• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for l2norm."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_l2norm_tests(options):
29  """Make a set of tests to do l2norm."""
30
31  # Chose a set of parameters
32  test_parameters = [{
33      "input_shape": [[5, 7], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]],
34      "dim": [0, 1, 2, 3, [2, 3], -2],
35      "epsilon": [None, 1e-12, 1e-3],
36      "fully_quantize": [False],
37  }, {
38      "input_shape": [[1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]],
39      "dim": [3],
40      "epsilon": [None, 1e-12],
41      "fully_quantize": [True],
42  }, {  # use another group of test so the dim is set to fuse to tfl.l2norm
43      "input_shape": [[5, 7]],
44      "dim": [1],
45      "epsilon": [None, 1e-12],
46      "fully_quantize": [True],
47  }]
48
49  def build_graph(parameters):
50    input_tensor = tf.compat.v1.placeholder(
51        dtype=tf.float32, name="input", shape=parameters["input_shape"])
52    if parameters["epsilon"]:
53      out = tf.nn.l2_normalize(
54          input_tensor, parameters["dim"], epsilon=parameters["epsilon"])
55    else:
56      out = tf.nn.l2_normalize(input_tensor, parameters["dim"])
57    return [input_tensor], [out]
58
59  def build_inputs(parameters, sess, inputs, outputs):
60    input_values = create_tensor_data(
61        np.float32, parameters["input_shape"], min_value=-1, max_value=1)
62    return [input_values], sess.run(
63        outputs, feed_dict=dict(zip(inputs, [input_values])))
64
65  make_zip_of_tests(
66      options,
67      test_parameters,
68      build_graph,
69      build_inputs,
70      expected_tf_failures=9)
71