1# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for is_finite.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_is_finite_tests(options): 29 """Make a set of tests to do is_finite.""" 30 31 test_parameters = [ 32 { 33 "input_shape": [[100], [3, 15, 14, 3]], 34 }, 35 ] 36 37 def build_graph(parameters): 38 """Build the graph for the test case.""" 39 40 input_tensor = tf.compat.v1.placeholder( 41 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 42 out = tf.math.is_finite(input_tensor) 43 return [input_tensor], [out] 44 45 def build_inputs(parameters, sess, inputs, outputs): 46 """Build the inputs for the test case.""" 47 input_values = create_tensor_data( 48 np.float32, parameters["input_shape"], min_value=-10, max_value=10) 49 50 # Inject NaN and Inf value. 51 def random_index(shape): 52 result = [] 53 for dim in shape: 54 result.append(np.random.randint(low=0, high=dim)) 55 return tuple(result) 56 57 input_values[random_index(input_values.shape)] = np.Inf 58 input_values[random_index(input_values.shape)] = -np.Inf 59 input_values[random_index(input_values.shape)] = np.NAN 60 input_values[random_index(input_values.shape)] = tf.float32.max 61 input_values[random_index(input_values.shape)] = tf.float32.min 62 63 return [input_values], sess.run( 64 outputs, feed_dict=dict(zip(inputs, [input_values]))) 65 66 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 67