1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "aom_dsp/grain_synthesis.h"
33 #include "aom_dsp/grain_table.h"
34 #include "aom_dsp/odintrin.h"
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38
39 #if defined(__clang__) && defined(__has_warning)
40 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
41 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
42 #endif
43 #elif defined(__GNUC__) && __GNUC__ >= 7
44 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
45 #endif
46
47 #ifndef AOM_FALLTHROUGH_INTENDED
48 #define AOM_FALLTHROUGH_INTENDED \
49 do { \
50 } while (0)
51 #endif
52
53 #define CDEF_MAX_STRENGTHS 16
54
55 /* Constant values while waiting for the sequence header */
56 #define FRAME_ID_LENGTH 15
57 #define DELTA_FRAME_ID_LENGTH 14
58
59 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
60 // Extra frame context which is always kept at default values
61 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
62 #define PRIMARY_REF_BITS 3
63 #define PRIMARY_REF_NONE 7
64
65 #define NUM_PING_PONG_BUFFERS 2
66
67 #define MAX_NUM_TEMPORAL_LAYERS 8
68 #define MAX_NUM_SPATIAL_LAYERS 4
69 /* clang-format off */
70 // clang-format seems to think this is a pointer dereference and not a
71 // multiplication.
72 #define MAX_NUM_OPERATING_POINTS \
73 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
74 /* clang-format on */
75
76 // TODO(jingning): Turning this on to set up transform coefficient
77 // processing timer.
78 #define TXCOEFF_TIMER 0
79 #define TXCOEFF_COST_TIMER 0
80
81 /*!\cond */
82
83 enum {
84 SINGLE_REFERENCE = 0,
85 COMPOUND_REFERENCE = 1,
86 REFERENCE_MODE_SELECT = 2,
87 REFERENCE_MODES = 3,
88 } UENUM1BYTE(REFERENCE_MODE);
89
90 enum {
91 /**
92 * Frame context updates are disabled
93 */
94 REFRESH_FRAME_CONTEXT_DISABLED,
95 /**
96 * Update frame context to values resulting from backward probability
97 * updates based on entropy/counts in the decoded frame
98 */
99 REFRESH_FRAME_CONTEXT_BACKWARD,
100 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
101
102 #define MFMV_STACK_SIZE 3
103 typedef struct {
104 int_mv mfmv0;
105 uint8_t ref_frame_offset;
106 } TPL_MV_REF;
107
108 typedef struct {
109 int_mv mv;
110 MV_REFERENCE_FRAME ref_frame;
111 } MV_REF;
112
113 typedef struct RefCntBuffer {
114 // For a RefCntBuffer, the following are reference-holding variables:
115 // - cm->ref_frame_map[]
116 // - cm->cur_frame
117 // - cm->scaled_ref_buf[] (encoder only)
118 // - pbi->output_frame_index[] (decoder only)
119 // With that definition, 'ref_count' is the number of reference-holding
120 // variables that are currently referencing this buffer.
121 // For example:
122 // - suppose this buffer is at index 'k' in the buffer pool, and
123 // - Total 'n' of the variables / array elements above have value 'k' (that
124 // is, they are pointing to buffer at index 'k').
125 // Then, pool->frame_bufs[k].ref_count = n.
126 int ref_count;
127
128 unsigned int order_hint;
129 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
130
131 // These variables are used only in encoder and compare the absolute
132 // display order hint to compute the relative distance and overcome
133 // the limitation of get_relative_dist() which returns incorrect
134 // distance when a very old frame is used as a reference.
135 unsigned int display_order_hint;
136 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
137 #if CONFIG_FRAME_PARALLEL_ENCODE
138 // Frame's level within the hierarchical structure.
139 unsigned int pyramid_level;
140 #endif // CONFIG_FRAME_PARALLEL_ENCODE
141 MV_REF *mvs;
142 uint8_t *seg_map;
143 struct segmentation seg;
144 int mi_rows;
145 int mi_cols;
146 // Width and height give the size of the buffer (before any upscaling, unlike
147 // the sizes that can be derived from the buf structure)
148 int width;
149 int height;
150 WarpedMotionParams global_motion[REF_FRAMES];
151 int showable_frame; // frame can be used as show existing frame in future
152 uint8_t film_grain_params_present;
153 aom_film_grain_t film_grain_params;
154 aom_codec_frame_buffer_t raw_frame_buffer;
155 YV12_BUFFER_CONFIG buf;
156 int temporal_id; // Temporal layer ID of the frame
157 int spatial_id; // Spatial layer ID of the frame
158 FRAME_TYPE frame_type;
159
160 // This is only used in the encoder but needs to be indexed per ref frame
161 // so it's extremely convenient to keep it here.
162 int interp_filter_selected[SWITCHABLE];
163
164 // Inter frame reference frame delta for loop filter
165 int8_t ref_deltas[REF_FRAMES];
166
167 // 0 = ZERO_MV, MV
168 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
169
170 FRAME_CONTEXT frame_context;
171 } RefCntBuffer;
172
173 typedef struct BufferPool {
174 // Protect BufferPool from being accessed by several FrameWorkers at
175 // the same time during frame parallel decode.
176 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
177 // TODO(wtc): Remove this. See
178 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
179 #if CONFIG_MULTITHREAD
180 pthread_mutex_t pool_mutex;
181 #endif
182
183 // Private data associated with the frame buffer callbacks.
184 void *cb_priv;
185
186 aom_get_frame_buffer_cb_fn_t get_fb_cb;
187 aom_release_frame_buffer_cb_fn_t release_fb_cb;
188
189 RefCntBuffer frame_bufs[FRAME_BUFFERS];
190
191 // Frame buffers allocated internally by the codec.
192 InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194
195 /*!\endcond */
196
197 /*!\brief Parameters related to CDEF */
198 typedef struct {
199 //! CDEF column line buffer
200 uint16_t *colbuf[MAX_MB_PLANE];
201 //! CDEF top & bottom line buffer
202 uint16_t *linebuf[MAX_MB_PLANE];
203 //! CDEF intermediate buffer
204 uint16_t *srcbuf;
205 //! CDEF column line buffer sizes
206 size_t allocated_colbuf_size[MAX_MB_PLANE];
207 //! CDEF top and bottom line buffer sizes
208 size_t allocated_linebuf_size[MAX_MB_PLANE];
209 //! CDEF intermediate buffer size
210 size_t allocated_srcbuf_size;
211 //! CDEF damping factor
212 int cdef_damping;
213 //! Number of CDEF strength values
214 int nb_cdef_strengths;
215 //! CDEF strength values for luma
216 int cdef_strengths[CDEF_MAX_STRENGTHS];
217 //! CDEF strength values for chroma
218 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
219 //! Number of CDEF strength values in bits
220 int cdef_bits;
221 //! Number of rows in the frame in 4 pixel
222 int allocated_mi_rows;
223 //! Number of CDEF workers
224 int allocated_num_workers;
225 } CdefInfo;
226
227 /*!\cond */
228
229 typedef struct {
230 int delta_q_present_flag;
231 // Resolution of delta quant
232 int delta_q_res;
233 int delta_lf_present_flag;
234 // Resolution of delta lf level
235 int delta_lf_res;
236 // This is a flag for number of deltas of loop filter level
237 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238 // 1: use separate deltas for each filter level
239 int delta_lf_multi;
240 } DeltaQInfo;
241
242 typedef struct {
243 int enable_order_hint; // 0 - disable order hint, and related tools
244 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245 // frame_sign_bias
246 // if 0, enable_dist_wtd_comp and
247 // enable_ref_frame_mvs must be set as 0.
