1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for reshape.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_reshape_tests(options): 29 """Make a set of tests to do reshape.""" 30 31 # All shapes below are suitable for tensors with 420 elements. 32 test_parameters = [{ 33 "dtype": [tf.float32, tf.int32], 34 "input_shape": [[3, 4, 5, 7], [4, 105], [21, 5, 2, 2], [420]], 35 "output_shape": [[15, 28], [420], [1, -1, 5, 7], [-1]], 36 "constant_shape": [True, False], 37 "fully_quantize": [False], 38 }, { 39 "dtype": [tf.float32], 40 "input_shape": [[1]], 41 "output_shape": [[]], 42 "constant_shape": [True, False], 43 "fully_quantize": [False], 44 }, { 45 "dtype": [tf.float32], 46 "input_shape": [[3, 4, 5, 7], [4, 105], [21, 5, 2, 2], [420]], 47 "output_shape": [[15, 28], [420], [1, -1, 5, 7], [-1]], 48 "constant_shape": [True], 49 "fully_quantize": [True], 50 }] 51 52 if options.use_experimental_converter: 53 test_parameters = test_parameters + [ 54 # Zero in input shape. 55 { 56 "dtype": [tf.float32], 57 "input_shape": [[1, 4, 0]], 58 "output_shape": [[2, -1], [2, 0, -1]], 59 "constant_shape": [True, False], 60 "fully_quantize": [False], 61 } 62 ] 63 64 def build_graph(parameters): 65 """Build the graph for reshape tests.""" 66 input_tensor = tf.compat.v1.placeholder( 67 dtype=parameters["dtype"], 68 name="input", 69 shape=parameters["input_shape"]) 70 71 # Get shape as either a placeholder or constants. 72 if parameters["constant_shape"]: 73 output_shape = parameters["output_shape"] 74 input_tensors = [input_tensor] 75 else: 76 # The shape of the shape tensor. 77 shape_tensor_shape = [len(parameters["output_shape"])] 78 output_shape = tf.compat.v1.placeholder( 79 dtype=tf.int32, name="output_shape", shape=shape_tensor_shape) 80 input_tensors = [input_tensor, output_shape] 81 out = tf.reshape(input_tensor, shape=output_shape) 82 return input_tensors, [out] 83 84 def build_inputs(parameters, sess, inputs, outputs): 85 """Build inputs for reshape op.""" 86 87 values = [ 88 create_tensor_data( 89 parameters["dtype"], 90 parameters["input_shape"], 91 min_value=-1, 92 max_value=1) 93 ] 94 if not parameters["constant_shape"]: 95 values.append(np.array(parameters["output_shape"])) 96 97 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 98 99 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 100