1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLInliner.h"
9
10 #include <limits.h>
11 #include <memory>
12 #include <unordered_set>
13
14 #include "include/private/SkSLLayout.h"
15 #include "src/sksl/analysis/SkSLProgramVisitor.h"
16 #include "src/sksl/ir/SkSLBinaryExpression.h"
17 #include "src/sksl/ir/SkSLBreakStatement.h"
18 #include "src/sksl/ir/SkSLChildCall.h"
19 #include "src/sksl/ir/SkSLConstructor.h"
20 #include "src/sksl/ir/SkSLConstructorArray.h"
21 #include "src/sksl/ir/SkSLConstructorArrayCast.h"
22 #include "src/sksl/ir/SkSLConstructorCompound.h"
23 #include "src/sksl/ir/SkSLConstructorCompoundCast.h"
24 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
25 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
26 #include "src/sksl/ir/SkSLConstructorScalarCast.h"
27 #include "src/sksl/ir/SkSLConstructorSplat.h"
28 #include "src/sksl/ir/SkSLConstructorStruct.h"
29 #include "src/sksl/ir/SkSLContinueStatement.h"
30 #include "src/sksl/ir/SkSLDiscardStatement.h"
31 #include "src/sksl/ir/SkSLDoStatement.h"
32 #include "src/sksl/ir/SkSLExpressionStatement.h"
33 #include "src/sksl/ir/SkSLExternalFunctionCall.h"
34 #include "src/sksl/ir/SkSLExternalFunctionReference.h"
35 #include "src/sksl/ir/SkSLField.h"
36 #include "src/sksl/ir/SkSLFieldAccess.h"
37 #include "src/sksl/ir/SkSLForStatement.h"
38 #include "src/sksl/ir/SkSLFunctionCall.h"
39 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
40 #include "src/sksl/ir/SkSLFunctionDefinition.h"
41 #include "src/sksl/ir/SkSLFunctionReference.h"
42 #include "src/sksl/ir/SkSLIfStatement.h"
43 #include "src/sksl/ir/SkSLIndexExpression.h"
44 #include "src/sksl/ir/SkSLInlineMarker.h"
45 #include "src/sksl/ir/SkSLInterfaceBlock.h"
46 #include "src/sksl/ir/SkSLLiteral.h"
47 #include "src/sksl/ir/SkSLNop.h"
48 #include "src/sksl/ir/SkSLPostfixExpression.h"
49 #include "src/sksl/ir/SkSLPrefixExpression.h"
50 #include "src/sksl/ir/SkSLReturnStatement.h"
51 #include "src/sksl/ir/SkSLSetting.h"
52 #include "src/sksl/ir/SkSLSwitchCase.h"
53 #include "src/sksl/ir/SkSLSwitchStatement.h"
54 #include "src/sksl/ir/SkSLSwizzle.h"
55 #include "src/sksl/ir/SkSLTernaryExpression.h"
56 #include "src/sksl/ir/SkSLUnresolvedFunction.h"
57 #include "src/sksl/ir/SkSLVarDeclarations.h"
58 #include "src/sksl/ir/SkSLVariable.h"
59 #include "src/sksl/ir/SkSLVariableReference.h"
60
61 namespace SkSL {
62 namespace {
63
64 static constexpr int kInlinedStatementLimit = 2500;
65
count_returns_at_end_of_control_flow(const FunctionDefinition & funcDef)66 static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
67 class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
68 public:
69 CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
70 this->visitProgramElement(funcDef);
71 }
72
73 bool visitExpression(const Expression& expr) override {
74 // Do not recurse into expressions.
75 return false;
76 }
77
78 bool visitStatement(const Statement& stmt) override {
79 switch (stmt.kind()) {
80 case Statement::Kind::kBlock: {
81 // Check only the last statement of a block.
82 const auto& block = stmt.as<Block>();
83 return block.children().size() &&
84 this->visitStatement(*block.children().back());
85 }
86 case Statement::Kind::kSwitch:
87 case Statement::Kind::kDo:
88 case Statement::Kind::kFor:
89 // Don't introspect switches or loop structures at all.
90 return false;
91
92 case Statement::Kind::kReturn:
93 ++fNumReturns;
94 [[fallthrough]];
95
96 default:
97 return INHERITED::visitStatement(stmt);
98 }
99 }
100
101 int fNumReturns = 0;
102 using INHERITED = ProgramVisitor;
103 };
104
105 return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
106 }
107
contains_recursive_call(const FunctionDeclaration & funcDecl)108 static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
109 class ContainsRecursiveCall : public ProgramVisitor {
110 public:
111 bool visit(const FunctionDeclaration& funcDecl) {
112 fFuncDecl = &funcDecl;
113 return funcDecl.definition() ? this->visitProgramElement(*funcDecl.definition())
114 : false;
115 }
116
117 bool visitExpression(const Expression& expr) override {
118 if (expr.is<FunctionCall>() && expr.as<FunctionCall>().function().matches(*fFuncDecl)) {
119 return true;
120 }
121 return INHERITED::visitExpression(expr);
122 }
123
124 bool visitStatement(const Statement& stmt) override {
125 if (stmt.is<InlineMarker>() &&
126 stmt.as<InlineMarker>().function().matches(*fFuncDecl)) {
127 return true;
128 }
129 return INHERITED::visitStatement(stmt);
130 }
131
132 const FunctionDeclaration* fFuncDecl;
133 using INHERITED = ProgramVisitor;
134 };
135
136 return ContainsRecursiveCall{}.visit(funcDecl);
137 }
138
find_parent_statement(const std::vector<std::unique_ptr<Statement> * > & stmtStack)139 static std::unique_ptr<Statement>* find_parent_statement(
140 const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
141 SkASSERT(!stmtStack.empty());
142
143 // Walk the statement stack from back to front, ignoring the last element (which is the
144 // enclosing statement).
145 auto iter = stmtStack.rbegin();
146 ++iter;
147
148 // Anything counts as a parent statement other than a scopeless Block.