248 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249 // 1 - enable it
250 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251 // 1 - enable it
252 } OrderHintInfo;
253
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261 int num_bits_width;
262 int num_bits_height;
263 int max_frame_width;
264 int max_frame_height;
265 // Whether current and reference frame IDs are signaled in the bitstream.
266 // Frame id numbers are additional information that do not affect the
267 // decoding process, but provide decoders with a way of detecting missing
268 // reference frames so that appropriate action can be taken.
269 uint8_t frame_id_numbers_present_flag;
270 int frame_id_length;
271 int delta_frame_id_length;
272 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273 int mib_size; // Size of the superblock in units of MI blocks
274 int mib_size_log2; // Log 2 of above.
275
276 OrderHintInfo order_hint_info;
277
278 uint8_t force_screen_content_tools; // 0 - force off
279 // 1 - force on
280 // 2 - adaptive
281 uint8_t still_picture; // Video is a single frame still picture
282 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284 // 1 - force to integer
285 // 2 - adaptive
286 uint8_t enable_filter_intra; // enables/disables filterintra
287 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288 uint8_t enable_interintra_compound; // enables/disables interintra_compound
289 uint8_t enable_masked_compound; // enables/disables masked compound
290 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291 // 1 - enable vert/horz filter selection
292 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293 // 1 - enable warp for the sequence
294 uint8_t enable_superres; // 0 - Disable superres for the sequence
295 // and no frame level superres flag
296 // 1 - Enable superres for the sequence
297 // enable per-frame superres flag
298 uint8_t enable_cdef; // To turn on/off CDEF
299 uint8_t enable_restoration; // To turn on/off loop restoration
300 BITSTREAM_PROFILE profile;
301
302 // Color config.
303 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306 uint8_t monochrome; // Monochorme video
307 aom_color_primaries_t color_primaries;
308 aom_transfer_characteristics_t transfer_characteristics;
309 aom_matrix_coefficients_t matrix_coefficients;
310 int color_range;
311 int subsampling_x; // Chroma subsampling for x
312 int subsampling_y; // Chroma subsampling for y
313 aom_chroma_sample_position_t chroma_sample_position;
314 uint8_t separate_uv_delta_q;
315 uint8_t film_grain_params_present;
316
317 // Operating point info.
318 int operating_points_cnt_minus_1;
319 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320 int timing_info_present;
321 aom_timing_info_t timing_info;
322 uint8_t decoder_model_info_present_flag;
323 aom_dec_model_info_t decoder_model_info;
324 uint8_t display_model_info_present_flag;
325 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327
328 // IMPORTANT: the op_params member must be at the end of the struct so that
329 // are_seq_headers_consistent() can be implemented with a memcmp() call.
330 // TODO(urvang): We probably don't need the +1 here.
331 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333
334 typedef struct {
335 int skip_mode_allowed;
336 int skip_mode_flag;
337 int ref_frame_idx_0;
338 int ref_frame_idx_1;
339 } SkipModeInfo;
340
341 typedef struct {
342 FRAME_TYPE frame_type;
343 REFERENCE_MODE reference_mode;
344
345 unsigned int order_hint;
346 unsigned int display_order_hint;
347 #if CONFIG_FRAME_PARALLEL_ENCODE
348 // Frame's level within the hierarchical structure.
349 unsigned int pyramid_level;
350 #endif // CONFIG_FRAME_PARALLEL_ENCODE
351 unsigned int frame_number;
352 SkipModeInfo skip_mode_info;
353 int refresh_frame_flags; // Which ref frames are overwritten by this frame
354 int frame_refs_short_signaling;
355 } CurrentFrame;
356
357 /*!\endcond */
358
359 /*!
360 * \brief Frame level features.
361 */
362 typedef struct {
363 /*!
364 * If true, CDF update in the symbol encoding/decoding process is disabled.
365 */
366 bool disable_cdf_update;
367 /*!
368 * If true, motion vectors are specified to eighth pel precision; and
369 * if false, motion vectors are specified to quarter pel precision.
370 */
371 bool allow_high_precision_mv;
372 /*!
373 * If true, force integer motion vectors; if false, use the default.
374 */
375 bool cur_frame_force_integer_mv;
376 /*!
377 * If true, palette tool and/or intra block copy tools may be used.
378 */
379 bool allow_screen_content_tools;
380 bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
381 bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
382 /*!
383 * If true, using previous frames' motion vectors for prediction is allowed.
384 */
385 bool allow_ref_frame_mvs;
386 /*!
387 * If true, frame is fully lossless at coded resolution.
388 * */
389 bool coded_lossless;
390 /*!
391 * If true, frame is fully lossless at upscaled resolution.
392 */
393 bool all_lossless;
394 /*!
395 * If true, the frame is restricted to a reduced subset of the full set of
396 * transform types.
397 */
398 bool reduced_tx_set_used;
399 /*!
400 * If true, error resilient mode is enabled.
401 * Note: Error resilient mode allows the syntax of a frame to be parsed
402 * independently of previously decoded frames.
403 */
404 bool error_resilient_mode;
405 /*!
406 * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
407 * if true, all MOTION_MODES may be used.
408 */
409 bool switchable_motion_mode;
410 TX_MODE tx_mode; /*!< Transform mode at frame level. */
411 InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
412 /*!
413 * The reference frame that contains the CDF values and other state that
414 * should be loaded at the start of the frame.
415 */
416 int primary_ref_frame;
417 /*!
418 * Byte alignment of the planes in the reference buffers.
419 */
420 int byte_alignment;
421 /*!
422 * Flag signaling how frame contexts should be updated at the end of
423 * a frame decode.
424 */
425 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
426 } FeatureFlags;
427
428 /*!
429 * \brief Params related to tiles.
430 */
431 typedef struct CommonTileParams {
432 int cols; /*!< number of tile columns that frame is divided into */
433 int rows; /*!< number of tile rows that frame is divided into */
434 int max_width_sb; /*!< maximum tile width in superblock units. */
435 int max_height_sb; /*!< maximum tile height in superblock units. */
436
437 /*!
438 * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
439 */
440 int min_inner_width;
441
442 /*!
443 * If true, tiles are uniformly spaced with power-of-two number of rows and
444 * columns.
