1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for conv2d_transpose.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_conv2d_transpose_tests(options): 29 """Make a set of tests to do transpose_conv.""" 30 31 test_parameters = [{ 32 "input_shape": [[1, 50, 54, 3]], 33 "filter_shape": [[1, 1, 8, 3], [1, 2, 8, 3], [1, 3, 8, 3], [1, 4, 8, 3]], 34 "output_shape": [[1, 100, 108, 8]], 35 "dynamic_output_shape": [True, False], 36 }, { 37 "input_shape": [[1, 16, 1, 512]], 38 "filter_shape": [[4, 1, 512, 512]], 39 "output_shape": [[1, 32, 1, 512]], 40 "dynamic_output_shape": [True, False], 41 }, { 42 "input_shape": [[1, 128, 128, 1]], 43 "filter_shape": [[4, 4, 1, 1]], 44 "output_shape": [[1, 256, 256, 1]], 45 "dynamic_output_shape": [True, False], 46 }] 47 48 def build_graph(parameters): 49 """Build a transpose_conv graph given `parameters`.""" 50 input_tensor = tf.compat.v1.placeholder( 51 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 52 53 filter_tensor = tf.compat.v1.placeholder( 54 dtype=tf.float32, name="filter", shape=parameters["filter_shape"]) 55 56 input_tensors = [input_tensor, filter_tensor] 57 58 if parameters["dynamic_output_shape"]: 59 output_shape = tf.compat.v1.placeholder(dtype=tf.int32, shape=[4]) 60 input_tensors.append(output_shape) 61 else: 62 output_shape = parameters["output_shape"] 63 64 out = tf.nn.conv2d_transpose( 65 input_tensor, 66 filter_tensor, 67 output_shape=output_shape, 68 padding="SAME", 69 strides=(1, 2, 2, 1)) 70 71 return input_tensors, [out] 72 73 def build_inputs(parameters, sess, inputs, outputs): 74 values = [ 75 create_tensor_data(np.float32, parameters["input_shape"]), 76 create_tensor_data(np.float32, parameters["filter_shape"]) 77 ] 78 if parameters["dynamic_output_shape"]: 79 values.append(np.array(parameters["output_shape"])) 80 81 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 82 83 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 84