149 for (; iter != stmtStack.rend(); ++iter) {
150 std::unique_ptr<Statement>* stmt = *iter;
151 if (!(*stmt)->is<Block>() || (*stmt)->as<Block>().isScope()) {
152 return stmt;
153 }
154 }
155
156 // There wasn't any parent statement to be found.
157 return nullptr;
158 }
159
clone_with_ref_kind(const Expression & expr,VariableReference::RefKind refKind)160 std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
161 VariableReference::RefKind refKind) {
162 std::unique_ptr<Expression> clone = expr.clone();
163 Analysis::UpdateVariableRefKind(clone.get(), refKind);
164 return clone;
165 }
166
167 class CountReturnsWithLimit : public ProgramVisitor {
168 public:
CountReturnsWithLimit(const FunctionDefinition & funcDef,int limit)169 CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
170 this->visitProgramElement(funcDef);
171 }
172
visitExpression(const Expression & expr)173 bool visitExpression(const Expression& expr) override {
174 // Do not recurse into expressions.
175 return false;
176 }
177
visitStatement(const Statement & stmt)178 bool visitStatement(const Statement& stmt) override {
179 switch (stmt.kind()) {
180 case Statement::Kind::kReturn: {
181 ++fNumReturns;
182 fDeepestReturn = std::max(fDeepestReturn, fScopedBlockDepth);
183 return (fNumReturns >= fLimit) || INHERITED::visitStatement(stmt);
184 }
185 case Statement::Kind::kVarDeclaration: {
186 if (fScopedBlockDepth > 1) {
187 fVariablesInBlocks = true;
188 }
189 return INHERITED::visitStatement(stmt);
190 }
191 case Statement::Kind::kBlock: {
192 int depthIncrement = stmt.as<Block>().isScope() ? 1 : 0;
193 fScopedBlockDepth += depthIncrement;
194 bool result = INHERITED::visitStatement(stmt);
195 fScopedBlockDepth -= depthIncrement;
196 if (fNumReturns == 0 && fScopedBlockDepth <= 1) {
197 // If closing this block puts us back at the top level, and we haven't
198 // encountered any return statements yet, any vardecls we may have encountered
199 // up until this point can be ignored. They are out of scope now, and they were
200 // never used in a return statement.
201 fVariablesInBlocks = false;
202 }
203 return result;
204 }
205 default:
206 return INHERITED::visitStatement(stmt);
207 }
208 }
209
210 int fNumReturns = 0;
211 int fDeepestReturn = 0;
212 int fLimit = 0;
213 int fScopedBlockDepth = 0;
214 bool fVariablesInBlocks = false;
215 using INHERITED = ProgramVisitor;
216 };
217
218 } // namespace
219
RemapVariable(const Variable * variable,const VariableRewriteMap * varMap)220 const Variable* Inliner::RemapVariable(const Variable* variable,
221 const VariableRewriteMap* varMap) {
222 auto iter = varMap->find(variable);
223 if (iter == varMap->end()) {
224 SkDEBUGFAILF("rewrite map does not contain variable '%.*s'",
225 (int)variable->name().size(), variable->name().data());
226 return variable;
227 }
228 Expression* expr = iter->second.get();
229 SkASSERT(expr);
230 if (!expr->is<VariableReference>()) {
231 SkDEBUGFAILF("rewrite map contains non-variable replacement for '%.*s'",
232 (int)variable->name().size(), variable->name().data());
233 return variable;
234 }
235 return expr->as<VariableReference>().variable();
236 }
237
GetReturnComplexity(const FunctionDefinition & funcDef)238 Inliner::ReturnComplexity Inliner::GetReturnComplexity(const FunctionDefinition& funcDef) {
239 int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
240 CountReturnsWithLimit counter{funcDef, returnsAtEndOfControlFlow + 1};
241 if (counter.fNumReturns > returnsAtEndOfControlFlow) {
242 return ReturnComplexity::kEarlyReturns;
243 }
244 if (counter.fNumReturns > 1) {
245 return ReturnComplexity::kScopedReturns;
246 }
247 if (counter.fVariablesInBlocks && counter.fDeepestReturn > 1) {
248 return ReturnComplexity::kScopedReturns;
249 }
250 return ReturnComplexity::kSingleSafeReturn;
251 }
252
ensureScopedBlocks(Statement * inlinedBody,Statement * parentStmt)253 void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
254 // No changes necessary if this statement isn't actually a block.
255 if (!inlinedBody || !inlinedBody->is<Block>()) {
256 return;
257 }
258
259 // No changes necessary if the parent statement doesn't require a scope.
260 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
261 parentStmt->is<DoStatement>())) {
262 return;
263 }
264
265 Block& block = inlinedBody->as<Block>();
266
267 // The inliner will create inlined function bodies as a Block containing multiple statements,
268 // but no scope. Normally, this is fine, but if this block is used as the statement for a
269 // do/for/if/while, this isn't actually possible to represent textually; a scope must be added
270 // for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
271 // we add the scope to the outermost block if needed. Zero-statement blocks have similar
272 // issues--if we don't represent the Block textually somehow, we run the risk of accidentally
273 // absorbing the following statement into our loop--so we also add a scope to these.
274 for (Block* nestedBlock = █; ) {
275 if (nestedBlock->isScope()) {
276 // We found an explicit scope; all is well.
277 return;
278 }
279 if (nestedBlock->children().size() != 1) {
280 // We found a block with multiple (or zero) statements, but no scope? Let's add a scope
281 // to the outermost block.
282 block.setIsScope(true);
283 return;
284 }
285 if (!nestedBlock->children()[0]->is<Block>()) {
286 // This block has exactly one thing inside, and it's not another block. No need to scope
287 // it.
288 return;
289 }
290 // We have to go deeper.