445 * If false, tiles have explicitly configured widths and heights.
446 */
447 int uniform_spacing;
448
449 /**
450 * \name Members only valid when uniform_spacing == 1
451 */
452 /**@{*/
453 int log2_cols; /*!< log2 of 'cols'. */
454 int log2_rows; /*!< log2 of 'rows'. */
455 int width; /*!< tile width in MI units */
456 int height; /*!< tile height in MI units */
457 /**@}*/
458
459 /*!
460 * Min num of tile columns possible based on 'max_width_sb' and frame width.
461 */
462 int min_log2_cols;
463 /*!
464 * Min num of tile rows possible based on 'max_height_sb' and frame height.
465 */
466 int min_log2_rows;
467 /*!
468 * Min num of tile columns possible based on frame width.
469 */
470 int max_log2_cols;
471 /*!
472 * Max num of tile columns possible based on frame width.
473 */
474 int max_log2_rows;
475 /*!
476 * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
477 */
478 int min_log2;
479 /*!
480 * col_start_sb[i] is the start position of tile column i in superblock units.
481 * valid for 0 <= i <= cols
482 */
483 int col_start_sb[MAX_TILE_COLS + 1];
484 /*!
485 * row_start_sb[i] is the start position of tile row i in superblock units.
486 * valid for 0 <= i <= rows
487 */
488 int row_start_sb[MAX_TILE_ROWS + 1];
489 /*!
490 * If true, we are using large scale tile mode.
491 */
492 unsigned int large_scale;
493 /*!
494 * Only relevant when large_scale == 1.
495 * If true, the independent decoding of a single tile or a section of a frame
496 * is allowed.
497 */
498 unsigned int single_tile_decoding;
499 } CommonTileParams;
500
501 typedef struct CommonModeInfoParams CommonModeInfoParams;
502 /*!
503 * \brief Params related to MB_MODE_INFO arrays and related info.
504 */
505 struct CommonModeInfoParams {
506 /*!
507 * Number of rows in the frame in 16 pixel units.
508 * This is computed from frame height aligned to a multiple of 8.
509 */
510 int mb_rows;
511 /*!
512 * Number of cols in the frame in 16 pixel units.
513 * This is computed from frame width aligned to a multiple of 8.
514 */
515 int mb_cols;
516
517 /*!
518 * Total MBs = mb_rows * mb_cols.
519 */
520 int MBs;
521
522 /*!
523 * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
524 * This is computed from frame height aligned to a multiple of 8.
525 */
526 int mi_rows;
527 /*!
528 * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
529 * This is computed from frame width aligned to a multiple of 8.
530 */
531 int mi_cols;
532
533 /*!
534 * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
535 * in the frame.
536 * Note: This array should be treated like a scratch memory, and should NOT be
537 * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
538 */
539 MB_MODE_INFO *mi_alloc;
540 /*!
541 * Number of allocated elements in 'mi_alloc'.
542 */
543 int mi_alloc_size;
544 /*!
545 * Stride for 'mi_alloc' array.
546 */
547 int mi_alloc_stride;
548 /*!
549 * The minimum block size that each element in 'mi_alloc' can correspond to.
550 * For decoder, this is always BLOCK_4X4.
551 * For encoder, this is currently set to BLOCK_4X4 for resolution < 4k,
552 * and BLOCK_8X8 for resolution >= 4k.
553 */
554 BLOCK_SIZE mi_alloc_bsize;
555
556 /*!
557 * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
558 * It's possible that:
559 * - Multiple pointers in the grid point to the same element in 'mi_alloc'
560 * (for example, for all 4x4 blocks that belong to the same partition block).
561 * - Some pointers can be NULL (for example, for blocks outside visible area).
562 */
563 MB_MODE_INFO **mi_grid_base;
564 /*!
565 * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
566 */
567 int mi_grid_size;
568 /*!
569 * Stride for 'mi_grid_base' (and 'tx_type_map' also).
570 */
571 int mi_stride;
572
573 /*!
574 * An array of tx types for each 4x4 block in the frame.
575 * Number of allocated elements is same as 'mi_grid_size', and stride is
576 * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
577 * 'mi_grid_base'.
578 */
579 TX_TYPE *tx_type_map;
580
581 /**
582 * \name Function pointers to allow separate logic for encoder and decoder.
583 */
584 /**@{*/
585 /*!
586 * Free the memory allocated to arrays in 'mi_params'.
587 * \param[in,out] mi_params object containing common mode info parameters
588 */
589 void (*free_mi)(struct CommonModeInfoParams *mi_params);
590 /*!
591 * Initialize / reset appropriate arrays in 'mi_params'.
592 * \param[in,out] mi_params object containing common mode info parameters
593 */
594 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
595 /*!
596 * Allocate required memory for arrays in 'mi_params'.
597 * \param[in,out] mi_params object containing common mode info parameters
598 * \param width frame width
599 * \param height frame height
600 */
601 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
602 int height);
603 /**@}*/
604 };
605
606 typedef struct CommonQuantParams CommonQuantParams;
607 /*!
608 * \brief Parameters related to quantization at the frame level.
609 */
610 struct CommonQuantParams {
611 /*!
612 * Base qindex of the frame in the range 0 to 255.
613 */
614 int base_qindex;
615
616 /*!
617 * Delta of qindex (from base_qindex) for Y plane DC coefficient.
618 * Note: y_ac_delta_q is implicitly 0.
619 */
620 int y_dc_delta_q;
621
622 /*!
623 * Delta of qindex (from base_qindex) for U plane DC coefficients.
624 */
625 int u_dc_delta_q;
626 /*!
627 * Delta of qindex (from base_qindex) for U plane AC coefficients.
628 */
629 int v_dc_delta_q;
630
631 /*!
632 * Delta of qindex (from base_qindex) for V plane DC coefficients.
633 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
634 */
635 int u_ac_delta_q;
636 /*!
637 * Delta of qindex (from base_qindex) for V plane AC coefficients.
638 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
639 */
640 int v_ac_delta_q;
641
642 /*
643 * Note: The qindex per superblock may have a delta from the qindex obtained
644 * at frame level from parameters above, based on 'cm->delta_q_info'.
645 */
646
647 /**
648 * \name True dequantizers.
649 * The dequantizers below are true dequantizers used only in the
650 * dequantization process. They have the same coefficient
651 * shift/scale as TX.
652 */
653 /**@{*/
654 int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
655 int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
656 int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
657 /**@}*/
658
659 /**
660 * \name Global quantization matrix tables.
661 */
662 /**@{*/
663 /*!
664 * Global dquantization matrix table.
665 */
666 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
667 /*!
668 * Global quantization matrix table.
669 */
670 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
671 /**@}*/
672
673 /**
674 * \name Local dequantization matrix tables for each frame.
675 */
676 /**@{*/
677 /*!
678 * Local dequant matrix for Y plane.
679 */
680 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
681 /*!
