• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for l2norm_shared_epsilon."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_l2norm_shared_epsilon_tests(options):
29  """Regression test for a bug (b/122651451)."""
30
31  # Chose a set of parameters
32  test_parameters = [{
33      "input_shape": [[5, 7]],
34      "dim": [1],
35      "epsilon": [1e-8],
36  }]
37
38  def build_graph(parameters):
39    input_tensor = tf.compat.v1.placeholder(
40        dtype=tf.float32, name="input", shape=parameters["input_shape"])
41    epsilon = tf.constant(parameters["epsilon"])
42    out1 = tf.nn.l2_normalize(input_tensor, parameters["dim"], epsilon=epsilon)
43    out2 = tf.nn.l2_normalize(input_tensor, parameters["dim"], epsilon=epsilon)
44    out = out1 + out2
45    return [input_tensor], [out]
46
47  def build_inputs(parameters, sess, inputs, outputs):
48    input_values = create_tensor_data(
49        np.float32, parameters["input_shape"], min_value=-4, max_value=10)
50    return [input_values], sess.run(
51        outputs, feed_dict=dict(zip(inputs, [input_values])))
52
53  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
54