• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #if GTEST_OS_LINUX
45 # include <stdlib.h>
46 # include <sys/types.h>
47 # include <sys/wait.h>
48 # include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 # include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 #include <cstdint>
59 #include <iomanip>
60 #include <limits>
61 #include <map>
62 #include <set>
63 #include <string>
64 #include <type_traits>
65 #include <vector>
66 
67 #include "gtest/gtest-message.h"
68 #include "gtest/internal/gtest-filepath.h"
69 #include "gtest/internal/gtest-string.h"
70 #include "gtest/internal/gtest-type-util.h"
71 
72 // Due to C++ preprocessor weirdness, we need double indirection to
73 // concatenate two tokens when one of them is __LINE__.  Writing
74 //
75 //   foo ## __LINE__
76 //
77 // will result in the token foo__LINE__, instead of foo followed by
78 // the current line number.  For more details, see
79 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
80 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
81 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
82 
83 // Stringifies its argument.
84 // Work around a bug in visual studio which doesn't accept code like this:
85 //
86 //   #define GTEST_STRINGIFY_(name) #name
87 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
88 //   MACRO(, x, y)
89 //
90 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
91 // This is allowed by the spec.
92 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
93 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
94 
95 namespace proto2 {
96 class MessageLite;
97 }
98 
99 namespace testing {
100 
101 // Forward declarations.
102 
103 class AssertionResult;                 // Result of an assertion.
104 class Message;                         // Represents a failure message.
105 class Test;                            // Represents a test.
106 class TestInfo;                        // Information about a test.
107 class TestPartResult;                  // Result of a test part.
108 class UnitTest;                        // A collection of test suites.
109 
110 template <typename T>
111 ::std::string PrintToString(const T& value);
112 
113 namespace internal {
114 
115 struct TraceInfo;                      // Information about a trace point.
116 class TestInfoImpl;                    // Opaque implementation of TestInfo
117 class UnitTestImpl;                    // Opaque implementation of UnitTest
118 
119 // The text used in failure messages to indicate the start of the
120 // stack trace.
121 GTEST_API_ extern const char kStackTraceMarker[];
122 
123 // An IgnoredValue object can be implicitly constructed from ANY value.
124 class IgnoredValue {
125   struct Sink {};
126  public:
127   // This constructor template allows any value to be implicitly
128   // converted to IgnoredValue.  The object has no data member and
129   // doesn't try to remember anything about the argument.  We
130   // deliberately omit the 'explicit' keyword in order to allow the
131   // conversion to be implicit.
132   // Disable the conversion if T already has a magical conversion operator.
133   // Otherwise we get ambiguity.
134   template <typename T,
135             typename std::enable_if<!std::is_convertible<T, Sink>::value,
136                                     int>::type = 0>
IgnoredValue(const T &)137   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
138 };
139 
140 // Appends the user-supplied message to the Google-Test-generated message.
141 GTEST_API_ std::string AppendUserMessage(
142     const std::string& gtest_msg, const Message& user_msg);
143 
144 #if GTEST_HAS_EXCEPTIONS
145 
146 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
147 /* an exported class was derived from a class that was not exported */)
148 
149 // This exception is thrown by (and only by) a failed Google Test
150 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
151 // are enabled).  We derive it from std::runtime_error, which is for
152 // errors presumably detectable only at run time.  Since
153 // std::runtime_error inherits from std::exception, many testing
154 // frameworks know how to extract and print the message inside it.
155 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
156  public:
157   explicit GoogleTestFailureException(const TestPartResult& failure);
158 };
159 
GTEST_DISABLE_MSC_WARNINGS_POP_()160 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
161 
162 #endif  // GTEST_HAS_EXCEPTIONS
163 
164 namespace edit_distance {
165 // Returns the optimal edits to go from 'left' to 'right'.
166 // All edits cost the same, with replace having lower priority than
167 // add/remove.
168 // Simple implementation of the Wagner-Fischer algorithm.
169 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
170 enum EditType { kMatch, kAdd, kRemove, kReplace };
171 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
172     const std::vector<size_t>& left, const std::vector<size_t>& right);
173 
174 // Same as above, but the input is represented as strings.
175 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
176     const std::vector<std::string>& left,
177     const std::vector<std::string>& right);
178 
179 // Create a diff of the input strings in Unified diff format.
180 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
181                                          const std::vector<std::string>& right,
182                                          size_t context = 2);
183 
184 }  // namespace edit_distance
185 
186 // Calculate the diff between 'left' and 'right' and return it in unified diff
187 // format.
188 // If not null, stores in 'total_line_count' the total number of lines found
189 // in left + right.
190 GTEST_API_ std::string DiffStrings(const std::string& left,
191                                    const std::string& right,
192                                    size_t* total_line_count);
193 
194 // Constructs and returns the message for an equality assertion
195 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
196 //
197 // The first four parameters are the expressions used in the assertion
198 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
199 // where foo is 5 and bar is 6, we have:
200 //
201 //   expected_expression: "foo"
202 //   actual_expression:   "bar"
203 //   expected_value:      "5"
204 //   actual_value:        "6"
205 //
206 // The ignoring_case parameter is true if and only if the assertion is a
207 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
208 // be inserted into the message.
209 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
210                                      const char* actual_expression,
211                                      const std::string& expected_value,
212                                      const std::string& actual_value,
213                                      bool ignoring_case);
214 
215 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
216 GTEST_API_ std::string GetBoolAssertionFailureMessage(
217     const AssertionResult& assertion_result,
218     const char* expression_text,
219     const char* actual_predicate_value,
220     const char* expected_predicate_value);
221 
222 // This template class represents an IEEE floating-point number
223 // (either single-precision or double-precision, depending on the
224 // template parameters).
225 //
226 // The purpose of this class is to do more sophisticated number
227 // comparison.  (Due to round-off error, etc, it's very unlikely that
228 // two floating-points will be equal exactly.  Hence a naive
229 // comparison by the == operation often doesn't work.)