682 * Local dequant matrix for U plane.
683 */
684 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
685 /*!
686 * Local dequant matrix for V plane.
687 */
688 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
689 /**@}*/
690
691 /*!
692 * Flag indicating whether quantization matrices are being used:
693 * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
694 * indices to be used to access appropriate global quant matrix tables.
695 * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
696 */
697 bool using_qmatrix;
698 /**
699 * \name Valid only when using_qmatrix == true
700 * Indicate the level indices to be used to access appropriate global quant
701 * matrix tables.
702 */
703 /**@{*/
704 int qmatrix_level_y; /*!< Level index for Y plane */
705 int qmatrix_level_u; /*!< Level index for U plane */
706 int qmatrix_level_v; /*!< Level index for V plane */
707 /**@}*/
708 };
709
710 typedef struct CommonContexts CommonContexts;
711 /*!
712 * \brief Contexts used for transmitting various symbols in the bitstream.
713 */
714 struct CommonContexts {
715 /*!
716 * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
717 * partition[i][j] is the context for ith tile row, jth mi_col.
718 */
719 PARTITION_CONTEXT **partition;
720
721 /*!
722 * Context used to derive context for multiple symbols:
723 * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
724 * to transmit skip_txfm flag.
725 * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
726 * sign.
727 * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
728 */
729 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
730
731 /*!
732 * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
733 * transmit 'is_split' flag to indicate if this transform block should be
734 * split into smaller sub-blocks.
735 * txfm[i][j] is the context for ith tile row, jth mi_col.
736 */
737 TXFM_CONTEXT **txfm;
738
739 /*!
740 * Dimensions that were used to allocate the arrays above.
741 * If these dimensions change, the arrays may have to be re-allocated.
742 */
743 int num_planes; /*!< Corresponds to av1_num_planes(cm) */
744 int num_tile_rows; /*!< Corresponds to cm->tiles.row */
745 int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
746 };
747
748 /*!
749 * \brief Top level common structure used by both encoder and decoder.
750 */
751 typedef struct AV1Common {
752 /*!
753 * Information about the current frame that is being coded.
754 */
755 CurrentFrame current_frame;
756 /*!
757 * Code and details about current error status.
758 */
759 struct aom_internal_error_info *error;
760
761 /*!
762 * AV1 allows two types of frame scaling operations:
763 * 1. Frame super-resolution: that allows coding a frame at lower resolution
764 * and after decoding the frame, normatively uscales and restores the frame --
765 * inside the coding loop.
766 * 2. Frame resize: that allows coding frame at lower/higher resolution, and
767 * then non-normatively upscale the frame at the time of rendering -- outside
768 * the coding loop.
769 * Hence, the need for 3 types of dimensions.
770 */
771
772 /**
773 * \name Coded frame dimensions.
774 */
775 /**@{*/
776 int width; /*!< Coded frame width */
777 int height; /*!< Coded frame height */
778 /**@}*/
779
780 /**
781 * \name Rendered frame dimensions.
782 * Dimensions after applying both super-resolution and resize to the coded
783 * frame. Different from coded dimensions if super-resolution and/or resize
784 * are being used for this frame.
785 */
786 /**@{*/
787 int render_width; /*!< Rendered frame width */
788 int render_height; /*!< Rendered frame height */
789 /**@}*/
790
791 /**
792 * \name Super-resolved frame dimensions.
793 * Frame dimensions after applying super-resolution to the coded frame (if
794 * present), but before applying resize.
795 * Larger than the coded dimensions if super-resolution is being used for
796 * this frame.
797 * Different from rendered dimensions if resize is being used for this frame.
798 */
799 /**@{*/
800 int superres_upscaled_width; /*!< Super-resolved frame width */
801 int superres_upscaled_height; /*!< Super-resolved frame height */
802 /**@}*/
803
804 /*!
805 * The denominator of the superres scale used by this frame.
806 * Note: The numerator is fixed to be SCALE_NUMERATOR.
807 */
808 uint8_t superres_scale_denominator;
809
810 /*!
811 * buffer_removal_times[op_num] specifies the frame removal time in units of
812 * DecCT clock ticks counted from the removal time of the last random access
813 * point for operating point op_num.
814 * TODO(urvang): We probably don't need the +1 here.
815 */
816 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
817 /*!
818 * Presentation time of the frame in clock ticks DispCT counted from the
819 * removal time of the last random access point for the operating point that
820 * is being decoded.
821 */
822 uint32_t frame_presentation_time;
823
824 /*!
825 * Buffer where previous frame is stored.
826 */
827 RefCntBuffer *prev_frame;
828
829 /*!
830 * Buffer into which the current frame will be stored and other related info.
831 * TODO(hkuang): Combine this with cur_buf in macroblockd.
832 */
833 RefCntBuffer *cur_frame;
834
835 /*!
836 * For encoder, we have a two-level mapping from reference frame type to the
837 * corresponding buffer in the buffer pool:
838 * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
839 * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
840 * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
841 * the reference counted buffer structure RefCntBuffer, taken from the buffer
842 * pool cm->buffer_pool->frame_bufs.
843 *
844 * LAST_FRAME, ..., EXTREF_FRAME
845 * | |
846 * v v
847 * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
848 * | |
849 * v v
850 * ref_frame_map[], ..., ref_frame_map[]
851 *
852 * Note: INTRA_FRAME always refers to the current frame, so there's no need to
853 * have a remapped index for the same.
854 */
855 int remapped_ref_idx[REF_FRAMES];
856
857 /*!
858 * Scale of the current frame with respect to itself.
859 * This is currently used for intra block copy, which behaves like an inter
860 * prediction mode, where the reference frame is the current frame itself.
861 */
862 struct scale_factors sf_identity;
863
864 /*!
865 * Scale factors of the reference frame with respect to the current frame.
866 * This is required for generating inter prediction and will be non-identity
867 * for a reference frame, if it has different dimensions than the coded
868 * dimensions of the current frame.
869 */
870 struct scale_factors ref_scale_factors[REF_FRAMES];
871
872 /*!
873 * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
874 * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
875 * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
876 * remapped reference index 'j' (that is, original reference type 'i') to
877 * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
878 */
879 RefCntBuffer *ref_frame_map[REF_FRAMES];
880
881 /*!
882 * If true, this frame is actually shown after decoding.
883 * If false, this frame is coded in the bitstream, but not shown. It is only
884 * used as a reference for other frames coded later.
885 */
886 int show_frame;
887
888 /*!
889 * If true, this frame can be used as a show-existing frame for other frames
890 * coded later.
891 * When 'show_frame' is true, this is always true for all non-keyframes.
892 * When 'show_frame' is false, this value is transmitted in the bitstream.
893 */
894 int showable_frame;
895
896 /*!
897 * If true, show an existing frame coded before, instead of actually coding a
898 * frame. The existing frame comes from one of the existing reference buffers,
899 * as signaled in the bitstream.
