1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for global_batch_norm.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import tensorflow.compat.v1 as tf 21from tensorflow.lite.testing.zip_test_utils import create_tensor_data 22from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 23from tensorflow.lite.testing.zip_test_utils import register_make_test_function 24 25 26@register_make_test_function() 27def make_global_batch_norm_tests(options): 28 """Make a set of tests to do batch_norm_with_global_normalization.""" 29 30 test_parameters = [{ 31 "dtype": [tf.float32], 32 "input_shape": [[1, 1, 6, 2], [3, 4, 5, 4]], 33 "epsilon": [0.1, 0.0001], 34 "scale_after": [True, False], 35 }] 36 37 def build_graph(parameters): 38 """Build the global batch norm testing graph.""" 39 input_shape = parameters["input_shape"] 40 scale_shape = input_shape[3] 41 42 scale = create_tensor_data(parameters["dtype"], scale_shape) 43 offset = create_tensor_data(parameters["dtype"], scale_shape) 44 mean = create_tensor_data(parameters["dtype"], scale_shape) 45 variance = create_tensor_data(parameters["dtype"], scale_shape) 46 47 x = create_tensor_data(parameters["dtype"], parameters["input_shape"]) 48 x_norm = tf.nn.batch_norm_with_global_normalization( 49 x, mean, variance, scale, offset, parameters["epsilon"], 50 parameters["scale_after"]) 51 52 input_tensor = tf.compat.v1.placeholder( 53 dtype=parameters["dtype"], 54 name="input", 55 shape=parameters["input_shape"]) 56 out = tf.add(input_tensor, x_norm) 57 return [input_tensor], [out] 58 59 def build_inputs(parameters, sess, inputs, outputs): 60 input_value = create_tensor_data(parameters["dtype"], 61 parameters["input_shape"]) 62 return [input_value], sess.run( 63 outputs, feed_dict=dict(zip(inputs, [input_value]))) 64 65 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 66