1# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for broadcast_gradient_args.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow as tf 22 23from tensorflow.lite.testing.zip_test_utils import ExtraTocoOptions 24from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 25from tensorflow.lite.testing.zip_test_utils import register_make_test_function 26 27 28@register_make_test_function() 29def make_broadcast_gradient_args_tests(options): 30 """Make a set of tests to do broadcast_gradient_args.""" 31 32 test_parameters = [{ 33 'input_case': ['ALL_EQUAL', 'ONE_DIM', 'NON_BROADCASTABLE'], 34 'dtype': [tf.dtypes.int32, tf.dtypes.int64], 35 }] 36 37 def build_graph(parameters): 38 """Build the op testing graph.""" 39 input1 = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input1') 40 input2 = tf.compat.v1.placeholder(dtype=parameters['dtype'], name='input2') 41 output1, output2 = tf.raw_ops.BroadcastGradientArgs(s0=input1, s1=input2) 42 return [input1, input2], [output1, output2] 43 44 def build_inputs(parameters, sess, inputs, outputs): 45 dtype = parameters['dtype'].as_numpy_dtype() 46 47 if parameters['input_case'] == 'ALL_EQUAL': 48 values = [ 49 np.array([2, 4, 1, 3], dtype=dtype), 50 np.array([2, 4, 1, 3], dtype=dtype) 51 ] 52 elif parameters['input_case'] == 'ONE_DIM': 53 values = [ 54 np.array([2, 4, 1, 3], dtype=dtype), 55 np.array([2, 1, 1, 3], dtype=dtype) 56 ] 57 elif parameters['input_case'] == 'NON_BROADCASTABLE': 58 values = [ 59 np.array([2, 4, 1, 3], dtype=dtype), 60 np.array([2, 5, 1, 3], dtype=dtype) 61 ] 62 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 63 64 extra_toco_options = ExtraTocoOptions() 65 extra_toco_options.allow_custom_ops = True 66 make_zip_of_tests( 67 options, 68 test_parameters, 69 build_graph, 70 build_inputs, 71 extra_toco_options, 72 expected_tf_failures=2) 73