291 nestedBlock = &nestedBlock->children()[0]->as<Block>();
292 }
293 }
294
reset()295 void Inliner::reset() {
296 fContext->fMangler->reset();
297 fInlinedStatementCounter = 0;
298 }
299
inlineExpression(int line,VariableRewriteMap * varMap,SymbolTable * symbolTableForExpression,const Expression & expression)300 std::unique_ptr<Expression> Inliner::inlineExpression(int line,
301 VariableRewriteMap* varMap,
302 SymbolTable* symbolTableForExpression,
303 const Expression& expression) {
304 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
305 if (e) {
306 return this->inlineExpression(line, varMap, symbolTableForExpression, *e);
307 }
308 return nullptr;
309 };
310 auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
311 ExpressionArray args;
312 args.reserve_back(originalArgs.size());
313 for (const std::unique_ptr<Expression>& arg : originalArgs) {
314 args.push_back(expr(arg));
315 }
316 return args;
317 };
318
319 switch (expression.kind()) {
320 case Expression::Kind::kBinary: {
321 const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
322 return BinaryExpression::Make(*fContext,
323 expr(binaryExpr.left()),
324 binaryExpr.getOperator(),
325 expr(binaryExpr.right()));
326 }
327 case Expression::Kind::kLiteral:
328 return expression.clone();
329 case Expression::Kind::kChildCall: {
330 const ChildCall& childCall = expression.as<ChildCall>();
331 return ChildCall::Make(*fContext,
332 line,
333 childCall.type().clone(symbolTableForExpression),
334 childCall.child(),
335 argList(childCall.arguments()));
336 }
337 case Expression::Kind::kConstructorArray: {
338 const ConstructorArray& ctor = expression.as<ConstructorArray>();
339 return ConstructorArray::Make(*fContext, line,
340 *ctor.type().clone(symbolTableForExpression),
341 argList(ctor.arguments()));
342 }
343 case Expression::Kind::kConstructorArrayCast: {
344 const ConstructorArrayCast& ctor = expression.as<ConstructorArrayCast>();
345 return ConstructorArrayCast::Make(*fContext, line,
346 *ctor.type().clone(symbolTableForExpression),
347 expr(ctor.argument()));
348 }
349 case Expression::Kind::kConstructorCompound: {
350 const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
351 return ConstructorCompound::Make(*fContext, line,
352 *ctor.type().clone(symbolTableForExpression),
353 argList(ctor.arguments()));
354 }
355 case Expression::Kind::kConstructorCompoundCast: {
356 const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
357 return ConstructorCompoundCast::Make(*fContext, line,
358 *ctor.type().clone(symbolTableForExpression),
359 expr(ctor.argument()));
360 }
361 case Expression::Kind::kConstructorDiagonalMatrix: {
362 const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
363 return ConstructorDiagonalMatrix::Make(*fContext, line,
364 *ctor.type().clone(symbolTableForExpression),
365 expr(ctor.argument()));
366 }
367 case Expression::Kind::kConstructorMatrixResize: {
368 const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
369 return ConstructorMatrixResize::Make(*fContext, line,
370 *ctor.type().clone(symbolTableForExpression),
371 expr(ctor.argument()));
372 }
373 case Expression::Kind::kConstructorScalarCast: {
374 const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
375 return ConstructorScalarCast::Make(*fContext, line,
376 *ctor.type().clone(symbolTableForExpression),
377 expr(ctor.argument()));
378 }
379 case Expression::Kind::kConstructorSplat: {
380 const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
381 return ConstructorSplat::Make(*fContext, line,
382 *ctor.type().clone(symbolTableForExpression),
383 expr(ctor.argument()));
384 }
385 case Expression::Kind::kConstructorStruct: {
386 const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
387 return ConstructorStruct::Make(*fContext, line,
388 *ctor.type().clone(symbolTableForExpression),
389 argList(ctor.arguments()));
390 }
391 case Expression::Kind::kExternalFunctionCall: {
392 const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
393 return std::make_unique<ExternalFunctionCall>(line, &externalCall.function(),
394 argList(externalCall.arguments()));
395 }
396 case Expression::Kind::kExternalFunctionReference:
397 return expression.clone();
398 case Expression::Kind::kFieldAccess: {
399 const FieldAccess& f = expression.as<FieldAccess>();
400 return FieldAccess::Make(*fContext, expr(f.base()), f.fieldIndex(), f.ownerKind());
401 }
402 case Expression::Kind::kFunctionCall: {
403 const FunctionCall& funcCall = expression.as<FunctionCall>();
404 return FunctionCall::Make(*fContext,
405 line,
406 funcCall.type().clone(symbolTableForExpression),
407 funcCall.function(),
408 argList(funcCall.arguments()));
409 }
410 case Expression::Kind::kFunctionReference:
411 return expression.clone();
412 case Expression::Kind::kIndex: {
413 const IndexExpression& idx = expression.as<IndexExpression>();
414 return IndexExpression::Make(*fContext, expr(idx.base()), expr(idx.index()));
415 }
416 case Expression::Kind::kMethodReference:
417 return expression.clone();
418 case Expression::Kind::kPrefix: {
419 const PrefixExpression& p = expression.as<PrefixExpression>();
420 return PrefixExpression::Make(*fContext, p.getOperator(), expr(p.operand()));
421 }
422 case Expression::Kind::kPostfix: {
423 const PostfixExpression& p = expression.as<PostfixExpression>();
424 return PostfixExpression::Make(*fContext, expr(p.operand()), p.getOperator());
425 }
426 case Expression::Kind::kSetting:
427 return expression.clone();
428 case Expression::Kind::kSwizzle: {
429 const Swizzle& s = expression.as<Swizzle>();
430 return Swizzle::Make(*fContext, expr(s.base()), s.components());
431 }
432 case Expression::Kind::kTernary: {
433 const TernaryExpression& t = expression.as<TernaryExpression>();
434 return TernaryExpression::Make(*fContext, expr(t.test()),
435 expr(t.ifTrue()), expr(t.ifFalse()));
436 }
437 case Expression::Kind::kTypeReference:
438 return expression.clone();
