWakelock(
632 static_cast<size_t>(numWakeLocksProcessed));
633 }
634 }
635 }
636 }
637 resetSharedWakelock();
638 }
639
sharedWakelockDidTimeout(int64_t * timeLeft)640 bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
641 bool didTimeout;
642 int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
643 if (duration > kWakelockTimeoutNs) {
644 didTimeout = true;
645 } else {
646 didTimeout = false;
647 *timeLeft = kWakelockTimeoutNs - duration;
648 }
649 return didTimeout;
650 }
651
resetSharedWakelock()652 void HalProxy::resetSharedWakelock() {
653 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
654 decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
655 mWakelockTimeoutResetTime = getTimeNow();
656 }
657
postEventsToMessageQueue(const std::vector<Event> & events,size_t numWakeupEvents,V2_0::implementation::ScopedWakelock wakelock)658 void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
659 V2_0::implementation::ScopedWakelock wakelock) {
660 size_t numToWrite = 0;
661 std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
662 if (wakelock.isLocked()) {
663 incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
664 }
665 if (mPendingWriteEventsQueue.empty()) {
666 numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
667 if (numToWrite > 0) {
668 if (mEventQueue->write(events.data(), numToWrite)) {
669 // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
670 // in more writes immediately
671 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
672 } else {
673 numToWrite = 0;
674 }
675 }
676 }
677 size_t numLeft = events.size() - numToWrite;
678 if (numToWrite < events.size() &&
679 mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
680 std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
681 mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
682 mSizePendingWriteEventsQueue += numLeft;
683 mMostEventsObservedPendingWriteEventsQueue =
684 std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
685 mEventQueueWriteCV.notify_one();
686 }
687 }
688
incrementRefCountAndMaybeAcquireWakelock(size_t delta,int64_t * timeoutStart)689 bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
690 int64_t* timeoutStart /* = nullptr */) {
691 if (!mThreadsRun.load()) return false;
692 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
693 if (mWakelockRefCount == 0) {
694 acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
695 mWakelockCV.notify_one();
696 }
697 mWakelockTimeoutStartTime = getTimeNow();
698 mWakelockRefCount += delta;
699 if (timeoutStart != nullptr) {
700 *timeoutStart = mWakelockTimeoutStartTime;
701 }
702 return true;
703 }
704
decrementRefCountAndMaybeReleaseWakelock(size_t delta,int64_t timeoutStart)705 void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
706 int64_t timeoutStart /* = -1 */) {
707 if (!mThreadsRun.load()) return;
708 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
709 if (delta > mWakelockRefCount) {
710 ALOGE("Decrementing wakelock ref count by %zu when count is %zu",
711 delta, mWakelockRefCount);
712 }
713 if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
714 if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
715 mWakelockRefCount -= std::min(mWakelockRefCount, delta);
716 if (mWakelockRefCount == 0) {
717 release_wake_lock(kWakelockName);
718 }
719 }
720
setDirectChannelFlags(SensorInfo * sensorInfo,std::shared_ptr<ISubHalWrapperBase> subHal)721 void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo,
722 std::shared_ptr<ISubHalWrapperBase> subHal) {
723 bool sensorSupportsDirectChannel =
724 (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
725 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
726 if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
727 mDirectChannelSubHal = subHal;
728 } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
729 // disable direct channel capability for sensors in subHals that are not
730 // the only one we will enable
731 sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
732 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
733 }
734 }
735
getSubHalForSensorHandle(int32_t sensorHandle)736 std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
737 return mSubHalList[extractSubHalIndex(sensorHandle)];
738 }
739
isSubHalIndexValid(int32_t sensorHandle)740 bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
741 return extractSubHalIndex(sensorHandle) < mSubHalList.size();
742 }
743
countNumWakeupEvents(const std::vector<Event> & events,size_t n)744 size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
745 size_t numWakeupEvents = 0;
746 for (size_t i = 0; i < n; i++) {
747 int32_t sensorHandle = events[i].sensorHandle;
748 if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
749 numWakeupEvents++;
750 }
751 }
752 return numWakeupEvents;
753 }
754
clearSubHalIndex(int32_t sensorHandle)755 int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
756 return sensorHandle & (~kSensorHandleSubHalIndexMask);
757 }
758
subHalIndexIsClear(int32_t sensorHandle)759 bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
760 return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
761 }
762
763 } // namespace implementation
764 } // namespace V2_1
765 } // namespace sensors
766 } // namespace hardware
767 } // namespace android
768