900 */
901 int show_existing_frame;
902
903 /*!
904 * Whether some features are allowed or not.
905 */
906 FeatureFlags features;
907
908 /*!
909 * Params related to MB_MODE_INFO arrays and related info.
910 */
911 CommonModeInfoParams mi_params;
912
913 #if CONFIG_ENTROPY_STATS
914 /*!
915 * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
916 */
917 int coef_cdf_category;
918 #endif // CONFIG_ENTROPY_STATS
919
920 /*!
921 * Quantization params.
922 */
923 CommonQuantParams quant_params;
924
925 /*!
926 * Segmentation info for current frame.
927 */
928 struct segmentation seg;
929
930 /*!
931 * Segmentation map for previous frame.
932 */
933 uint8_t *last_frame_seg_map;
934
935 /**
936 * \name Deblocking filter parameters.
937 */
938 /**@{*/
939 loop_filter_info_n lf_info; /*!< Loop filter info */
940 struct loopfilter lf; /*!< Loop filter parameters */
941 /**@}*/
942
943 /**
944 * \name Loop Restoration filter parameters.
945 */
946 /**@{*/
947 RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
948 int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
949 RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
950 YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
951 /**@}*/
952
953 /*!
954 * CDEF (Constrained Directional Enhancement Filter) parameters.
955 */
956 CdefInfo cdef_info;
957
958 /*!
959 * Parameters for film grain synthesis.
960 */
961 aom_film_grain_t film_grain_params;
962
963 /*!
964 * Parameters for delta quantization and delta loop filter level.
965 */
966 DeltaQInfo delta_q_info;
967
968 /*!
969 * Global motion parameters for each reference frame.
970 */
971 WarpedMotionParams global_motion[REF_FRAMES];
972
973 /*!
974 * Elements part of the sequence header, that are applicable for all the
975 * frames in the video.
976 */
977 SequenceHeader *seq_params;
978
979 /*!
980 * Current CDFs of all the symbols for the current frame.
981 */
982 FRAME_CONTEXT *fc;
983 /*!
984 * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
985 * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
986 * copied from default CDF tables for each symbol.
987 */
988 FRAME_CONTEXT *default_frame_context;
989
990 /*!
991 * Parameters related to tiling.
992 */
993 CommonTileParams tiles;
994
995 /*!
996 * External BufferPool passed from outside.
997 */
998 BufferPool *buffer_pool;
999
1000 /*!
1001 * Above context buffers and their sizes.
1002 * Note: above contexts are allocated in this struct, as their size is
1003 * dependent on frame width, while left contexts are declared and allocated in
1004 * MACROBLOCKD struct, as they have a fixed size.
1005 */
1006 CommonContexts above_contexts;
1007
1008 /**
1009 * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1010 */
1011 /**@{*/
1012 int current_frame_id; /*!< frame ID for the current frame. */
1013 int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1014 /**@}*/
1015
1016 /*!
1017 * Motion vectors provided by motion field estimation.
1018 * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1019 * mi_row = 2 * row,
1020 * mi_col = 2 * col, and
1021 * stride = cm->mi_params.mi_stride / 2
1022 */
1023 TPL_MV_REF *tpl_mvs;
1024 /*!
1025 * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1026 */
1027 int tpl_mvs_mem_size;
1028 /*!
1029 * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1030 * current frame is positive; and 0 otherwise.
1031 */
1032 int ref_frame_sign_bias[REF_FRAMES];
1033 /*!
1034 * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1035 * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1036 * TODO(jingning): This can be combined with sign_bias later.
1037 */
1038 int8_t ref_frame_side[REF_FRAMES];
1039
1040 /*!
1041 * Temporal layer ID of this frame
1042 * (in the range 0 ... (number_temporal_layers - 1)).
1043 */
1044 int temporal_layer_id;
1045
1046 /*!
1047 * Spatial layer ID of this frame
1048 * (in the range 0 ... (number_spatial_layers - 1)).
1049 */
1050 int spatial_layer_id;
1051
1052 #if TXCOEFF_TIMER
1053 int64_t cum_txcoeff_timer;
1054 int64_t txcoeff_timer;
1055 int txb_count;
1056 #endif // TXCOEFF_TIMER
1057
1058 #if TXCOEFF_COST_TIMER
1059 int64_t cum_txcoeff_cost_timer;
1060 int64_t txcoeff_cost_timer;
1061 int64_t txcoeff_cost_count;
1062 #endif // TXCOEFF_COST_TIMER
1063 } AV1_COMMON;
1064
1065 /*!\cond */
1066
1067 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1068 // frame reference count.
lock_buffer_pool(BufferPool * const pool)1069 static void lock_buffer_pool(BufferPool *const pool) {
1070 #if CONFIG_MULTITHREAD
1071 pthread_mutex_lock(&pool->pool_mutex);
1072 #else
1073 (void)pool;
1074 #endif
1075 }
1076
unlock_buffer_pool(BufferPool * const pool)1077 static void unlock_buffer_pool(BufferPool *const pool) {
1078 #if CONFIG_MULTITHREAD
1079 pthread_mutex_unlock(&pool->pool_mutex);
1080 #else
1081 (void)pool;
1082 #endif
1083 }
1084
get_ref_frame(AV1_COMMON * cm,int index)1085 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1086 if (index < 0 || index >= REF_FRAMES) return NULL;
1087 if (cm->ref_frame_map[index] == NULL) return NULL;
1088 return &cm->ref_frame_map[index]->buf;
1089 }
1090
get_free_fb(AV1_COMMON * cm)1091 static INLINE int get_free_fb(AV1_COMMON *cm) {
1092 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1093 int i;
1094
1095 lock_buffer_pool(cm->buffer_pool);
1096 for (i = 0; i < FRAME_BUFFERS; ++i)
1097 if (frame_bufs[i].ref_count == 0) break;
1098
1099 if (i != FRAME_BUFFERS) {
1100 if (frame_bufs[i].buf.use_external_reference_buffers) {
1101 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1102 // external reference buffers. Restore the buffer pointers to point to the
1103 // internally allocated memory.
1104 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1105 ybf->y_buffer = ybf->store_buf_adr[0];
1106 ybf->u_buffer = ybf->store_buf_adr[1];
1107 ybf->v_buffer = ybf->store_buf_adr[2];
1108 ybf->use_external_reference_buffers = 0;
1109 }
1110
1111 frame_bufs[i].ref_count = 1;
1112 } else {
1113 // We should never run out of free buffers. If this assertion fails, there
1114 // is a reference leak.
1115 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1116 // Reset i to be INVALID_IDX to indicate no free buffer found.
