• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for leaky_relu."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_leaky_relu_tests(options):
29  """Make a set of tests to do LeakyRelu."""
30
31  test_parameters = [{
32      "input_shape": [[], [1], [5], [1, 10, 10, 3], [3, 3, 3, 3]],
33      "alpha": [0.1, 1.0, 2.0, -0.1, -1.0, -2.0],
34      "fully_quantize": [False, True],
35      "input_range": [(-3, 10)],
36      "quant_16x8": [False, True],
37  }]
38
39  def build_graph(parameters):
40    """Build the graph for the test case."""
41
42    input_tensor = tf.compat.v1.placeholder(
43        dtype=tf.float32, name="input", shape=parameters["input_shape"])
44    out = tf.nn.leaky_relu(input_tensor, alpha=parameters["alpha"])
45    return [input_tensor], [out]
46
47  def build_inputs(parameters, sess, inputs, outputs):
48    """Build the inputs for the test case."""
49    input_values = create_tensor_data(
50        np.float32, parameters["input_shape"], min_value=-3, max_value=10)
51    return [input_values], sess.run(
52        outputs, feed_dict=dict(zip(inputs, [input_values])))
53
54  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
55