230 //
231 // Format of IEEE floating-point:
232 //
233 //   The most-significant bit being the leftmost, an IEEE
234 //   floating-point looks like
235 //
236 //     sign_bit exponent_bits fraction_bits
237 //
238 //   Here, sign_bit is a single bit that designates the sign of the
239 //   number.
240 //
241 //   For float, there are 8 exponent bits and 23 fraction bits.
242 //
243 //   For double, there are 11 exponent bits and 52 fraction bits.
244 //
245 //   More details can be found at
246 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
247 //
248 // Template parameter:
249 //
250 //   RawType: the raw floating-point type (either float or double)
251 template <typename RawType>
252 class FloatingPoint {
253  public:
254   // Defines the unsigned integer type that has the same size as the
255   // floating point number.
256   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
257 
258   // Constants.
259 
260   // # of bits in a number.
261   static const size_t kBitCount = 8*sizeof(RawType);
262 
263   // # of fraction bits in a number.
264   static const size_t kFractionBitCount =
265     std::numeric_limits<RawType>::digits - 1;
266 
267   // # of exponent bits in a number.
268   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
269 
270   // The mask for the sign bit.
271   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
272 
273   // The mask for the fraction bits.
274   static const Bits kFractionBitMask =
275     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
276 
277   // The mask for the exponent bits.
278   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
279 
280   // How many ULP's (Units in the Last Place) we want to tolerate when
281   // comparing two numbers.  The larger the value, the more error we
282   // allow.  A 0 value means that two numbers must be exactly the same
283   // to be considered equal.
284   //
285   // The maximum error of a single floating-point operation is 0.5
286   // units in the last place.  On Intel CPU's, all floating-point
287   // calculations are done with 80-bit precision, while double has 64
288   // bits.  Therefore, 4 should be enough for ordinary use.
289   //
290   // See the following article for more details on ULP:
291   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
292   static const uint32_t kMaxUlps = 4;
293 
294   // Constructs a FloatingPoint from a raw floating-point number.
295   //
296   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
297   // around may change its bits, although the new value is guaranteed
298   // to be also a NAN.  Therefore, don't expect this constructor to
299   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)300   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
301 
302   // Static methods
303 
304   // Reinterprets a bit pattern as a floating-point number.
305   //
306   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)307   static RawType ReinterpretBits(const Bits bits) {
308     FloatingPoint fp(0);
309     fp.u_.bits_ = bits;
310     return fp.u_.value_;
311   }
312 
313   // Returns the floating-point number that represent positive infinity.
Infinity()314   static RawType Infinity() {
315     return ReinterpretBits(kExponentBitMask);
316   }
317 
318   // Returns the maximum representable finite floating-point number.
319   static RawType Max();
320 
321   // Non-static methods
322 
323   // Returns the bits that represents this number.
bits()324   const Bits &bits() const { return u_.bits_; }
325 
326   // Returns the exponent bits of this number.
exponent_bits()327   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
328 
329   // Returns the fraction bits of this number.
fraction_bits()330   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
331 
332   // Returns the sign bit of this number.
sign_bit()333   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
334 
335   // Returns true if and only if this is NAN (not a number).
is_nan()336   bool is_nan() const {
337     // It's a NAN if the exponent bits are all ones and the fraction
338     // bits are not entirely zeros.
339     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
340   }
341 
342   // Returns true if and only if this number is at most kMaxUlps ULP's away
343   // from rhs.  In particular, this function:
344   //
345   //   - returns false if either number is (or both are) NAN.
346   //   - treats really large numbers as almost equal to infinity.
347   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)348   bool AlmostEquals(const FloatingPoint& rhs) const {
349     // The IEEE standard says that any comparison operation involving
350     // a NAN must return false.
351     if (is_nan() || rhs.is_nan()) return false;
352 
353     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
354         <= kMaxUlps;
355   }
356 
357  private:
358   // The data type used to store the actual floating-point number.
359   union FloatingPointUnion {
360     RawType value_;  // The raw floating-point number.
361     Bits bits_;      // The bits that represent the number.
362   };
363 
364   // Converts an integer from the sign-and-magnitude representation to
365   // the biased representation.  More precisely, let N be 2 to the
366   // power of (kBitCount - 1), an integer x is represented by the
367   // unsigned number x + N.
368   //
369   // For instance,
370   //
371   //   -N + 1 (the most negative number representable using
372   //          sign-and-magnitude) is represented by 1;
373   //   0      is represented by N; and
374   //   N - 1  (the biggest number representable using
375   //          sign-and-magnitude) is represented by 2N - 1.
376   //
377   // Read http://en.wikipedia.org/wiki/Signed_number_representations
378   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)379   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
380     if (kSignBitMask & sam) {
381       // sam represents a negative number.
382       return ~sam + 1;
383     } else {
384       // sam represents a positive number.
385       return kSignBitMask | sam;
386     }
387   }
388 
389   // Given two numbers in the sign-and-magnitude representation,
390   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)391   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
392                                                      const Bits &sam2) {
393     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
394     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
395     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
396   }
397 
398   FloatingPointUnion u_;
399 };
400 
401 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
402 // macro defined by <windows.h>.
403 template <>
Max()404 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
405 template <>
Max()406 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
407 
408 // Typedefs the instances of the FloatingPoint template class that we
409 // care to use.
410 typedef FloatingPoint<float> Float;
411 typedef FloatingPoint<double> Double;
412 
413 // In order to catch the mistake of putting tests that use different
414 // test fixture classes in the same test suite, we need to assign
415 // unique IDs to fixture classes and compare them.  The TypeId type is
416 // used to hold such IDs.  The user should treat TypeId as an opaque
417 // type: the only operation allowed on TypeId values is to compare
418 // them for equality using the == operator.
419 typedef const void* TypeId;
420 
421 template <typename T>
422 class TypeIdHelper {
423  public:
424   // dummy_ must not have a const type.  Otherwise an overly eager
425   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
426   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
427   static bool dummy_;
428 };
429 
430 template <typename T>
431 bool TypeIdHelper<T>::dummy_ = false;
432 
433 // GetTypeId<T>() returns the ID of type T.  Different values will be
434 // returned for different types.  Calling the function twice with the
435 // same type argument is guaranteed to return the same ID.