1117 i = INVALID_IDX;
1118 }
1119
1120 unlock_buffer_pool(cm->buffer_pool);
1121 return i;
1122 }
1123
assign_cur_frame_new_fb(AV1_COMMON * const cm)1124 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1125 // Release the previously-used frame-buffer
1126 if (cm->cur_frame != NULL) {
1127 --cm->cur_frame->ref_count;
1128 cm->cur_frame = NULL;
1129 }
1130
1131 // Assign a new framebuffer
1132 const int new_fb_idx = get_free_fb(cm);
1133 if (new_fb_idx == INVALID_IDX) return NULL;
1134
1135 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1136 cm->cur_frame->buf.buf_8bit_valid = 0;
1137 av1_zero(cm->cur_frame->interp_filter_selected);
1138 return cm->cur_frame;
1139 }
1140
1141 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1142 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)1143 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1144 RefCntBuffer *rhs_ptr) {
1145 RefCntBuffer *const old_ptr = *lhs_ptr;
1146 if (old_ptr != NULL) {
1147 assert(old_ptr->ref_count > 0);
1148 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1149 --old_ptr->ref_count;
1150 }
1151
1152 *lhs_ptr = rhs_ptr;
1153 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1154 ++rhs_ptr->ref_count;
1155 }
1156
frame_is_intra_only(const AV1_COMMON * const cm)1157 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1158 return cm->current_frame.frame_type == KEY_FRAME ||
1159 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1160 }
1161
frame_is_sframe(const AV1_COMMON * cm)1162 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1163 return cm->current_frame.frame_type == S_FRAME;
1164 }
1165
1166 // These functions take a reference frame label between LAST_FRAME and
1167 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1168 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1169 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1170 const MV_REFERENCE_FRAME ref_frame) {
1171 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1172 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1173 : INVALID_IDX;
1174 }
1175
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1176 static INLINE RefCntBuffer *get_ref_frame_buf(
1177 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1178 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1179 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1180 }
1181
1182 // Both const and non-const versions of this function are provided so that it
1183 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1184 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1185 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1186 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1187 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1188 }
1189
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1190 static INLINE struct scale_factors *get_ref_scale_factors(
1191 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1192 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1193 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1194 }
1195
get_primary_ref_frame_buf(const AV1_COMMON * const cm)1196 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1197 const AV1_COMMON *const cm) {
1198 const int primary_ref_frame = cm->features.primary_ref_frame;
1199 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1200 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1201 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1202 }
1203
1204 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)1205 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1206 return !cm->features.error_resilient_mode &&
1207 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1208 cm->seq_params->order_hint_info.enable_order_hint &&
1209 !frame_is_intra_only(cm);
1210 }
1211
1212 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)1213 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1214 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1215 cm->seq_params->enable_warped_motion;
1216 }
1217
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)1218 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1219 const int buf_rows = buf->mi_rows;
1220 const int buf_cols = buf->mi_cols;
1221 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1222
1223 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1224 buf_cols != mi_params->mi_cols) {
1225 aom_free(buf->mvs);
1226 buf->mi_rows = mi_params->mi_rows;
1227 buf->mi_cols = mi_params->mi_cols;
1228 CHECK_MEM_ERROR(cm, buf->mvs,
1229 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1230 ((mi_params->mi_cols + 1) >> 1),
1231 sizeof(*buf->mvs)));
1232 aom_free(buf->seg_map);
1233 CHECK_MEM_ERROR(
1234 cm, buf->seg_map,
1235 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1236 sizeof(*buf->seg_map)));
1237 }
1238
1239 const int mem_size =
1240 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1241 int realloc = cm->tpl_mvs == NULL;
1242 if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1243
1244 if (realloc) {
1245 aom_free(cm->tpl_mvs);
1246 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1247 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1248 cm->tpl_mvs_mem_size = mem_size;
1249 }
1250 }
1251
1252 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1253
av1_num_planes(const AV1_COMMON * cm)1254 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1255 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1256 }
1257
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)1258 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1259 int num_planes, int tile_row,
1260 MACROBLOCKD *xd) {
1261 for (int i = 0; i < num_planes; ++i) {
1262 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1263 }
1264 xd->above_partition_context = above_contexts->partition[tile_row];
1265 xd->above_txfm_context = above_contexts->txfm[tile_row];
1266 }
1267
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd)1268 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1269 const int num_planes = av1_num_planes(cm);
1270 const CommonQuantParams *const quant_params = &cm->quant_params;
1271
1272 for (int i = 0; i < num_planes; ++i) {
1273 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1274 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1275 sizeof(quant_params->y_dequant_QTX));
1276 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1277 sizeof(quant_params->y_iqmatrix));
1278
1279 } else {
1280 if (i == AOM_PLANE_U) {
1281 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1282 sizeof(quant_params->u_dequant_QTX));
1283 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1284 sizeof(quant_params->u_iqmatrix));
1285 } else {
1286 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1287 sizeof(quant_params->v_dequant_QTX));
1288 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1289 sizeof(quant_params->v_iqmatrix));
1290 }
1291 }
1292 }
1293 xd->mi_stride = cm->mi_params.mi_stride;
1294 xd->error_info = cm->error;
1295 cfl_init(&xd->cfl, cm->seq_params);
1296 }
1297
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)1298 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1299 const int num_planes) {
1300 int i;
1301 int row_offset = mi_row;
1302 int col_offset = mi_col;
1303 for (i = 0; i < num_planes; ++i) {
1304 struct macroblockd_plane *const pd = &xd->plane[i];
1305 // Offset the buffer pointer
1306 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1307 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1308 row_offset = mi_row - 1;
1309 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1310 col_offset = mi_col - 1;
1311 int above_idx = col_offset;
1312 int left_idx = row_offset & MAX_MIB_MASK;
1313 pd->above_entropy_context =
1314 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1315 pd->left_entropy_context =
1316 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1317 }
1318 }
1319
calc_mi_size(int len)1320 static INLINE int calc_mi_size(int len) {
1321 // len is in mi units. Align to a multiple of SBs.
1322 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1323 }
1324
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1325 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1326 const int num_planes) {
1327 int i;
1328 for (i = 0; i < num_planes; i++) {
1329 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1330 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1331
1332 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1333 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1334 }
1335 }
1336
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1337 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1338 int mi_row, int bh, int mi_col, int bw,
1339 int mi_rows, int mi_cols) {
1340 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1341 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1342 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1343 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1344
1345 xd->mi_row = mi_row;
1346 xd->mi_col = mi_col;
1347
1348 // Are edges available for intra prediction?
1349 xd->up_available = (mi_row > tile->mi_row_start);
1350
1351 const int ss_x = xd->plane[1].subsampling_x;
1352 const int ss_y = xd->plane[1].subsampling_y;
1353
1354 xd->left_available = (mi_col > tile->mi_col_start);
1355 xd->chroma_up_available = xd->up_available;
1356 xd->chroma_left_available = xd->left_available;
1357 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1358 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1359 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1360 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1361 if (xd->up_available) {
1362 xd->above_mbmi = xd->mi[-xd->mi_stride];
1363 } else {
1364 xd->above_mbmi = NULL;
1365 }
1366
1367 if (xd->left_available) {
1368 xd->left_mbmi = xd->mi[-1];
1369 } else {
1370 xd->left_mbmi = NULL;
1371 }
1372
1373 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1374 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1375 xd->is_chroma_ref = chroma_ref;
1376 if (chroma_ref) {
1377 // To help calculate the "above" and "left" chroma blocks, note that the
1378 // current block may cover multiple luma blocks (eg, if partitioned into
1379 // 4x4 luma blocks).
