• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for batch_to_space_nd."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_batch_to_space_nd_tests(options):
29  """Make a set of tests to do batch_to_space_nd."""
30
31  test_parameters = [
32      {
33          "dtype": [tf.float32, tf.int64, tf.int32],
34          "input_shape": [[12, 3, 3, 1]],
35          "block_shape": [[1, 4], [2, 2], [3, 4]],
36          "crops": [[[0, 0], [0, 0]], [[1, 1], [1, 1]]],
37          "constant_block_shape": [True, False],
38          "constant_crops": [True, False],
39          "dynamic_range_quantize": [False],
40      },
41      # Single batch (no-op)
42      {
43          "dtype": [tf.float32],
44          "input_shape": [[1, 3, 3, 1]],
45          "block_shape": [[1, 1]],
46          "crops": [[[0, 0], [0, 0]], [[1, 1], [1, 1]]],
47          "constant_block_shape": [True],
48          "constant_crops": [True],
49          "dynamic_range_quantize": [True, False],
50      },
51      # 3D use case.
52      {
53          "dtype": [tf.float32],
54          "input_shape": [[1, 3, 3]],
55          "block_shape": [[1]],
56          "crops": [[[0, 0]], [[1, 1]]],
57          "constant_block_shape": [True],
58          "constant_crops": [True],
59          "dynamic_range_quantize": [True, False],
60      },
61  ]
62
63  if options.run_with_flex:
64    # Non-4D use case: 1 batch dimension, 3 spatial dimensions, 2 others.
65    test_parameters = test_parameters + [{
66        "dtype": [tf.float32],
67        "input_shape": [[8, 2, 2, 2, 1, 1]],
68        "block_shape": [[2, 2, 2]],
69        "crops": [[[0, 0], [0, 0], [0, 0]]],
70        "constant_block_shape": [True, False],
71        "constant_crops": [True, False],
72        "dynamic_range_quantize": [False],
73    }]
74
75  def build_graph(parameters):
76    """Build a batch_to_space graph given `parameters`."""
77    input_tensor = tf.compat.v1.placeholder(
78        dtype=parameters["dtype"],
79        name="input",
80        shape=parameters["input_shape"])
81    input_tensors = [input_tensor]
82
83    # Get block_shape either as a const or as a placeholder (tensor).
84    if parameters["constant_block_shape"]:
85      block_shape = parameters["block_shape"]
86    else:
87      shape = [len(parameters["block_shape"])]
88      block_shape = tf.compat.v1.placeholder(
89          dtype=tf.int32, name="shape", shape=shape)
90      input_tensors.append(block_shape)
91
92    # Get crops either as a const or as a placeholder (tensor).
93    if parameters["constant_crops"]:
94      crops = parameters["crops"]
95    else:
96      shape = [len(parameters["crops"]), 2]
97      crops = tf.compat.v1.placeholder(
98          dtype=tf.int32, name="crops", shape=shape)
99      input_tensors.append(crops)
100
101    out = tf.batch_to_space_nd(input_tensor, block_shape, crops)
102    return input_tensors, [out]
103
104  def build_inputs(parameters, sess, inputs, outputs):
105    values = [
106        create_tensor_data(parameters["dtype"], parameters["input_shape"])
107    ]
108    if not parameters["constant_block_shape"]:
109      values.append(np.array(parameters["block_shape"]))
110    if not parameters["constant_crops"]:
111      values.append(np.array(parameters["crops"]))
112    return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
113
114  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
115