436 template <typename T>
GetTypeId()437 TypeId GetTypeId() {
438   // The compiler is required to allocate a different
439   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
440   // the template.  Therefore, the address of dummy_ is guaranteed to
441   // be unique.
442   return &(TypeIdHelper<T>::dummy_);
443 }
444 
445 // Returns the type ID of ::testing::Test.  Always call this instead
446 // of GetTypeId< ::testing::Test>() to get the type ID of
447 // ::testing::Test, as the latter may give the wrong result due to a
448 // suspected linker bug when compiling Google Test as a Mac OS X
449 // framework.
450 GTEST_API_ TypeId GetTestTypeId();
451 
452 // Defines the abstract factory interface that creates instances
453 // of a Test object.
454 class TestFactoryBase {
455  public:
~TestFactoryBase()456   virtual ~TestFactoryBase() {}
457 
458   // Creates a test instance to run. The instance is both created and destroyed
459   // within TestInfoImpl::Run()
460   virtual Test* CreateTest() = 0;
461 
462  protected:
TestFactoryBase()463   TestFactoryBase() {}
464 
465  private:
466   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
467 };
468 
469 // This class provides implementation of TeastFactoryBase interface.
470 // It is used in TEST and TEST_F macros.
471 template <class TestClass>
472 class TestFactoryImpl : public TestFactoryBase {
473  public:
CreateTest()474   Test* CreateTest() override { return new TestClass; }
475 };
476 
477 #if GTEST_OS_WINDOWS
478 
479 // Predicate-formatters for implementing the HRESULT checking macros
480 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
481 // We pass a long instead of HRESULT to avoid causing an
482 // include dependency for the HRESULT type.
483 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
484                                             long hr);  // NOLINT
485 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
486                                             long hr);  // NOLINT
487 
488 #endif  // GTEST_OS_WINDOWS
489 
490 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
491 using SetUpTestSuiteFunc = void (*)();
492 using TearDownTestSuiteFunc = void (*)();
493 
494 struct CodeLocation {
CodeLocationCodeLocation495   CodeLocation(const std::string& a_file, int a_line)
496       : file(a_file), line(a_line) {}
497 
498   std::string file;
499   int line;
500 };
501 
502 //  Helper to identify which setup function for TestCase / TestSuite to call.
503 //  Only one function is allowed, either TestCase or TestSute but not both.
504 
505 // Utility functions to help SuiteApiResolver
506 using SetUpTearDownSuiteFuncType = void (*)();
507 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)508 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
509     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
510   return a == def ? nullptr : a;
511 }
512 
513 template <typename T>
514 //  Note that SuiteApiResolver inherits from T because
515 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
516 //  SuiteApiResolver can access them.
517 struct SuiteApiResolver : T {
518   // testing::Test is only forward declared at this point. So we make it a
519   // dependent class for the compiler to be OK with it.
520   using Test =
521       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
522 
GetSetUpCaseOrSuiteSuiteApiResolver523   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
524                                                         int line_num) {
525 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
526     SetUpTearDownSuiteFuncType test_case_fp =
527         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
528     SetUpTearDownSuiteFuncType test_suite_fp =
529         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
530 
531     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
532         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
533            "make sure there is only one present at "
534         << filename << ":" << line_num;
535 
536     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
537 #else
538     (void)(filename);
539     (void)(line_num);
540     return &T::SetUpTestSuite;
541 #endif
542   }
543 
GetTearDownCaseOrSuiteSuiteApiResolver544   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
545                                                            int line_num) {
546 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
547     SetUpTearDownSuiteFuncType test_case_fp =
548         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
549     SetUpTearDownSuiteFuncType test_suite_fp =
550         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
551 
552     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
553         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
554            " please make sure there is only one present at"
555         << filename << ":" << line_num;
556 
557     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
558 #else
559     (void)(filename);
560     (void)(line_num);
561     return &T::TearDownTestSuite;
562 #endif
563   }
564 };
565 
566 // Creates a new TestInfo object and registers it with Google Test;
567 // returns the created object.
568 //
569 // Arguments:
570 //
571 //   test_suite_name:  name of the test suite
572 //   name:             name of the test
573 //   type_param:       the name of the test's type parameter, or NULL if
574 //                     this is not a typed or a type-parameterized test.
575 //   value_param:      text representation of the test's value parameter,
576 //                     or NULL if this is not a type-parameterized test.
577 //   code_location:    code location where the test is defined
578 //   fixture_class_id: ID of the test fixture class
579 //   set_up_tc:        pointer to the function that sets up the test suite
580 //   tear_down_tc:     pointer to the function that tears down the test suite
581 //   factory:          pointer to the factory that creates a test object.
582 //                     The newly created TestInfo instance will assume
583 //                     ownership of the factory object.
584 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
585     const char* test_suite_name, const char* name, const char* type_param,
586     const char* value_param, CodeLocation code_location,
587     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
588     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
589 
590 // If *pstr starts with the given prefix, modifies *pstr to be right
591 // past the prefix and returns true; otherwise leaves *pstr unchanged
592 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
593 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
594 
595 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
596 /* class A needs to have dll-interface to be used by clients of class B */)
597 
598 // State of the definition of a type-parameterized test suite.
599 class GTEST_API_ TypedTestSuitePState {
600  public:
TypedTestSuitePState()601   TypedTestSuitePState() : registered_(false) {}
602 
603   // Adds the given test name to defined_test_names_ and return true
604   // if the test suite hasn't been registered; otherwise aborts the
605   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)606   bool AddTestName(const char* file, int line, const char* case_name,
607                    const char* test_name) {
608     if (registered_) {
609       fprintf(stderr,
610               "%s Test %s must be defined before "
611               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
612               FormatFileLocation(file, line).c_str(), test_name, case_name);
613       fflush(stderr);
614       posix::Abort();
615     }
616     registered_tests_.insert(
617         ::std::make_pair(test_name, CodeLocation(file, line)));
618     return true;
619   }
620 
TestExists(const std::string & test_name)621   bool TestExists(const std::string& test_name) const {
622     return registered_tests_.count(test_name) > 0;
623   }
624 
GetCodeLocation(const std::string & test_name)625   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
626     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
627     GTEST_CHECK_(it != registered_tests_.end());
628     return it->second;
629   }
630 
631   // Verifies that registered_tests match the test names in
632   // defined_test_names_; returns registered_tests if successful, or
633   // aborts the program otherwise.
