1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for local_response_norm.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_local_response_norm_tests(options): 29 """Make a set of tests to do local_response_norm.""" 30 31 # Chose a set of parameters 32 test_parameters = [{ 33 "input_shape": [[1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], 34 "depth_radius": [None, 0, 1, 3, 5], 35 "bias": [None, 0.3, -0.1], 36 "alpha": [None, 2, -3], 37 "beta": [None, 0.25, 2], 38 }] 39 40 def build_graph(parameters): 41 input_tensor = tf.compat.v1.placeholder( 42 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 43 out = tf.nn.local_response_normalization( 44 input_tensor, 45 depth_radius=parameters["depth_radius"], 46 bias=parameters["bias"], 47 alpha=parameters["alpha"], 48 beta=parameters["beta"]) 49 return [input_tensor], [out] 50 51 def build_inputs(parameters, sess, inputs, outputs): 52 input_values = create_tensor_data( 53 np.float32, parameters["input_shape"], min_value=-4, max_value=10) 54 return [input_values], sess.run( 55 outputs, feed_dict=dict(zip(inputs, [input_values]))) 56 57 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 58