1# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for TensorScatterUpdate.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_tensor_scatter_update_tests(options): 29 """Make a set of tests to do tensor_scatter_update.""" 30 31 test_parameters = [{ 32 "input_dtype": [tf.float32, tf.int32, tf.int64], 33 "input_shape": [[14], [2, 4, 7]], 34 "updates_count": [1, 3, 5], 35 }] 36 37 def build_graph(parameters): 38 """Build the tensor_scatter_update op testing graph.""" 39 input_tensor = tf.compat.v1.placeholder( 40 dtype=parameters["input_dtype"], 41 name="input", 42 shape=parameters["input_shape"]) 43 # The indices will be a list of "input_shape". 44 indices_tensor = tf.compat.v1.placeholder( 45 dtype=tf.int32, 46 name="indices", 47 shape=([parameters["updates_count"], 48 len(parameters["input_shape"])])) 49 # The updates will be a list of scalar, shaped of "updates_count". 50 updates_tensors = tf.compat.v1.placeholder( 51 dtype=parameters["input_dtype"], 52 name="updates", 53 shape=[parameters["updates_count"]]) 54 55 out = tf.tensor_scatter_nd_update(input_tensor, indices_tensor, 56 updates_tensors) 57 return [input_tensor, indices_tensor, updates_tensors], [out] 58 59 def build_inputs(parameters, sess, inputs, outputs): 60 indices = set() 61 while len(indices) < parameters["updates_count"]: 62 loc = [] 63 for d in parameters["input_shape"]: 64 loc.append(np.random.randint(0, d)) 65 indices.add(tuple(loc)) 66 67 values = [ 68 create_tensor_data(parameters["input_dtype"], 69 parameters["input_shape"]), 70 np.array(list(indices), dtype=np.int32), 71 create_tensor_data( 72 parameters["input_dtype"], 73 parameters["updates_count"], 74 min_value=-3, 75 max_value=3) 76 ] 77 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 78 79 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 80