634   const char* VerifyRegisteredTestNames(const char* test_suite_name,
635                                         const char* file, int line,
636                                         const char* registered_tests);
637 
638  private:
639   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
640 
641   bool registered_;
642   RegisteredTestsMap registered_tests_;
643 };
644 
645 //  Legacy API is deprecated but still available
646 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
647 using TypedTestCasePState = TypedTestSuitePState;
648 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
649 
GTEST_DISABLE_MSC_WARNINGS_POP_()650 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
651 
652 // Skips to the first non-space char after the first comma in 'str';
653 // returns NULL if no comma is found in 'str'.
654 inline const char* SkipComma(const char* str) {
655   const char* comma = strchr(str, ',');
656   if (comma == nullptr) {
657     return nullptr;
658   }
659   while (IsSpace(*(++comma))) {}
660   return comma;
661 }
662 
663 // Returns the prefix of 'str' before the first comma in it; returns
664 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)665 inline std::string GetPrefixUntilComma(const char* str) {
666   const char* comma = strchr(str, ',');
667   return comma == nullptr ? str : std::string(str, comma);
668 }
669 
670 // Splits a given string on a given delimiter, populating a given
671 // vector with the fields.
672 void SplitString(const ::std::string& str, char delimiter,
673                  ::std::vector< ::std::string>* dest);
674 
675 // The default argument to the template below for the case when the user does
676 // not provide a name generator.
677 struct DefaultNameGenerator {
678   template <typename T>
GetNameDefaultNameGenerator679   static std::string GetName(int i) {
680     return StreamableToString(i);
681   }
682 };
683 
684 template <typename Provided = DefaultNameGenerator>
685 struct NameGeneratorSelector {
686   typedef Provided type;
687 };
688 
689 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)690 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
691 
692 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)693 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
694   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
695   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
696                                           i + 1);
697 }
698 
699 template <typename NameGenerator, typename Types>
GenerateNames()700 std::vector<std::string> GenerateNames() {
701   std::vector<std::string> result;
702   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
703   return result;
704 }
705 
706 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
707 // registers a list of type-parameterized tests with Google Test.  The
708 // return value is insignificant - we just need to return something
709 // such that we can call this function in a namespace scope.
710 //
711 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
712 // template parameter.  It's defined in gtest-type-util.h.
713 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
714 class TypeParameterizedTest {
715  public:
716   // 'index' is the index of the test in the type list 'Types'
717   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
718   // Types).  Valid values for 'index' are [0, N - 1] where N is the
719   // length of Types.
720   static bool Register(const char* prefix, const CodeLocation& code_location,
721                        const char* case_name, const char* test_names, int index,
722                        const std::vector<std::string>& type_names =
723                            GenerateNames<DefaultNameGenerator, Types>()) {
724     typedef typename Types::Head Type;
725     typedef Fixture<Type> FixtureClass;
726     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
727 
728     // First, registers the first type-parameterized test in the type
729     // list.
730     MakeAndRegisterTestInfo(
731         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
732          "/" + type_names[static_cast<size_t>(index)])
733             .c_str(),
734         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
735         GetTypeName<Type>().c_str(),
736         nullptr,  // No value parameter.
737         code_location, GetTypeId<FixtureClass>(),
738         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
739             code_location.file.c_str(), code_location.line),
740         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
741             code_location.file.c_str(), code_location.line),
742         new TestFactoryImpl<TestClass>);
743 
744     // Next, recurses (at compile time) with the tail of the type list.
745     return TypeParameterizedTest<Fixture, TestSel,
746                                  typename Types::Tail>::Register(prefix,
747                                                                  code_location,
748                                                                  case_name,
749                                                                  test_names,
750                                                                  index + 1,
751                                                                  type_names);
752   }
753 };
754 
755 // The base case for the compile time recursion.
756 template <GTEST_TEMPLATE_ Fixture, class TestSel>
757 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
758  public:
759   static bool Register(const char* /*prefix*/, const CodeLocation&,
760                        const char* /*case_name*/, const char* /*test_names*/,
761                        int /*index*/,
762                        const std::vector<std::string>& =
763                            std::vector<std::string>() /*type_names*/) {
764     return true;
765   }
766 };
767 
768 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
769                                                    CodeLocation code_location);
770 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
771     const char* case_name);
772 
773 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
774 // registers *all combinations* of 'Tests' and 'Types' with Google
775 // Test.  The return value is insignificant - we just need to return
776 // something such that we can call this function in a namespace scope.
777 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
778 class TypeParameterizedTestSuite {
779  public:
780   static bool Register(const char* prefix, CodeLocation code_location,
781                        const TypedTestSuitePState* state, const char* case_name,
782                        const char* test_names,
783                        const std::vector<std::string>& type_names =
784                            GenerateNames<DefaultNameGenerator, Types>()) {
785     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
786     std::string test_name = StripTrailingSpaces(
787         GetPrefixUntilComma(test_names));
788     if (!state->TestExists(test_name)) {
789       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
790               case_name, test_name.c_str(),
791               FormatFileLocation(code_location.file.c_str(),
792                                  code_location.line).c_str());
793       fflush(stderr);
794       posix::Abort();
795     }
796     const CodeLocation& test_location = state->GetCodeLocation(test_name);
797 
798     typedef typename Tests::Head Head;
799 
800     // First, register the first test in 'Test' for each type in 'Types'.
801     TypeParameterizedTest<Fixture, Head, Types>::Register(
802         prefix, test_location, case_name, test_names, 0, type_names);
803 
804     // Next, recurses (at compile time) with the tail of the test list.
805     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
806                                       Types>::Register(prefix, code_location,
807                                                        state, case_name,
808                                                        SkipComma(test_names),
809                                                        type_names);
810   }
811 };
812 
813 // The base case for the compile time recursion.