1380 // First, find the top-left-most luma block covered by this chroma block
1381 MB_MODE_INFO **base_mi =
1382 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1383
1384 // Then, we consider the luma region covered by the left or above 4x4 chroma
1385 // prediction. We want to point to the chroma reference block in that
1386 // region, which is the bottom-right-most mi unit.
1387 // This leads to the following offsets:
1388 MB_MODE_INFO *chroma_above_mi =
1389 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1390 xd->chroma_above_mbmi = chroma_above_mi;
1391
1392 MB_MODE_INFO *chroma_left_mi =
1393 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1394 xd->chroma_left_mbmi = chroma_left_mi;
1395 }
1396
1397 xd->height = bh;
1398 xd->width = bw;
1399
1400 xd->is_last_vertical_rect = 0;
1401 if (xd->width < xd->height) {
1402 if (!((mi_col + xd->width) & (xd->height - 1))) {
1403 xd->is_last_vertical_rect = 1;
1404 }
1405 }
1406
1407 xd->is_first_horizontal_rect = 0;
1408 if (xd->width > xd->height)
1409 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1410 }
1411
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1412 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1413 const MB_MODE_INFO *above_mi,
1414 const MB_MODE_INFO *left_mi) {
1415 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1416 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1417 const int above_ctx = intra_mode_context[above];
1418 const int left_ctx = intra_mode_context[left];
1419 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1420 }
1421
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1422 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1423 int mi_col, BLOCK_SIZE subsize,
1424 BLOCK_SIZE bsize) {
1425 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1426 PARTITION_CONTEXT *const left_ctx =
1427 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1428
1429 const int bw = mi_size_wide[bsize];
1430 const int bh = mi_size_high[bsize];
1431 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1432 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1433 }
1434
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1435 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1436 int subsampling_x, int subsampling_y) {
1437 assert(bsize < BLOCK_SIZES_ALL);
1438 const int bw = mi_size_wide[bsize];
1439 const int bh = mi_size_high[bsize];
1440 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1441 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1442 return ref_pos;
1443 }
1444
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1445 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1446 size_t element) {
1447 assert(cdf != NULL);
1448 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1449 }
1450
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1451 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1452 const aom_cdf_prob *const in,
1453 BLOCK_SIZE bsize) {
1454 (void)bsize;
1455 out[0] = CDF_PROB_TOP;
1456 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1457 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1458 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1459 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1460 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1461 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1462 out[0] = AOM_ICDF(out[0]);
1463 out[1] = AOM_ICDF(CDF_PROB_TOP);
1464 }
1465
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1466 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1467 const aom_cdf_prob *const in,
1468 BLOCK_SIZE bsize) {
1469 (void)bsize;
1470 out[0] = CDF_PROB_TOP;
1471 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1472 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1473 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1474 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1475 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1476 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1477 out[0] = AOM_ICDF(out[0]);
1478 out[1] = AOM_ICDF(CDF_PROB_TOP);
1479 }
1480
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1481 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1482 int mi_col, BLOCK_SIZE subsize,
1483 BLOCK_SIZE bsize,
1484 PARTITION_TYPE partition) {
1485 if (bsize >= BLOCK_8X8) {
1486 const int hbs = mi_size_wide[bsize] / 2;
1487 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1488 switch (partition) {
1489 case PARTITION_SPLIT:
1490 if (bsize != BLOCK_8X8) break;
1491 AOM_FALLTHROUGH_INTENDED;
1492 case PARTITION_NONE:
1493 case PARTITION_HORZ:
1494 case PARTITION_VERT:
1495 case PARTITION_HORZ_4:
1496 case PARTITION_VERT_4:
1497 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1498 break;
1499 case PARTITION_HORZ_A:
1500 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1501 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1502 break;
1503 case PARTITION_HORZ_B:
1504 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1505 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1506 break;
1507 case PARTITION_VERT_A:
1508 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1509 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1510 break;
1511 case PARTITION_VERT_B:
1512 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1513 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1514 break;
1515 default: assert(0 && "Invalid partition type");
1516 }
1517 }
1518 }
1519
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1520 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1521 int mi_col, BLOCK_SIZE bsize) {
1522 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1523 const PARTITION_CONTEXT *left_ctx =
1524 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1525 // Minimum partition point is 8x8. Offset the bsl accordingly.
1526 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1527 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1528
1529 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1530 assert(bsl >= 0);
1531
1532 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1533 }
1534
1535 // Return the number of elements in the partition CDF when
1536 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1537 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1538 if (bsize <= BLOCK_8X8)
1539 return PARTITION_TYPES;
1540 else if (bsize == BLOCK_128X128)
1541 return EXT_PARTITION_TYPES - 2;
1542 else
1543 return EXT_PARTITION_TYPES;
1544 }
1545
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1546 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1547 int plane) {
1548 assert(bsize < BLOCK_SIZES_ALL);
1549 int max_blocks_wide = block_size_wide[bsize];
1550
1551 if (xd->mb_to_right_edge < 0) {
1552 const struct macroblockd_plane *const pd = &xd->plane[plane];
1553 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1554 }
1555
1556 // Scale the width in the transform block unit.
1557 return max_blocks_wide >> MI_SIZE_LOG2;
1558 }
1559
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1560 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1561 int plane) {
1562 int max_blocks_high = block_size_high[bsize];
1563
1564 if (xd->mb_to_bottom_edge < 0) {
1565 const struct macroblockd_plane *const pd = &xd->plane[plane];
1566 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1567 }
1568
1569 // Scale the height in the transform block unit.
1570 return max_blocks_high >> MI_SIZE_LOG2;
1571 }
1572
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1573 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1574 const MACROBLOCKD *xd,
1575 int mi_col_start, int mi_col_end,
1576 const int tile_row) {
1577 const SequenceHeader *const seq_params = cm->seq_params;
1578 const int num_planes = av1_num_planes(cm);
1579 const int width = mi_col_end - mi_col_start;
1580 const int aligned_width =
1581 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1582 const int offset_y = mi_col_start;
1583 const int width_y = aligned_width;
1584 const int offset_uv = offset_y >> seq_params->subsampling_x;
1585 const int width_uv = width_y >> seq_params->subsampling_x;
1586 CommonContexts *const above_contexts = &cm->above_contexts;
1587
1588 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1589 if (num_planes > 1) {
1590 if (above_contexts->entropy[1][tile_row] &&
1591 above_contexts->entropy[2][tile_row]) {
1592 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1593 width_uv);
1594 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1595 width_uv);
1596 } else {
1597 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1598 "Invalid value of planes");
1599 }
1600 }
1601
1602 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1603 aligned_width);
1604
1605 memset(above_contexts->txfm[tile_row] + mi_col_start,
1606 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1607 }
1608
av1_zero_left_context(MACROBLOCKD * const xd)1609 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1610 av1_zero(xd->left_entropy_context);
1611 av1_zero(xd->left_partition_context);
1612
1613 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1614 sizeof(xd->left_txfm_context_buffer));
1615 }
1616
1617 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1618 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1619 // infeasible. The assert is enough for static analysis and this or other tools
1620 // asan, valgrind would catch oob access at runtime.
