• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for prelu."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_prelu_tests(options):
29  """Make a set of tests to do PReLU."""
30
31  test_parameters = [
32      {
33          # The canonical case for image processing is having a 4D `input`
34          # (NHWC)and `shared_axes`=[1, 2], so the alpha parameter is per
35          # channel.
36          "input_shape": [[1, 10, 10, 3], [3, 3, 3, 3]],
37          "shared_axes": [[1, 2], [1]],
38          "fully_quantize": [False],
39          "input_range": [(-10, 10)],
40      },
41      {
42          # 2D-3D example. Share the 2nd axis.
43          "input_shape": [[20, 20], [20, 20, 20]],
44          "shared_axes": [[1]],
45          "fully_quantize": [False],
46          "input_range": [(-10, 10)],
47      },
48      # Quantized cases.
49      {
50          # The canonical case for image processing is having a 4D `input`
51          # (NHWC)and `shared_axes`=[1, 2], so the alpha parameter is per
52          # channel.
53          "input_shape": [[1, 10, 10, 3], [3, 3, 3, 3]],
54          "shared_axes": [[1, 2], [1]],
55          "fully_quantize": [True],
56          "input_range": [(-10, 10)],
57      },
58      {
59          # 2D-3D example. Share the 2nd axis.
60          "input_shape": [[20, 20], [20, 20, 20]],
61          "shared_axes": [[1]],
62          "fully_quantize": [True],
63          "input_range": [(-10, 10)],
64      },
65  ]
66
67  def build_graph(parameters):
68    """Build the graph for the test case."""
69
70    input_tensor = tf.compat.v1.placeholder(
71        dtype=tf.float32, name="input", shape=parameters["input_shape"])
72    prelu = tf.keras.layers.PReLU(shared_axes=parameters["shared_axes"])
73    out = prelu(input_tensor)
74    return [input_tensor], [out]
75
76  def build_inputs(parameters, sess, inputs, outputs):
77    """Build the inputs for the test case."""
78
79    input_shape = parameters["input_shape"]
80    input_values = create_tensor_data(
81        np.float32, input_shape, min_value=-10, max_value=10)
82    shared_axes = parameters["shared_axes"]
83
84    alpha_shape = []
85    for dim in range(1, len(input_shape)):
86      alpha_shape.append(1 if dim in shared_axes else input_shape[dim])
87
88    alpha_values = create_tensor_data(
89        np.float32, alpha_shape, min_value=-5, max_value=5)
90
91    # There should be only 1 trainable variable tensor.
92    variables = tf.compat.v1.all_variables()
93    assert len(variables) == 1
94    sess.run(variables[0].assign(alpha_values))
95
96    return [input_values], sess.run(
97        outputs, feed_dict=dict(zip(inputs, [input_values])))
98
99  make_zip_of_tests(
100      options,
101      test_parameters,
102      build_graph,
103      build_inputs,
104      use_frozen_graph=True)
105