439 case Expression::Kind::kVariableReference: {
440 const VariableReference& v = expression.as<VariableReference>();
441 auto varMapIter = varMap->find(v.variable());
442 if (varMapIter != varMap->end()) {
443 return clone_with_ref_kind(*varMapIter->second, v.refKind());
444 }
445 return v.clone();
446 }
447 default:
448 SkASSERT(false);
449 return nullptr;
450 }
451 }
452
inlineStatement(int line,VariableRewriteMap * varMap,SymbolTable * symbolTableForStatement,std::unique_ptr<Expression> * resultExpr,ReturnComplexity returnComplexity,const Statement & statement,bool isBuiltinCode)453 std::unique_ptr<Statement> Inliner::inlineStatement(int line,
454 VariableRewriteMap* varMap,
455 SymbolTable* symbolTableForStatement,
456 std::unique_ptr<Expression>* resultExpr,
457 ReturnComplexity returnComplexity,
458 const Statement& statement,
459 bool isBuiltinCode) {
460 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
461 if (s) {
462 return this->inlineStatement(line, varMap, symbolTableForStatement, resultExpr,
463 returnComplexity, *s, isBuiltinCode);
464 }
465 return nullptr;
466 };
467 auto blockStmts = [&](const Block& block) {
468 StatementArray result;
469 result.reserve_back(block.children().size());
470 for (const std::unique_ptr<Statement>& child : block.children()) {
471 result.push_back(stmt(child));
472 }
473 return result;
474 };
475 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
476 if (e) {
477 return this->inlineExpression(line, varMap, symbolTableForStatement, *e);
478 }
479 return nullptr;
480 };
481
482 ++fInlinedStatementCounter;
483
484 switch (statement.kind()) {
485 case Statement::Kind::kBlock: {
486 const Block& b = statement.as<Block>();
487 return Block::Make(line, blockStmts(b),
488 SymbolTable::WrapIfBuiltin(b.symbolTable()),
489 b.isScope());
490 }
491
492 case Statement::Kind::kBreak:
493 case Statement::Kind::kContinue:
494 case Statement::Kind::kDiscard:
495 return statement.clone();
496
497 case Statement::Kind::kDo: {
498 const DoStatement& d = statement.as<DoStatement>();
499 return DoStatement::Make(*fContext, stmt(d.statement()), expr(d.test()));
500 }
501 case Statement::Kind::kExpression: {
502 const ExpressionStatement& e = statement.as<ExpressionStatement>();
503 return ExpressionStatement::Make(*fContext, expr(e.expression()));
504 }
505 case Statement::Kind::kFor: {
506 const ForStatement& f = statement.as<ForStatement>();
507 // need to ensure initializer is evaluated first so that we've already remapped its
508 // declarations by the time we evaluate test & next
509 std::unique_ptr<Statement> initializer = stmt(f.initializer());
510
511 std::unique_ptr<LoopUnrollInfo> unrollInfo;
512 if (f.unrollInfo()) {
513 // The for loop's unroll-info points to the Variable in the initializer as the
514 // index. This variable has been rewritten into a clone by the inliner, so we need
515 // to update the loop-unroll info to point to the clone.
516 unrollInfo = std::make_unique<LoopUnrollInfo>(*f.unrollInfo());
517 unrollInfo->fIndex = RemapVariable(unrollInfo->fIndex, varMap);
518 }
519 return ForStatement::Make(*fContext, line, std::move(initializer), expr(f.test()),
520 expr(f.next()), stmt(f.statement()), std::move(unrollInfo),
521 SymbolTable::WrapIfBuiltin(f.symbols()));
522 }
523 case Statement::Kind::kIf: {
524 const IfStatement& i = statement.as<IfStatement>();
525 return IfStatement::Make(*fContext, line, i.isStatic(), expr(i.test()),
526 stmt(i.ifTrue()), stmt(i.ifFalse()));
527 }
528 case Statement::Kind::kInlineMarker:
529 case Statement::Kind::kNop:
530 return statement.clone();
531
532 case Statement::Kind::kReturn: {
533 const ReturnStatement& r = statement.as<ReturnStatement>();
534 if (!r.expression()) {
535 // This function doesn't return a value. We won't inline functions with early
536 // returns, so a return statement is a no-op and can be treated as such.
537 return Nop::Make();
538 }
539
540 // If a function only contains a single return, and it doesn't reference variables from
541 // inside an Block's scope, we don't need to store the result in a variable at all. Just
542 // replace the function-call expression with the function's return expression.
543 SkASSERT(resultExpr);
544 if (returnComplexity <= ReturnComplexity::kSingleSafeReturn) {
545 *resultExpr = expr(r.expression());
546 return Nop::Make();
547 }
548
549 // For more complex functions, assign their result into a variable.
550 SkASSERT(*resultExpr);
551 auto assignment = ExpressionStatement::Make(
552 *fContext,
553 BinaryExpression::Make(
554 *fContext,
555 clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite),
556 Token::Kind::TK_EQ,
557 expr(r.expression())));
558
559 // Functions without early returns aren't wrapped in a for loop and don't need to worry
560 // about breaking out of the control flow.
561 return assignment;
562 }
563 case Statement::Kind::kSwitch: {
564 const SwitchStatement& ss = statement.as<SwitchStatement>();
565 StatementArray cases;
566 cases.reserve_back(ss.cases().size());
567 for (const std::unique_ptr<Statement>& switchCaseStmt : ss.cases()) {
568 const SwitchCase& sc = switchCaseStmt->as<SwitchCase>();
569 if (sc.isDefault()) {
570 cases.push_back(SwitchCase::MakeDefault(line, stmt(sc.statement())));
571 } else {
572 cases.push_back(SwitchCase::Make(line, sc.value(), stmt(sc.statement())));
573 }
574 }
575 return SwitchStatement::Make(*fContext, line, ss.isStatic(), expr(ss.value()),
576 std::move(cases), SymbolTable::WrapIfBuiltin(ss.symbols()));
577 }
578 case Statement::Kind::kVarDeclaration: {
579 const VarDeclaration& decl = statement.as<VarDeclaration>();
580 std::unique_ptr<Expression> initialValue = expr(decl.value());
581 const Variable& variable = decl.var();
582
583 // We assign unique names to inlined variables--scopes hide most of the problems in this
584 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
585 // names are important.