814 template <GTEST_TEMPLATE_ Fixture, typename Types>
815 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
816  public:
817   static bool Register(const char* /*prefix*/, const CodeLocation&,
818                        const TypedTestSuitePState* /*state*/,
819                        const char* /*case_name*/, const char* /*test_names*/,
820                        const std::vector<std::string>& =
821                            std::vector<std::string>() /*type_names*/) {
822     return true;
823   }
824 };
825 
826 // Returns the current OS stack trace as an std::string.
827 //
828 // The maximum number of stack frames to be included is specified by
829 // the gtest_stack_trace_depth flag.  The skip_count parameter
830 // specifies the number of top frames to be skipped, which doesn't
831 // count against the number of frames to be included.
832 //
833 // For example, if Foo() calls Bar(), which in turn calls
834 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
835 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
836 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
837     UnitTest* unit_test, int skip_count);
838 
839 // Helpers for suppressing warnings on unreachable code or constant
840 // condition.
841 
842 // Always returns true.
843 GTEST_API_ bool AlwaysTrue();
844 
845 // Always returns false.
AlwaysFalse()846 inline bool AlwaysFalse() { return !AlwaysTrue(); }
847 
848 // Helper for suppressing false warning from Clang on a const char*
849 // variable declared in a conditional expression always being NULL in
850 // the else branch.
851 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr852   ConstCharPtr(const char* str) : value(str) {}
853   operator bool() const { return true; }
854   const char* value;
855 };
856 
857 // Helper for declaring std::string within 'if' statement
858 // in pre C++17 build environment.
859 struct TrueWithString {
860   TrueWithString() = default;
TrueWithStringTrueWithString861   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString862   explicit TrueWithString(const std::string& str) : value(str) {}
863   explicit operator bool() const { return true; }
864   std::string value;
865 };
866 
867 // A simple Linear Congruential Generator for generating random
868 // numbers with a uniform distribution.  Unlike rand() and srand(), it
869 // doesn't use global state (and therefore can't interfere with user
870 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
871 // but it's good enough for our purposes.
872 class GTEST_API_ Random {
873  public:
874   static const uint32_t kMaxRange = 1u << 31;
875 
Random(uint32_t seed)876   explicit Random(uint32_t seed) : state_(seed) {}
877 
Reseed(uint32_t seed)878   void Reseed(uint32_t seed) { state_ = seed; }
879 
880   // Generates a random number from [0, range).  Crashes if 'range' is
881   // 0 or greater than kMaxRange.
882   uint32_t Generate(uint32_t range);
883 
884  private:
885   uint32_t state_;
886   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
887 };
888 
889 // Turns const U&, U&, const U, and U all into U.
890 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
891   typename std::remove_const<typename std::remove_reference<T>::type>::type
892 
893 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
894 // that's true if and only if T has methods DebugString() and ShortDebugString()
895 // that return std::string.
896 template <typename T>
897 class HasDebugStringAndShortDebugString {
898  private:
899   template <typename C>
900   static auto CheckDebugString(C*) -> typename std::is_same<
901       std::string, decltype(std::declval<const C>().DebugString())>::type;
902   template <typename>
903   static std::false_type CheckDebugString(...);
904 
905   template <typename C>
906   static auto CheckShortDebugString(C*) -> typename std::is_same<
907       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
908   template <typename>
909   static std::false_type CheckShortDebugString(...);
910 
911   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
912   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
913 
914  public:
915   static constexpr bool value =
916       HasDebugStringType::value && HasShortDebugStringType::value;
917 };
918 
919 template <typename T>
920 constexpr bool HasDebugStringAndShortDebugString<T>::value;
921 
922 // When the compiler sees expression IsContainerTest<C>(0), if C is an
923 // STL-style container class, the first overload of IsContainerTest
924 // will be viable (since both C::iterator* and C::const_iterator* are
925 // valid types and NULL can be implicitly converted to them).  It will
926 // be picked over the second overload as 'int' is a perfect match for
927 // the type of argument 0.  If C::iterator or C::const_iterator is not
928 // a valid type, the first overload is not viable, and the second
929 // overload will be picked.  Therefore, we can determine whether C is
930 // a container class by checking the type of IsContainerTest<C>(0).
931 // The value of the expression is insignificant.
932 //
933 // In C++11 mode we check the existence of a const_iterator and that an
934 // iterator is properly implemented for the container.
935 //
936 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
937 // The reason is that C++ injects the name of a class as a member of the
938 // class itself (e.g. you can refer to class iterator as either
939 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
940 // only, for example, we would mistakenly think that a class named
941 // iterator is an STL container.
942 //
943 // Also note that the simpler approach of overloading
944 // IsContainerTest(typename C::const_iterator*) and
945 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
946 typedef int IsContainer;
947 template <class C,
948           class Iterator = decltype(::std::declval<const C&>().begin()),
949           class = decltype(::std::declval<const C&>().end()),
950           class = decltype(++::std::declval<Iterator&>()),
951           class = decltype(*::std::declval<Iterator>()),
952           class = typename C::const_iterator>
IsContainerTest(int)953 IsContainer IsContainerTest(int /* dummy */) {
954   return 0;
955 }
956 
957 typedef char IsNotContainer;
958 template <class C>
IsContainerTest(long)959 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
960 
961 // Trait to detect whether a type T is a hash table.
962 // The heuristic used is that the type contains an inner type `hasher` and does
963 // not contain an inner type `reverse_iterator`.
964 // If the container is iterable in reverse, then order might actually matter.
