• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for gather_with_constant."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_gather_with_constant_tests(options):
29  """Make a set of test which feed a constant to gather toco."""
30
31  test_parameters = [{
32      "input_shape": [[3]],
33      "reference_shape": [[2]],
34  }, {
35      "input_shape": [[2, 3]],
36      "reference_shape": [[2, 3]],
37  }]
38
39  def build_graph(parameters):
40    """Build a graph where the inputs to Gather are constants."""
41    reference = tf.compat.v1.placeholder(
42        dtype=tf.int32, shape=parameters["reference_shape"])
43    gather_input = tf.constant(
44        create_tensor_data(tf.int32, parameters["input_shape"]))
45    gather_indices = tf.constant([0, 1], tf.int32)
46    out = tf.equal(reference, tf.gather(gather_input, gather_indices))
47    return [reference], [out]
48
49  def build_inputs(parameters, sess, inputs, outputs):
50    reference_values = np.zeros(parameters["reference_shape"], dtype=np.int32)
51    return [reference_values], sess.run(
52        outputs, feed_dict={inputs[0]: reference_values})
53
54  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
55