• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for unroll_batch_matmul."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import tensorflow.compat.v1 as tf
21from tensorflow.lite.testing.zip_test_utils import create_tensor_data
22from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
23from tensorflow.lite.testing.zip_test_utils import register_make_test_function
24
25
26@register_make_test_function()
27def make_unroll_batch_matmul_tests(options):
28  """Make a set of tests to test unroll_batch_matmul."""
29
30  # The test cases below requires broadcasting support (BatchMatMulV2 semantic),
31  # whis isn't supported as of this change.
32  broadcast_shape_params = [
33      # Simple broadcast.
34      [(1, 2, 3), (3, 5), False, False],
35      # Empty batch broadcast.
36      [(2, 5, 3), (3, 7), False, False],
37      # Single batch with non-empty batch broadcast.
38      [(1, 5, 3), (4, 3, 7), False, False],
39      # Broadcast both operands
40      [(3, 1, 5, 3), (1, 4, 3, 7), False, False],
41  ]
42
43  test_parameters = [{
44      "dtype": [tf.float32],
45      "shape": [[(2, 2, 3),
46                 (2, 3, 2), False, False], [(2, 2, 3), (2, 3, 2), True, True],
47                [(2, 2, 3),
48                 (2, 2, 3), False, True], [(2, 2, 3), (2, 2, 3), True, False],
49                [(4, 2, 2, 3), (4, 2, 3, 2), False, False],
50                [(4, 2, 2, 3), (4, 2, 3, 2), True, True],
51                [(4, 2, 2, 3), (4, 2, 2, 3), False, True],
52                [(4, 2, 2, 3),
53                 (4, 2, 2, 3), True, False]] + broadcast_shape_params,
54  }]
55
56  def build_graph(parameters):
57    """Build the batch_matmul op testing graph."""
58
59    def _build_graph():
60      """Build the graph."""
61      input_tensor1 = tf.compat.v1.placeholder(
62          dtype=parameters["dtype"], shape=parameters["shape"][0])
63      input_tensor2 = tf.compat.v1.placeholder(
64          dtype=parameters["dtype"], shape=parameters["shape"][1])
65      # Should be unrolled and replaced with fully_connected ops in the end.
66      out = tf.matmul(
67          input_tensor1,
68          input_tensor2,
69          transpose_a=parameters["shape"][2],
70          transpose_b=parameters["shape"][3])
71      return [input_tensor1, input_tensor2], [out]
72
73    return _build_graph()
74
75  def build_inputs(parameters, sess, inputs, outputs):
76    input_value1 = create_tensor_data(
77        parameters["dtype"], shape=parameters["shape"][0])
78    input_value2 = create_tensor_data(
79        parameters["dtype"], shape=parameters["shape"][1])
80    return [input_value1, input_value2], sess.run(
81        outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2])))
82
83  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
84