• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for slice."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25from tensorflow.lite.testing.zip_test_utils import TF_TYPE_INFO
26
27
28@register_make_test_function()
29def make_slice_tests(options):
30  """Make a set of tests to do slice."""
31
32  test_parameters = [
33      # 4-D
34      {
35          "dtype": [tf.float32, tf.int32, tf.int64, tf.string],
36          "index_type": [tf.int32, tf.int64],
37          "input_shape": [[12, 2, 2, 5]],
38          "begin": [[0, 0, 0, 0], [1, 0, 1, 0]],
39          "size": [[8, 2, 2, 3], [11, 2, 1, 5]],
40          "constant_indices": [False],
41          "fully_quantize": [False],
42      },
43      # 5-D
44      {
45          "dtype": [tf.float32],
46          "index_type": [tf.int32],
47          "input_shape": [[6, 2, 2, 2, 5]],
48          "begin": [[0, 0, 0, 0, 0], [0, 1, 0, 1, 0]],
49          "size": [[4, 2, 2, 2, 3], [5, 2, 1, 1, 5]],
50          "constant_indices": [False],
51          "fully_quantize": [False],
52      },
53      # 2-D
54      {
55          "dtype": [tf.float32, tf.int32, tf.int64, tf.string],
56          "index_type": [tf.int32, tf.int64],
57          "input_shape": [[2, 3]],
58          "begin": [[0, 0], [1, 0]],
59          "size": [[2, 3], [2, 2]],
60          "constant_indices": [False],
61          "fully_quantize": [False],
62      },
63      # 4-D with size -1
64      {
65          "dtype": [tf.float32],
66          "index_type": [tf.int32],
67          "input_shape": [[4, 4, 4, 4]],
68          "begin": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
69                    [0, 0, 0, 1]],
70          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
71          "constant_indices": [False, True],
72          "fully_quantize": [False],
73      },
74      # last dimension out of index
75      {
76          "dtype": [tf.float32],
77          "index_type": [tf.int32],
78          "input_shape": [[4, 4, 4]],
79          "begin": [[3, 3, 4]],
80          "size": [[-1, -1, -1]],
81          "constant_indices": [False, True],
82          "fully_quantize": [False],
83      },
84      # 4-D
85      {
86          "dtype": [tf.float32],
87          "index_type": [tf.int32],
88          "input_shape": [[12, 2, 2, 5]],
89          "begin": [[0, 0, 0, 0], [1, 0, 1, 0]],
90          "size": [[8, 2, 2, 3], [11, 2, 1, 5]],
91          "constant_indices": [True],
92          "fully_quantize": [True],
93      },
94      # 2-D
95      {
96          "dtype": [tf.float32],
97          "index_type": [tf.int32],
98          "input_shape": [[2, 3]],
99          "begin": [[0, 0], [1, 0]],
100          "size": [[2, 3], [2, 2]],
101          "constant_indices": [True],
102          "fully_quantize": [True],
103      },
104      # 4-D with size -1
105      {
106          "dtype": [tf.float32],
107          "index_type": [tf.int32],
108          "input_shape": [[4, 4, 4, 4]],
109          "begin": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
110                    [0, 0, 0, 1]],
111          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
112          "constant_indices": [True],
113          "fully_quantize": [True],
114      },
115      {
116          "dtype": [tf.float32],
117          "index_type": [tf.int32],
118          "input_shape": [[1, 4, 4, 4]],
119          "begin": [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
120          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
121          "constant_indices": [True],
122          "fully_quantize": [True],
123      },
124  ]
125
126  def build_graph(parameters):
127    """Build graph for slice test."""
128    input_tensor = tf.compat.v1.placeholder(
129        dtype=parameters["dtype"],
130        name="input",
131        shape=parameters["input_shape"])
132    if parameters["constant_indices"]:
133      index_type = TF_TYPE_INFO[parameters["index_type"]][0]
134      begin_values = np.array(parameters["begin"]).astype(index_type)
135      size_values = np.array(parameters["size"]).astype(index_type)
136      out = tf.slice(input_tensor, begin_values, size_values)
137      return [input_tensor], [out]
138    else:
139      begin = tf.compat.v1.placeholder(
140          dtype=parameters["index_type"],
141          name="begin",
142          shape=[len(parameters["input_shape"])])
143      size = tf.compat.v1.placeholder(
144          dtype=parameters["index_type"],
145          name="size",
146          shape=[len(parameters["input_shape"])])
147      tensors = [input_tensor, begin, size]
148      out = tf.slice(input_tensor, begin, size)
149      return tensors, [out]
150
151  def build_inputs(parameters, sess, inputs, outputs):
152    """Build inputs for slice test."""
153    input_values = create_tensor_data(
154        parameters["dtype"],
155        parameters["input_shape"],
156        min_value=-1,
157        max_value=1)
158    if parameters["constant_indices"]:
159      return [input_values], sess.run(
160          outputs, feed_dict=dict(zip(inputs, [input_values])))
161    else:
162      index_type = TF_TYPE_INFO[parameters["index_type"]][0]
163      begin_values = np.array(parameters["begin"]).astype(index_type)
164      size_values = np.array(parameters["size"]).astype(index_type)
165      values = [input_values, begin_values, size_values]
166      return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
167
168  # Note: Not all [begin x size] permutations are compatible for each grouping
169  # of test_parameters, but for brevity we ignore the failures rather than
170  # separating out each compatible set into separate test_parameters entries.
171  make_zip_of_tests(
172      options,
173      test_parameters,
174      build_graph,
175      build_inputs,
176      expected_tf_failures=29)
177