• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for where_v2."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import tensorflow.compat.v1 as tf
21from tensorflow.lite.testing.zip_test_utils import create_tensor_data
22from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
23from tensorflow.lite.testing.zip_test_utils import register_make_test_function
24
25
26@register_make_test_function()
27def make_where_v2_tests(options):
28  """Make a set of tests to do where_v2."""
29
30  test_parameters = [
31      {
32          "input_condition_shape": [[1, 2, 3, 4]],
33          "input_dtype": [tf.float32, tf.int32],
34          "input_shape_set": [([1, 2, 3, 4], [1, 1, 1, 1]),],
35      },
36      {
37          "input_condition_shape": [[2], [1]],
38          "input_dtype": [tf.float32, tf.int32],
39          "input_shape_set": [([2, 1, 2, 1], [2, 1, 2, 1]),],
40      },
41      {
42          "input_condition_shape": [[1, 4, 2]],
43          "input_dtype": [tf.float32, tf.int32],
44          "input_shape_set": [([1, 3, 4, 2], [1, 3, 4, 2]),],
45      },
46      {
47          "input_condition_shape": [[1, 2]],
48          "input_dtype": [tf.float32, tf.int32],
49          "input_shape_set": [([1, 2, 2], [1, 2, 2]),],
50      },
51      {
52          "input_condition_shape": [[1, 1]],
53          "input_dtype": [tf.float32, tf.int32],
54          "input_shape_set": [([1, 1, 2, 2], [1, 1, 2, 2]),],
55      },
56      {
57          "input_condition_shape": [[4]],
58          "input_dtype": [tf.float32, tf.int32],
59          "input_shape_set": [([4, 4], [4, 4]),],
60      },
61      {
62          "input_condition_shape": [[2]],
63          "input_dtype": [tf.float32, tf.int32],
64          "input_shape_set": [([2, 3], [2, 3]),],
65      },
66      {
67          "input_condition_shape": [[1, 2]],
68          "input_dtype": [tf.float32, tf.int32],
69          "input_shape_set": [([1, 2, 2], [1, 2]),],
70      },
71  ]
72
73  def build_graph(parameters):
74    """Build the where op testing graph."""
75    input_condition = tf.compat.v1.placeholder(
76        dtype=tf.bool,
77        name="input_condition",
78        shape=parameters["input_condition_shape"])
79    input_value1 = tf.compat.v1.placeholder(
80        dtype=parameters["input_dtype"],
81        name="input_x",
82        shape=parameters["input_shape_set"][0])
83    input_value2 = tf.compat.v1.placeholder(
84        dtype=parameters["input_dtype"],
85        name="input_y",
86        shape=parameters["input_shape_set"][1])
87    out = tf.where_v2(input_condition, input_value1, input_value2)
88    return [input_condition, input_value1, input_value2], [out]
89
90  def build_inputs(parameters, sess, inputs, outputs):
91    input_condition = create_tensor_data(tf.bool,
92                                         parameters["input_condition_shape"])
93    input_value1 = create_tensor_data(parameters["input_dtype"],
94                                      parameters["input_shape_set"][0])
95    input_value2 = create_tensor_data(parameters["input_dtype"],
96                                      parameters["input_shape_set"][1])
97    return [input_condition, input_value1, input_value2], sess.run(
98        outputs,
99        feed_dict=dict(
100            zip(inputs, [input_condition, input_value1, input_value2])))
101
102  options.use_experimental_converter = True
103  make_zip_of_tests(
104      options,
105      test_parameters,
106      build_graph,
107      build_inputs,
108      expected_tf_failures=2)
109