586 const std::string* name = symbolTableForStatement->takeOwnershipOfString(
587 fContext->fMangler->uniqueName(variable.name(), symbolTableForStatement));
588 auto clonedVar = std::make_unique<Variable>(
589 line,
590 &variable.modifiers(),
591 name->c_str(),
592 variable.type().clone(symbolTableForStatement),
593 isBuiltinCode,
594 variable.storage());
595 (*varMap)[&variable] = VariableReference::Make(line, clonedVar.get());
596 auto result = VarDeclaration::Make(*fContext,
597 clonedVar.get(),
598 decl.baseType().clone(symbolTableForStatement),
599 decl.arraySize(),
600 std::move(initialValue));
601 symbolTableForStatement->takeOwnershipOfSymbol(std::move(clonedVar));
602 return result;
603 }
604 default:
605 SkASSERT(false);
606 return nullptr;
607 }
608 }
609
inlineCall(FunctionCall * call,std::shared_ptr<SymbolTable> symbolTable,const ProgramUsage & usage,const FunctionDeclaration * caller)610 Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
611 std::shared_ptr<SymbolTable> symbolTable,
612 const ProgramUsage& usage,
613 const FunctionDeclaration* caller) {
614 using ScratchVariable = Variable::ScratchVariable;
615
616 // Inlining is more complicated here than in a typical compiler, because we have to have a
617 // high-level IR and can't just drop statements into the middle of an expression or even use
618 // gotos.
619 //
620 // Since we can't insert statements into an expression, we run the inline function as extra
621 // statements before the statement we're currently processing, relying on a lack of execution
622 // order guarantees. Since we can't use gotos (which are normally used to replace return
623 // statements), we wrap the whole function in a loop and use break statements to jump to the
624 // end.
625 SkASSERT(fContext);
626 SkASSERT(call);
627 SkASSERT(this->isSafeToInline(call->function().definition(), usage));
628
629 ExpressionArray& arguments = call->arguments();
630 const int line = call->fLine;
631 const FunctionDefinition& function = *call->function().definition();
632 const Block& body = function.body()->as<Block>();
633 const ReturnComplexity returnComplexity = GetReturnComplexity(function);
634
635 StatementArray inlineStatements;
636 int expectedStmtCount = 1 + // Inline marker
637 1 + // Result variable
638 arguments.size() + // Function argument temp-vars
639 body.children().size(); // Inlined code
640
641 inlineStatements.reserve_back(expectedStmtCount);
642 inlineStatements.push_back(InlineMarker::Make(&call->function()));
643
644 std::unique_ptr<Expression> resultExpr;
645 if (returnComplexity > ReturnComplexity::kSingleSafeReturn &&
646 !function.declaration().returnType().isVoid()) {
647 // Create a variable to hold the result in the extra statements. We don't need to do this
648 // for void-return functions, or in cases that are simple enough that we can just replace
649 // the function-call node with the result expression.
650 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
651 function.declaration().name(),
652 &function.declaration().returnType(),
653 Modifiers{},
654 symbolTable.get(),
655 /*initialValue=*/nullptr);
656 inlineStatements.push_back(std::move(var.fVarDecl));
657 resultExpr = VariableReference::Make(/*line=*/-1, var.fVarSymbol);
658 }
659
660 // Create variables in the extra statements to hold the arguments, and assign the arguments to
661 // them.
662 VariableRewriteMap varMap;
663 for (int i = 0; i < arguments.count(); ++i) {
664 // If the parameter isn't written to within the inline function ...
665 Expression* arg = arguments[i].get();
666 const Variable* param = function.declaration().parameters()[i];
667 const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
668 if (!paramUsage.fWrite) {
669 // ... and can be inlined trivially (e.g. a swizzle, or a constant array index),
670 // or any expression without side effects that is only accessed at most once...
671 if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arg)
672 : !arg->hasSideEffects()) {
673 // ... we don't need to copy it at all! We can just use the existing expression.
674 varMap[param] = arg->clone();
675 continue;
676 }
677 }
678 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
679 param->name(),
680 &arg->type(),
681 param->modifiers(),
682 symbolTable.get(),
683 std::move(arguments[i]));
684 inlineStatements.push_back(std::move(var.fVarDecl));
685 varMap[param] = VariableReference::Make(/*line=*/-1, var.fVarSymbol);
686 }
687
688 for (const std::unique_ptr<Statement>& stmt : body.children()) {
689 inlineStatements.push_back(this->inlineStatement(line, &varMap, symbolTable.get(),
690 &resultExpr, returnComplexity, *stmt,
691 caller->isBuiltin()));
692 }
693
694 SkASSERT(inlineStatements.count() <= expectedStmtCount);
695
696 // Wrap all of the generated statements in a block. We need a real Block here, so we can't use
697 // MakeUnscoped. This is because we need to add another child statement to the Block later.
698 InlinedCall inlinedCall;
699 inlinedCall.fInlinedBody = Block::Make(line, std::move(inlineStatements),
700 /*symbols=*/nullptr, /*isScope=*/false);
701
702 if (resultExpr) {
703 // Return our result expression as-is.
704 inlinedCall.fReplacementExpr = std::move(resultExpr);
705 } else if (function.declaration().returnType().isVoid()) {
706 // It's a void function, so it doesn't actually result in anything, but we have to return
707 // something non-null as a standin.
708 inlinedCall.fReplacementExpr = Literal::MakeBool(*fContext, line, /*value=*/false);
709 } else {
710 // It's a non-void function, but it never created a result expression--that is, it never
711 // returned anything on any path! This should have been detected in the function finalizer.
712 // Still, discard our output and generate an error.