965 template <typename T>
966 struct IsHashTable {
967  private:
968   template <typename U>
969   static char test(typename U::hasher*, typename U::reverse_iterator*);
970   template <typename U>
971   static int test(typename U::hasher*, ...);
972   template <typename U>
973   static char test(...);
974 
975  public:
976   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
977 };
978 
979 template <typename T>
980 const bool IsHashTable<T>::value;
981 
982 template <typename C,
983           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
984 struct IsRecursiveContainerImpl;
985 
986 template <typename C>
987 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
988 
989 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
990 // obey the same inconsistencies as the IsContainerTest, namely check if
991 // something is a container is relying on only const_iterator in C++11 and
992 // is relying on both const_iterator and iterator otherwise
993 template <typename C>
994 struct IsRecursiveContainerImpl<C, true> {
995   using value_type = decltype(*std::declval<typename C::const_iterator>());
996   using type =
997       std::is_same<typename std::remove_const<
998                        typename std::remove_reference<value_type>::type>::type,
999                    C>;
1000 };
1001 
1002 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1003 // evaluates whether C is a recursive container type. A recursive container
1004 // type is a container type whose value_type is equal to the container type
1005 // itself. An example for a recursive container type is
1006 // boost::filesystem::path, whose iterator has a value_type that is equal to
1007 // boost::filesystem::path.
1008 template <typename C>
1009 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1010 
1011 // Utilities for native arrays.
1012 
1013 // ArrayEq() compares two k-dimensional native arrays using the
1014 // elements' operator==, where k can be any integer >= 0.  When k is
1015 // 0, ArrayEq() degenerates into comparing a single pair of values.
1016 
1017 template <typename T, typename U>
1018 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1019 
1020 // This generic version is used when k is 0.
1021 template <typename T, typename U>
1022 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1023 
1024 // This overload is used when k >= 1.
1025 template <typename T, typename U, size_t N>
1026 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1027   return internal::ArrayEq(lhs, N, rhs);
1028 }
1029 
1030 // This helper reduces code bloat.  If we instead put its logic inside
1031 // the previous ArrayEq() function, arrays with different sizes would
1032 // lead to different copies of the template code.
1033 template <typename T, typename U>
1034 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1035   for (size_t i = 0; i != size; i++) {
1036     if (!internal::ArrayEq(lhs[i], rhs[i]))
1037       return false;
1038   }
1039   return true;
1040 }
1041 
1042 // Finds the first element in the iterator range [begin, end) that
1043 // equals elem.  Element may be a native array type itself.
1044 template <typename Iter, typename Element>
1045 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1046   for (Iter it = begin; it != end; ++it) {
1047     if (internal::ArrayEq(*it, elem))
1048       return it;
1049   }
1050   return end;
1051 }
1052 
1053 // CopyArray() copies a k-dimensional native array using the elements'
1054 // operator=, where k can be any integer >= 0.  When k is 0,
1055 // CopyArray() degenerates into copying a single value.
1056 
1057 template <typename T, typename U>
1058 void CopyArray(const T* from, size_t size, U* to);
1059 
1060 // This generic version is used when k is 0.
1061 template <typename T, typename U>
1062 inline void CopyArray(const T& from, U* to) { *to = from; }
1063 
1064 // This overload is used when k >= 1.
1065 template <typename T, typename U, size_t N>
1066 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1067   internal::CopyArray(from, N, *to);
1068 }
1069 
1070 // This helper reduces code bloat.  If we instead put its logic inside
1071 // the previous CopyArray() function, arrays with different sizes
1072 // would lead to different copies of the template code.
1073 template <typename T, typename U>
1074 void CopyArray(const T* from, size_t size, U* to) {
1075   for (size_t i = 0; i != size; i++) {
1076     internal::CopyArray(from[i], to + i);
1077   }
1078 }
1079 
1080 // The relation between an NativeArray object (see below) and the
1081 // native array it represents.
1082 // We use 2 different structs to allow non-copyable types to be used, as long
1083 // as RelationToSourceReference() is passed.
1084 struct RelationToSourceReference {};
1085 struct RelationToSourceCopy {};
1086 
1087 // Adapts a native array to a read-only STL-style container.  Instead
1088 // of the complete STL container concept, this adaptor only implements
1089 // members useful for Google Mock's container matchers.  New members
1090 // should be added as needed.  To simplify the implementation, we only
1091 // support Element being a raw type (i.e. having no top-level const or
1092 // reference modifier).  It's the client's responsibility to satisfy
1093 // this requirement.  Element can be an array type itself (hence
1094 // multi-dimensional arrays are supported).
1095 template <typename Element>
1096 class NativeArray {
1097  public:
1098   // STL-style container typedefs.
1099   typedef Element value_type;
1100   typedef Element* iterator;
1101   typedef const Element* const_iterator;
1102 
1103   // Constructs from a native array. References the source.
1104   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1105     InitRef(array, count);
1106   }
1107 
1108   // Constructs from a native array. Copies the source.
1109   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1110     InitCopy(array, count);
1111   }
1112 
1113   // Copy constructor.
1114   NativeArray(const NativeArray& rhs) {
1115     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1116   }
1117 
1118   ~NativeArray() {
1119     if (clone_ != &NativeArray::InitRef)
1120       delete[] array_;
1121   }
1122 
1123   // STL-style container methods.
1124   size_t size() const { return size_; }
1125   const_iterator begin() const { return array_; }
1126   const_iterator end() const { return array_ + size_; }
1127   bool operator==(const NativeArray& rhs) const {
1128     return size() == rhs.size() &&
1129         ArrayEq(begin(), size(), rhs.begin());
1130   }
1131 
1132  private:
1133   static_assert(!std::is_const<Element>::value, "Type must not be const");
1134   static_assert(!std::is_reference<Element>::value,
1135                 "Type must not be a reference");
1136 
1137   // Initializes this object with a copy of the input.
1138   void InitCopy(const Element* array, size_t a_size) {
1139     Element* const copy = new Element[a_size];
1140     CopyArray(array, a_size, copy);
1141     array_ = copy;
1142     size_ = a_size;
1143     clone_ = &NativeArray::InitCopy;
1144   }
1145 
1146   // Initializes this object with a reference of the input.
1147   void InitRef(const Element* array, size_t a_size) {
1148     array_ = array;
1149     size_ = a_size;
1150     clone_ = &NativeArray::InitRef;
1151   }
1152 
1153   const Element* array_;
1154   size_t size_;
1155   void (NativeArray::*clone_)(const Element*, size_t);
1156 };
1157 
1158 // Backport of std::index_sequence.
1159 template <size_t... Is>
1160 struct IndexSequence {
1161   using type = IndexSequence;
1162 };
1163 
1164 // Double the IndexSequence, and one if plus_one is true.
