1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for identity.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25from tensorflow.python.ops import array_ops 26 27 28@register_make_test_function() 29def make_identity_tests(options): 30 """Make a set of tests to do identity.""" 31 32 # Chose a set of parameters 33 test_parameters = [{ 34 "input_shape": [[], [1], [3, 3]], 35 "op_to_use": [ 36 "identity", "identity_n", "snapshot", "identity_n_with_2_inputs" 37 ], 38 }] 39 40 def build_graph(parameters): 41 """Make a set of tests to do identity.""" 42 43 input_tensors = [] 44 input_count = (2 if parameters["op_to_use"] == "identity_n_with_2_inputs" 45 else 1) 46 input_tensors = [ 47 tf.compat.v1.placeholder( 48 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 49 for _ in range(input_count) 50 ] 51 52 # We add the Multiply before Identity just as a walk-around to make the test 53 # pass when input_shape is scalar. 54 # During graph transformation, TOCO will replace the Identity op with 55 # Reshape when input has shape. However, currently TOCO can't distinguish 56 # between missing shape and scalar shape. As a result, when input has scalar 57 # shape, this conversion still fails. 58 # TODO(b/129197312), remove the walk-around code once the bug is fixed. 59 inputs_doubled = [input_tensor * 2.0 for input_tensor in input_tensors] 60 if parameters["op_to_use"] == "identity": 61 identity_outputs = [tf.identity(inputs_doubled[0])] 62 elif parameters["op_to_use"] == "snapshot": 63 identity_outputs = [array_ops.snapshot(inputs_doubled[0])] 64 elif parameters["op_to_use"] in ("identity_n", "identity_n_with_2_inputs"): 65 identity_outputs = tf.identity_n(inputs_doubled) 66 return input_tensors, identity_outputs 67 68 def build_inputs(parameters, sess, inputs, outputs): 69 input_values = [ 70 create_tensor_data( 71 np.float32, parameters["input_shape"], min_value=-4, max_value=10) 72 for _ in range(len(inputs)) 73 ] 74 75 return input_values, sess.run( 76 outputs, feed_dict=dict(zip(inputs, input_values))) 77 78 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 79