1# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for TensorScatterAdd.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_tensor_scatter_add_tests(options): 29 """Make a set of tests to do tensor_scatter_add.""" 30 31 test_parameters = [{ 32 "input_dtype": [tf.float32, tf.int32, tf.int64], 33 "input_shape": [[14], [2, 4, 7]], 34 "adds_count": [1, 3, 5], 35 }] 36 37 def build_graph(parameters): 38 """Build the tensor_scatter_add op testing graph.""" 39 input_tensor = tf.compat.v1.placeholder( 40 dtype=parameters["input_dtype"], 41 name="input", 42 shape=parameters["input_shape"]) 43 # The indices will be a list of "input_shape". 44 indices_tensor = tf.compat.v1.placeholder( 45 dtype=tf.int32, 46 name="indices", 47 shape=([parameters["adds_count"], 48 len(parameters["input_shape"])])) 49 # The adds will be a list of scalar, shaped of "adds_count". 50 adds_tensors = tf.compat.v1.placeholder( 51 dtype=parameters["input_dtype"], 52 name="updates", 53 shape=[parameters["adds_count"]]) 54 55 out = tf.tensor_scatter_nd_add(input_tensor, indices_tensor, adds_tensors) 56 return [input_tensor, indices_tensor, adds_tensors], [out] 57 58 def build_inputs(parameters, sess, inputs, outputs): 59 indices = set() 60 while len(indices) < parameters["adds_count"]: 61 loc = [] 62 for d in parameters["input_shape"]: 63 loc.append(np.random.randint(0, d)) 64 indices.add(tuple(loc)) 65 66 values = [ 67 create_tensor_data(parameters["input_dtype"], 68 parameters["input_shape"]), 69 np.array(list(indices), dtype=np.int32), 70 create_tensor_data( 71 parameters["input_dtype"], 72 parameters["adds_count"], 73 min_value=-3, 74 max_value=3) 75 ] 76 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 77 78 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 79