1165 template <bool plus_one, typename T, size_t sizeofT>
1166 struct DoubleSequence;
1167 template <size_t... I, size_t sizeofT>
1168 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1169   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1170 };
1171 template <size_t... I, size_t sizeofT>
1172 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1173   using type = IndexSequence<I..., (sizeofT + I)...>;
1174 };
1175 
1176 // Backport of std::make_index_sequence.
1177 // It uses O(ln(N)) instantiation depth.
1178 template <size_t N>
1179 struct MakeIndexSequenceImpl
1180     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1181                      N / 2>::type {};
1182 
1183 template <>
1184 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1185 
1186 template <size_t N>
1187 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1188 
1189 template <typename... T>
1190 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1191 
1192 template <size_t>
1193 struct Ignore {
1194   Ignore(...);  // NOLINT
1195 };
1196 
1197 template <typename>
1198 struct ElemFromListImpl;
1199 template <size_t... I>
1200 struct ElemFromListImpl<IndexSequence<I...>> {
1201   // We make Ignore a template to solve a problem with MSVC.
1202   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1203   // MSVC doesn't understand how to deal with that pack expansion.
1204   // Use `0 * I` to have a single instantiation of Ignore.
1205   template <typename R>
1206   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1207 };
1208 
1209 template <size_t N, typename... T>
1210 struct ElemFromList {
1211   using type =
1212       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1213           static_cast<T (*)()>(nullptr)...));
1214 };
1215 
1216 struct FlatTupleConstructTag {};
1217 
1218 template <typename... T>
1219 class FlatTuple;
1220 
1221 template <typename Derived, size_t I>
1222 struct FlatTupleElemBase;
1223 
1224 template <typename... T, size_t I>
1225 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1226   using value_type = typename ElemFromList<I, T...>::type;
1227   FlatTupleElemBase() = default;
1228   template <typename Arg>
1229   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1230       : value(std::forward<Arg>(t)) {}
1231   value_type value;
1232 };
1233 
1234 template <typename Derived, typename Idx>
1235 struct FlatTupleBase;
1236 
1237 template <size_t... Idx, typename... T>
1238 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1239     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1240   using Indices = IndexSequence<Idx...>;
1241   FlatTupleBase() = default;
1242   template <typename... Args>
1243   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1244       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1245                                                 std::forward<Args>(args))... {}
1246 
1247   template <size_t I>
1248   const typename ElemFromList<I, T...>::type& Get() const {
1249     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1250   }
1251 
1252   template <size_t I>
1253   typename ElemFromList<I, T...>::type& Get() {
1254     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1255   }
1256 
1257   template <typename F>
1258   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1259     return std::forward<F>(f)(Get<Idx>()...);
1260   }
1261 
1262   template <typename F>
1263   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1264     return std::forward<F>(f)(Get<Idx>()...);
1265   }
1266 };
1267 
1268 // Analog to std::tuple but with different tradeoffs.
1269 // This class minimizes the template instantiation depth, thus allowing more
1270 // elements than std::tuple would. std::tuple has been seen to require an
1271 // instantiation depth of more than 10x the number of elements in some
1272 // implementations.
1273 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1274 // regardless of T...
1275 // MakeIndexSequence, on the other hand, it is recursive but with an
1276 // instantiation depth of O(ln(N)).
1277 template <typename... T>
1278 class FlatTuple
1279     : private FlatTupleBase<FlatTuple<T...>,
1280                             typename MakeIndexSequence<sizeof...(T)>::type> {
1281   using Indices = typename FlatTupleBase<
1282       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1283 
1284  public:
1285   FlatTuple() = default;
1286   template <typename... Args>
1287   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1288       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1289 
1290   using FlatTuple::FlatTupleBase::Apply;
1291   using FlatTuple::FlatTupleBase::Get;
1292 };
1293 
1294 // Utility functions to be called with static_assert to induce deprecation
1295 // warnings.
1296 GTEST_INTERNAL_DEPRECATED(
1297     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1298     "INSTANTIATE_TEST_SUITE_P")
1299 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1300 
1301 GTEST_INTERNAL_DEPRECATED(
1302     "TYPED_TEST_CASE_P is deprecated, please use "
1303     "TYPED_TEST_SUITE_P")
1304 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1305 
1306 GTEST_INTERNAL_DEPRECATED(
1307     "TYPED_TEST_CASE is deprecated, please use "
1308     "TYPED_TEST_SUITE")
1309 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1310 
1311 GTEST_INTERNAL_DEPRECATED(
1312     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1313     "REGISTER_TYPED_TEST_SUITE_P")
1314 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1315 
1316 GTEST_INTERNAL_DEPRECATED(
1317     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1318     "INSTANTIATE_TYPED_TEST_SUITE_P")
1319 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1320 
1321 }  // namespace internal
1322 }  // namespace testing
1323 
1324 namespace std {
1325 // Some standard library implementations use `struct tuple_size` and some use
1326 // `class tuple_size`. Clang warns about the mismatch.
1327 // https://reviews.llvm.org/D55466
1328 #ifdef __clang__
1329 #pragma clang diagnostic push
1330 #pragma clang diagnostic ignored "-Wmismatched-tags"
1331 #endif
1332 template <typename... Ts>
1333 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1334     : std::integral_constant<size_t, sizeof...(Ts)> {};
1335 #ifdef __clang__
1336 #pragma clang diagnostic pop
1337 #endif
1338 }  // namespace std
1339 
1340 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1341   ::testing::internal::AssertHelper(result_type, file, line, message) \
1342     = ::testing::Message()
1343 
1344 #define GTEST_MESSAGE_(message, result_type) \
1345   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1346 
1347 #define GTEST_FATAL_FAILURE_(message) \
1348   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1349 
1350 #define GTEST_NONFATAL_FAILURE_(message) \
1351   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1352 
1353 #define GTEST_SUCCESS_(message) \
1354   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1355 
1356 #define GTEST_SKIP_(message) \
1357   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1358 
1359 // Suppress MSVC warning 4072 (unreachable code) for the code following
1360 // statement if it returns or throws (or doesn't return or throw in some
1361 // situations).