713 SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
714 fContext->fErrors->error(function.fLine, "inliner found non-void function '" +
715 std::string(function.declaration().name()) +
716 "' that fails to return a value on any path");
717 inlinedCall = {};
718 }
719
720 return inlinedCall;
721 }
722
isSafeToInline(const FunctionDefinition * functionDef,const ProgramUsage & usage)723 bool Inliner::isSafeToInline(const FunctionDefinition* functionDef, const ProgramUsage& usage) {
724 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
725 if (this->settings().fInlineThreshold <= 0) {
726 return false;
727 }
728
729 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
730 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
731 return false;
732 }
733
734 if (functionDef == nullptr) {
735 // Can't inline something if we don't actually have its definition.
736 return false;
737 }
738
739 if (functionDef->declaration().modifiers().fFlags & Modifiers::kNoInline_Flag) {
740 // Refuse to inline functions decorated with `noinline`.
741 return false;
742 }
743
744 // We don't allow inlining a function with out parameters that are written to.
745 // (See skia:11326 for rationale.)
746 for (const Variable* param : functionDef->declaration().parameters()) {
747 if (param->modifiers().fFlags & Modifiers::Flag::kOut_Flag) {
748 ProgramUsage::VariableCounts counts = usage.get(*param);
749 if (counts.fWrite > 0) {
750 return false;
751 }
752 }
753 }
754
755 // We don't have a mechanism to simulate early returns, so we can't inline if there is one.
756 return GetReturnComplexity(*functionDef) < ReturnComplexity::kEarlyReturns;
757 }
758
759 // A candidate function for inlining, containing everything that `inlineCall` needs.
760 struct InlineCandidate {
761 std::shared_ptr<SymbolTable> fSymbols; // the SymbolTable of the candidate
762 std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
763 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
764 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
765 FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
766 };
767
768 struct InlineCandidateList {
769 std::vector<InlineCandidate> fCandidates;
770 };
771
772 class InlineCandidateAnalyzer {
773 public:
774 // A list of all the inlining candidates we found during analysis.
775 InlineCandidateList* fCandidateList;
776
777 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
778 // the enclosing-statement stack.
779 std::vector<std::shared_ptr<SymbolTable>> fSymbolTableStack;
780 // A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
781 // new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
782 // inliner might replace a statement with a block containing the statement.
783 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
784 // The function that we're currently processing (i.e. inlining into).
785 FunctionDefinition* fEnclosingFunction = nullptr;
786
visit(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,InlineCandidateList * candidateList)787 void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
788 std::shared_ptr<SymbolTable> symbols,
789 InlineCandidateList* candidateList) {
790 fCandidateList = candidateList;
791 fSymbolTableStack.push_back(symbols);
792
793 for (const std::unique_ptr<ProgramElement>& pe : elements) {
794 this->visitProgramElement(pe.get());
795 }
796
797 fSymbolTableStack.pop_back();
798 fCandidateList = nullptr;
799 }
800
visitProgramElement(ProgramElement * pe)801 void visitProgramElement(ProgramElement* pe) {
802 switch (pe->kind()) {
803 case ProgramElement::Kind::kFunction: {
804 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
805 fEnclosingFunction = &funcDef;
806 this->visitStatement(&funcDef.body());
807 break;
808 }
809 default:
810 // The inliner can't operate outside of a function's scope.
811 break;
812 }
813 }
814
visitStatement(std::unique_ptr<Statement> * stmt,bool isViableAsEnclosingStatement=true)815 void visitStatement(std::unique_ptr<Statement>* stmt,
816 bool isViableAsEnclosingStatement = true) {
817 if (!*stmt) {
818 return;
819 }
820
821 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
822 size_t oldSymbolStackSize = fSymbolTableStack.size();
823
824 if (isViableAsEnclosingStatement) {
825 fEnclosingStmtStack.push_back(stmt);
826 }
827
828 switch ((*stmt)->kind()) {
829 case Statement::Kind::kBreak:
830 case Statement::Kind::kContinue:
831 case Statement::Kind::kDiscard:
832 case Statement::Kind::kInlineMarker:
833 case Statement::Kind::kNop:
834 break;
835
836 case Statement::Kind::kBlock: {
837 Block& block = (*stmt)->as<Block>();
838 if (block.symbolTable()) {
839 fSymbolTableStack.push_back(block.symbolTable());
840 }
841
842 for (std::unique_ptr<Statement>& blockStmt : block.children()) {
843 this->visitStatement(&blockStmt);
844 }
845 break;
846 }
847 case Statement::Kind::kDo: {
848 DoStatement& doStmt = (*stmt)->as<DoStatement>();
849 // The loop body is a candidate for inlining.
850 this->visitStatement(&doStmt.statement());
851 // The inliner isn't smart enough to inline the test-expression for a do-while
852 // loop at this time. There are two limitations:
853 // - We would need to insert the inlined-body block at the very end of the do-
854 // statement's inner fStatement. We don't support that today, but it's doable.
855 // - We cannot inline the test expression if the loop uses `continue` anywhere; that
856 // would skip over the inlined block that evaluates the test expression. There
857 // isn't a good fix for this--any workaround would be more complex than the cost
858 // of a function call. However, loops that don't use `continue` would still be
859 // viable candidates for inlining.
860 break;
861 }
862 case Statement::Kind::kExpression: {
863 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
864 this->visitExpression(&expr.expression());
865 break;
866 }
867 case Statement::Kind::kFor: {
868 ForStatement& forStmt = (*stmt)->as<ForStatement>();
869 if (forStmt.symbols()) {
870 fSymbolTableStack.push_back(forStmt.symbols());
871 }
872
873 // The initializer and loop body are candidates for inlining.
874 this->visitStatement(&forStmt.initializer(),
875 /*isViableAsEnclosingStatement=*/false);
876 this->visitStatement(&forStmt.statement());
877
878 // The inliner isn't smart enough to inline the test- or increment-expressions
879 // of a for loop loop at this time. There are a handful of limitations:
880 // - We would need to insert the test-expression block at the very beginning of the
881 // for-loop's inner fStatement, and the increment-expression block at the very
882 // end. We don't support that today, but it's doable.
