1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for topk.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_tensor_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_topk_tests(options): 29 """Make a set of tests to do topk.""" 30 31 test_parameters = [{ 32 "input_dtype": [tf.float32, tf.int32], 33 "input_shape": [[10], [5, 20]], 34 "input_k": [None, 1, 3], 35 }] 36 37 def build_graph(parameters): 38 """Build the topk op testing graph.""" 39 input_value = tf.compat.v1.placeholder( 40 dtype=parameters["input_dtype"], 41 name="input", 42 shape=parameters["input_shape"]) 43 if parameters["input_k"] is not None: 44 k = tf.compat.v1.placeholder(dtype=tf.int32, name="input_k", shape=[]) 45 inputs = [input_value, k] 46 else: 47 k = tf.constant(3, name="k") 48 inputs = [input_value] 49 out = tf.nn.top_k(input_value, k) 50 return inputs, [out[1]] 51 52 def build_inputs(parameters, sess, inputs, outputs): 53 input_value = create_tensor_data(parameters["input_dtype"], 54 parameters["input_shape"]) 55 if parameters["input_k"] is not None: 56 k = np.array(parameters["input_k"], dtype=np.int32) 57 return [input_value, k], sess.run( 58 outputs, feed_dict=dict(zip(inputs, [input_value, k]))) 59 else: 60 return [input_value], sess.run( 61 outputs, feed_dict=dict(zip(inputs, [input_value]))) 62 63 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 64