1362 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1363 // "else" from attaching to our "if".
1364 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1365   if (::testing::internal::AlwaysTrue()) {                        \
1366     statement;                                                    \
1367   } else                     /* NOLINT */                         \
1368     static_assert(true, "")  // User must have a semicolon after expansion.
1369 
1370 #if GTEST_HAS_EXCEPTIONS
1371 
1372 namespace testing {
1373 namespace internal {
1374 
1375 class NeverThrown {
1376  public:
1377   const char* what() const noexcept {
1378     return "this exception should never be thrown";
1379   }
1380 };
1381 
1382 }  // namespace internal
1383 }  // namespace testing
1384 
1385 #if GTEST_HAS_RTTI
1386 
1387 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1388 
1389 #else  // GTEST_HAS_RTTI
1390 
1391 #define GTEST_EXCEPTION_TYPE_(e) \
1392   std::string { "an std::exception-derived error" }
1393 
1394 #endif  // GTEST_HAS_RTTI
1395 
1396 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1397   catch (typename std::conditional<                                            \
1398          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1399                           expected_exception>::type>::type,                    \
1400                       std::exception>::value,                                  \
1401          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1402              e) {                                                              \
1403     gtest_msg.value = "Expected: " #statement                                  \
1404                       " throws an exception of type " #expected_exception      \
1405                       ".\n  Actual: it throws ";                               \
1406     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1407     gtest_msg.value += " with description \"";                                 \
1408     gtest_msg.value += e.what();                                               \
1409     gtest_msg.value += "\".";                                                  \
1410     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1411   }
1412 
1413 #else  // GTEST_HAS_EXCEPTIONS
1414 
1415 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1416 
1417 #endif  // GTEST_HAS_EXCEPTIONS
1418 
1419 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1420   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1421   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1422     bool gtest_caught_expected = false;                                     \
1423     try {                                                                   \
1424       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1425     } catch (expected_exception const&) {                                   \
1426       gtest_caught_expected = true;                                         \
1427     }                                                                       \
1428     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1429     catch (...) {                                                           \
1430       gtest_msg.value = "Expected: " #statement                             \
1431                         " throws an exception of type " #expected_exception \
1432                         ".\n  Actual: it throws a different type.";         \
1433       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1434     }                                                                       \
1435     if (!gtest_caught_expected) {                                           \
1436       gtest_msg.value = "Expected: " #statement                             \
1437                         " throws an exception of type " #expected_exception \
1438                         ".\n  Actual: it throws nothing.";                  \
1439       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1440     }                                                                       \
1441   } else /*NOLINT*/                                                         \
1442     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1443         : fail(gtest_msg.value.c_str())
1444 
1445 #if GTEST_HAS_EXCEPTIONS
1446 
1447 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1448   catch (std::exception const& e) {                               \
1449     gtest_msg.value = "it throws ";                               \
1450     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1451     gtest_msg.value += " with description \"";                    \
1452     gtest_msg.value += e.what();                                  \
1453     gtest_msg.value += "\".";                                     \
1454     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1455   }
1456 
1457 #else  // GTEST_HAS_EXCEPTIONS
1458 
1459 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1460 
1461 #endif  // GTEST_HAS_EXCEPTIONS
1462 
1463 #define GTEST_TEST_NO_THROW_(statement, fail) \
1464   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1465   if (::testing::internal::TrueWithString gtest_msg{}) { \
1466     try { \
1467       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1468     } \
1469     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1470     catch (...) { \
1471       gtest_msg.value = "it throws."; \
1472       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1473     } \
1474   } else \
1475     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1476       fail(("Expected: " #statement " doesn't throw an exception.\n" \
1477             "  Actual: " + gtest_msg.value).c_str())
1478 
1479 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1480   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1481   if (::testing::internal::AlwaysTrue()) { \
1482     bool gtest_caught_any = false; \
1483     try { \
1484       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1485     } \
1486     catch (...) { \
1487       gtest_caught_any = true; \
1488     } \
1489     if (!gtest_caught_any) { \
1490       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1491     } \
1492   } else \
1493     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1494       fail("Expected: " #statement " throws an exception.\n" \
1495            "  Actual: it doesn't.")
1496 
1497 
1498 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1499 // either a boolean expression or an AssertionResult. text is a textual
1500 // representation of expression as it was passed into the EXPECT_TRUE.
1501 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1502   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1503   if (const ::testing::AssertionResult gtest_ar_ = \
1504       ::testing::AssertionResult(expression)) \
1505     ; \
1506   else \
1507     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1508         gtest_ar_, text, #actual, #expected).c_str())
1509 
1510 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1511   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1512   if (::testing::internal::AlwaysTrue()) { \
1513     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1514     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1515     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1516       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1517     } \
1518   } else \
1519     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1520       fail("Expected: " #statement " doesn't generate new fatal " \
1521            "failures in the current thread.\n" \
1522            "  Actual: it does.")
1523 
1524 // Expands to the name of the class that implements the given test.
1525 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1526   test_suite_name##_##test_name##_Test
1527 
1528 // Helper macro for defining tests.
1529 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
1530   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
1531                 "test_suite_name must not be empty");                         \
1532   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
1533                 "test_name must not be empty");                               \
1534   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
1535       : public parent_class {                                                 \
1536    public:                                                                    \
1537     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;           \
1538     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1539     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1540                                                            test_name));       \
1541     GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1542                                                            test_name));       \
1543                                                                               \
1544    private:                                                                   \
1545     void TestBody() override;                                                 \
1546     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
1547   };                                                                          \
1548                                                                               \
1549   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
1550                                                     test_name)::test_info_ =  \
1551       ::testing::internal::MakeAndRegisterTestInfo(                           \
1552           #test_suite_name, #test_name, nullptr, nullptr,                     \
1553           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1554           ::testing::internal::SuiteApiResolver<                              \
1555               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
1556           ::testing::internal::SuiteApiResolver<                              \
1557               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
1558           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
1559               test_suite_name, test_name)>);                                  \
1560   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1561 
1562 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1563