883 // - The for-loop's built-in test-expression would need to be dropped entirely,
884 // and the loop would be halted via a break statement at the end of the inlined
885 // test-expression. This is again something we don't support today, but it could
886 // be implemented.
887 // - We cannot inline the increment-expression if the loop uses `continue` anywhere;
888 // that would skip over the inlined block that evaluates the increment expression.
889 // There isn't a good fix for this--any workaround would be more complex than the
890 // cost of a function call. However, loops that don't use `continue` would still
891 // be viable candidates for increment-expression inlining.
892 break;
893 }
894 case Statement::Kind::kIf: {
895 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
896 this->visitExpression(&ifStmt.test());
897 this->visitStatement(&ifStmt.ifTrue());
898 this->visitStatement(&ifStmt.ifFalse());
899 break;
900 }
901 case Statement::Kind::kReturn: {
902 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
903 this->visitExpression(&returnStmt.expression());
904 break;
905 }
906 case Statement::Kind::kSwitch: {
907 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
908 if (switchStmt.symbols()) {
909 fSymbolTableStack.push_back(switchStmt.symbols());
910 }
911
912 this->visitExpression(&switchStmt.value());
913 for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
914 // The switch-case's fValue cannot be a FunctionCall; skip it.
915 this->visitStatement(&switchCase->as<SwitchCase>().statement());
916 }
917 break;
918 }
919 case Statement::Kind::kVarDeclaration: {
920 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
921 // Don't need to scan the declaration's sizes; those are always IntLiterals.
922 this->visitExpression(&varDeclStmt.value());
923 break;
924 }
925 default:
926 SkUNREACHABLE;
927 }
928
929 // Pop our symbol and enclosing-statement stacks.
930 fSymbolTableStack.resize(oldSymbolStackSize);
931 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
932 }
933
visitExpression(std::unique_ptr<Expression> * expr)934 void visitExpression(std::unique_ptr<Expression>* expr) {
935 if (!*expr) {
936 return;
937 }
938
939 switch ((*expr)->kind()) {
940 case Expression::Kind::kExternalFunctionReference:
941 case Expression::Kind::kFieldAccess:
942 case Expression::Kind::kFunctionReference:
943 case Expression::Kind::kLiteral:
944 case Expression::Kind::kMethodReference:
945 case Expression::Kind::kSetting:
946 case Expression::Kind::kTypeReference:
947 case Expression::Kind::kVariableReference:
948 // Nothing to scan here.
949 break;
950
951 case Expression::Kind::kBinary: {
952 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
953 this->visitExpression(&binaryExpr.left());
954
955 // Logical-and and logical-or binary expressions do not inline the right side,
956 // because that would invalidate short-circuiting. That is, when evaluating
957 // expressions like these:
958 // (false && x()) // always false
959 // (true || y()) // always true
960 // It is illegal for side-effects from x() or y() to occur. The simplest way to
961 // enforce that rule is to avoid inlining the right side entirely. However, it is
962 // safe for other types of binary expression to inline both sides.
963 Operator op = binaryExpr.getOperator();
964 bool shortCircuitable = (op.kind() == Token::Kind::TK_LOGICALAND ||
965 op.kind() == Token::Kind::TK_LOGICALOR);
966 if (!shortCircuitable) {
967 this->visitExpression(&binaryExpr.right());
968 }
969 break;
970 }
971 case Expression::Kind::kChildCall: {
972 ChildCall& childCallExpr = (*expr)->as<ChildCall>();
973 for (std::unique_ptr<Expression>& arg : childCallExpr.arguments()) {
974 this->visitExpression(&arg);
975 }
976 break;
977 }
978 case Expression::Kind::kConstructorArray:
979 case Expression::Kind::kConstructorArrayCast:
980 case Expression::Kind::kConstructorCompound:
981 case Expression::Kind::kConstructorCompoundCast:
982 case Expression::Kind::kConstructorDiagonalMatrix:
983 case Expression::Kind::kConstructorMatrixResize:
984 case Expression::Kind::kConstructorScalarCast:
985 case Expression::Kind::kConstructorSplat:
986 case Expression::Kind::kConstructorStruct: {
987 AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
988 for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
989 this->visitExpression(&arg);
990 }
991 break;
992 }
993 case Expression::Kind::kExternalFunctionCall: {
994 ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
995 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
996 this->visitExpression(&arg);
997 }
998 break;
999 }
1000 case Expression::Kind::kFunctionCall: {
1001 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
1002 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
1003 this->visitExpression(&arg);
1004 }
1005 this->addInlineCandidate(expr);
1006 break;
1007 }
1008 case Expression::Kind::kIndex: {
1009 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
1010 this->visitExpression(&indexExpr.base());
1011 this->visitExpression(&indexExpr.index());
1012 break;
1013 }
1014 case Expression::Kind::kPostfix: {
1015 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
1016 this->visitExpression(&postfixExpr.operand());
1017 break;
1018 }
1019 case Expression::Kind::kPrefix: {
1020 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
1021 this->visitExpression(&prefixExpr.operand());
1022 break;
1023 }
1024 case Expression::Kind::kSwizzle: {
1025 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
1026 this->visitExpression(&swizzleExpr.base());
1027 break;
1028 }
1029 case Expression::Kind::kTernary: {
1030 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
1031 // The test expression is a candidate for inlining.
1032 this->visitExpression(&ternaryExpr.test());
1033 // The true- and false-expressions cannot be inlined, because we are only allowed to
1034 // evaluate one side.
1035 break;
1036 }
1037 default:
1038 SkUNREACHABLE;
1039 }
1040 }
1041
addInlineCandidate(std::unique_ptr<Expression> * candidate)1042 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
1043 fCandidateList->fCandidates.push_back(
1044 InlineCandidate{fSymbolTableStack.back(),
1045 find_parent_statement(fEnclosingStmtStack),
1046 fEnclosingStmtStack.back(),
1047 candidate,
1048 fEnclosingFunction});
1049 }
1050 };
1051
candidate_func(const InlineCandidate & candidate)1052 static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
1053 return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
1054 }
1055
candidateCanBeInlined(const InlineCandidate & candidate,const ProgramUsage & usage,InlinabilityCache * cache)1056 bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate,
1057 const ProgramUsage& usage,
1058 InlinabilityCache* cache) {
1059 const FunctionDeclaration& funcDecl = candidate_func(candidate);
1060 auto [iter, wasInserted] = cache->insert({&funcDecl, false});
1061 if (wasInserted) {
1062 // Recursion is forbidden here to avoid an infinite death spiral of inlining.
1063 iter->second = this->isSafeToInline(funcDecl.definition(), usage) &&
1064 !contains_recursive_call(funcDecl);
1065 }
1066
1067 return iter->second;
1068 }
1069
getFunctionSize(const FunctionDeclaration & funcDecl,FunctionSizeCache * cache)1070 int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
1071 auto [iter, wasInserted] = cache->insert({&funcDecl, 0});
1072 if (wasInserted) {
1073 iter->second = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
1074 this->settings().fInlineThreshold);
1075 }
1076 return iter->second;
1077 }
1078
buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,ProgramUsage * usage,InlineCandidateList * candidateList)1079 void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1080 std::shared_ptr<SymbolTable> symbols, ProgramUsage* usage,
1081 InlineCandidateList* candidateList) {
1082 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
1083 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
1084 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
1085 // `const T&`.
1086 InlineCandidateAnalyzer analyzer;
1087 analyzer.visit(elements, symbols, candidateList);
1088
1089 // Early out if there are no inlining candidates.
1090 std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
1091 if (candidates.empty()) {
1092 return;
1093 }
1094
1095 // Remove candidates that are not safe to inline.
1096 InlinabilityCache cache;
1097 candidates.erase(std::remove_if(candidates.begin(),
1098 candidates.end(),
1099 [&](const InlineCandidate& candidate) {
1100 return !this->candidateCanBeInlined(
1101 candidate, *usage, &cache);
1102 }),
1103 candidates.end());
1104
1105 // If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
1106 // complete.
1107 if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
1108 return;
1109 }
1110
1111 // Remove candidates on a per-function basis if the effect of inlining would be to make more
1112 // than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
1113 // 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
1114 FunctionSizeCache functionSizeCache;
1115 FunctionSizeCache candidateTotalCost;
1116 for (InlineCandidate& candidate : candidates) {
1117 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1118 candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
1119 }
1120
1121 candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
1122 [&](const InlineCandidate& candidate) {
1123 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1124 if (fnDecl.modifiers().fFlags & Modifiers::kInline_Flag) {
1125 // Functions marked `inline` ignore size limitations.
1126 return false;
1127 }
1128 if (usage->get(fnDecl) == 1) {
1129 // If a function is only used once, it's cost-free to inline.
1130 return false;
1131 }
1132 if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
1133 // We won't exceed the inline threshold by inlining this.
1134 return false;
1135 }
1136 // Inlining this function will add too many IRNodes.
1137 return true;
1138 }),
1139 candidates.end());
1140 }
1141
analyze(const std::vector<std::unique_ptr<ProgramElement>> & elements,std::shared_ptr<SymbolTable> symbols,ProgramUsage * usage)1142 bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1143 std::shared_ptr<SymbolTable> symbols,
1144 ProgramUsage* usage) {
1145 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
1146 if (this->settings().fInlineThreshold <= 0) {
1147 return false;
1148 }
1149
1150 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
1151 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1152 return false;
1153 }
1154
1155 InlineCandidateList candidateList;
1156 this->buildCandidateList(elements, symbols, usage, &candidateList);
1157
1158 // Inline the candidates where we've determined that it's safe to do so.
1159 using StatementRemappingTable = std::unordered_map<std::unique_ptr<Statement>*,
1160 std::unique_ptr<Statement>*>;
1161 StatementRemappingTable statementRemappingTable;
1162
1163 bool madeChanges = false;
1164 for (const InlineCandidate& candidate : candidateList.fCandidates) {
1165 FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1166
1167 // Convert the function call to its inlined equivalent.
1168 InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols, *usage,
1169 &candidate.fEnclosingFunction->declaration());
1170
1171 // Stop if an error was detected during the inlining process.
1172 if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
1173 break;
1174 }
1175
1176 // Ensure that the inlined body has a scope if it needs one.
1177 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
1178
1179 // Add references within the inlined body
1180 usage->add(inlinedCall.fInlinedBody.get());
1181
1182 // Look up the enclosing statement; remap it if necessary.
1183 std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
1184 for (;;) {
1185 auto iter = statementRemappingTable.find(enclosingStmt);
1186 if (iter == statementRemappingTable.end()) {
1187 break;
1188 }
1189 enclosingStmt = iter->second;
1190 }
1191
1192 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1193 // function, then replace the enclosing statement with that Block.
1194 // Before:
1195 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1196 // fEnclosingStmt = stmt4
1197 // After:
1198 // fInlinedBody = null
1199 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
1200 inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
1201 *enclosingStmt = std::move(inlinedCall.fInlinedBody);
1202
1203 // Replace the candidate function call with our replacement expression.
1204 usage->remove(candidate.fCandidateExpr->get());
1205 usage->add(inlinedCall.fReplacementExpr.get());
1206 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1207 madeChanges = true;
1208
1209 // If anything else pointed at our enclosing statement, it's now pointing at a Block
1210 // containing many other statements as well. Maintain a fix-up table to account for this.
1211 statementRemappingTable[enclosingStmt] = &(*enclosingStmt)->as<Block>().children().back();
1212
1213 // Stop inlining if we've reached our hard cap on new statements.
1214 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1215 break;
1216 }
1217
1218 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1219 // remain valid.
1220 }
1221
1222 return madeChanges;
1223 }
1224
1225 } // namespace SkSL
1226