1621 #if defined(__GNUC__) && __GNUC__ >= 4
1622 #pragma GCC diagnostic ignored "-Warray-bounds"
1623 #endif
1624
1625 #if defined(__GNUC__) && __GNUC__ >= 4
1626 #pragma GCC diagnostic warning "-Warray-bounds"
1627 #endif
1628
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1629 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1630 int i;
1631 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1632 }
1633
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1634 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1635 const MACROBLOCKD *xd) {
1636 uint8_t bw = tx_size_wide[tx_size];
1637 uint8_t bh = tx_size_high[tx_size];
1638
1639 if (skip) {
1640 bw = n4_w * MI_SIZE;
1641 bh = n4_h * MI_SIZE;
1642 }
1643
1644 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1645 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1646 }
1647
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1648 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1649 int mi_row, int mi_col) {
1650 return mi_row * mi_params->mi_stride + mi_col;
1651 }
1652
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1653 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1654 int mi_row, int mi_col) {
1655 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1656 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1657 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1658
1659 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1660 }
1661
1662 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1663 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1664 MACROBLOCKD *const xd, int mi_row,
1665 int mi_col) {
1666 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1667 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1668 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1669 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1670 // 'xd->mi' should point to an offset in 'mi_grid_base';
1671 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1672 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1673 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1674 xd->tx_type_map_stride = mi_params->mi_stride;
1675 }
1676
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1677 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1678 TXFM_CONTEXT *left_ctx,
1679 TX_SIZE tx_size, TX_SIZE txb_size) {
1680 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1681 int bh = mi_size_high[bsize];
1682 int bw = mi_size_wide[bsize];
1683 uint8_t txw = tx_size_wide[tx_size];
1684 uint8_t txh = tx_size_high[tx_size];
1685 int i;
1686 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1687 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1688 }
1689
get_sqr_tx_size(int tx_dim)1690 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1691 switch (tx_dim) {
1692 case 128:
1693 case 64: return TX_64X64; break;
1694 case 32: return TX_32X32; break;
1695 case 16: return TX_16X16; break;
1696 case 8: return TX_8X8; break;
1697 default: return TX_4X4;
1698 }
1699 }
1700
get_tx_size(int width,int height)1701 static INLINE TX_SIZE get_tx_size(int width, int height) {
1702 if (width == height) {
1703 return get_sqr_tx_size(width);
1704 }
1705 if (width < height) {
1706 if (width + width == height) {
1707 switch (width) {
1708 case 4: return TX_4X8; break;
1709 case 8: return TX_8X16; break;
1710 case 16: return TX_16X32; break;
1711 case 32: return TX_32X64; break;
1712 }
1713 } else {
1714 switch (width) {
1715 case 4: return TX_4X16; break;
1716 case 8: return TX_8X32; break;
1717 case 16: return TX_16X64; break;
1718 }
1719 }
1720 } else {
1721 if (height + height == width) {
1722 switch (height) {
1723 case 4: return TX_8X4; break;
1724 case 8: return TX_16X8; break;
1725 case 16: return TX_32X16; break;
1726 case 32: return TX_64X32; break;
1727 }
1728 } else {
1729 switch (height) {
1730 case 4: return TX_16X4; break;
1731 case 8: return TX_32X8; break;
1732 case 16: return TX_64X16; break;
1733 }
1734 }
1735 }
1736 assert(0);
1737 return TX_4X4;
1738 }
1739
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1740 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1741 const TXFM_CONTEXT *const left_ctx,
1742 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1743 const uint8_t txw = tx_size_wide[tx_size];
1744 const uint8_t txh = tx_size_high[tx_size];
1745 const int above = *above_ctx < txw;
1746 const int left = *left_ctx < txh;
1747 int category = TXFM_PARTITION_CONTEXTS;
1748
1749 // dummy return, not used by others.
1750 if (tx_size <= TX_4X4) return 0;
1751
1752 TX_SIZE max_tx_size =
1753 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1754
1755 if (max_tx_size >= TX_8X8) {
1756 category =
1757 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1758 (TX_SIZES - 1 - max_tx_size) * 2;
1759 }
1760 assert(category != TXFM_PARTITION_CONTEXTS);
1761 return category * 3 + above + left;
1762 }
1763
1764 // Compute the next partition in the direction of the sb_type stored in the mi
1765 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1766 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1767 int mi_row, int mi_col,
1768 BLOCK_SIZE bsize) {
1769 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1770 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1771 return PARTITION_INVALID;
1772
1773 const int offset = mi_row * mi_params->mi_stride + mi_col;
1774 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1775 const BLOCK_SIZE subsize = mi[0]->bsize;
1776
1777 assert(bsize < BLOCK_SIZES_ALL);
1778
1779 if (subsize == bsize) return PARTITION_NONE;
1780
1781 const int bhigh = mi_size_high[bsize];
1782 const int bwide = mi_size_wide[bsize];
1783 const int sshigh = mi_size_high[subsize];
1784 const int sswide = mi_size_wide[subsize];
1785
1786 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1787 mi_col + bhigh / 2 < mi_params->mi_cols) {
1788 // In this case, the block might be using an extended partition
1789 // type.
1790 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1791 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1792
1793 if (sswide == bwide) {
1794 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1795 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1796 // half was split.
1797 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1798 assert(sshigh * 2 == bhigh);
1799
1800 if (mbmi_below->bsize == subsize)
1801 return PARTITION_HORZ;
1802 else
1803 return PARTITION_HORZ_B;
1804 } else if (sshigh == bhigh) {
1805 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1806 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1807 // half was split.
1808 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1809 assert(sswide * 2 == bhigh);
1810
1811 if (mbmi_right->bsize == subsize)
1812 return PARTITION_VERT;
1813 else
1814 return PARTITION_VERT_B;
1815 } else {
1816 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1817 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1818 // dimensions, we immediately know this is a split (which will recurse to
1819 // get to subsize). Otherwise look down and to the right. With
1820 // PARTITION_VERT_A, the right block will have height bhigh; with
1821 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1822 // it's PARTITION_SPLIT.
1823 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1824
1825 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1826 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1827
1828 return PARTITION_SPLIT;
1829 }
1830 }
1831 const int vert_split = sswide < bwide;
1832 const int horz_split = sshigh < bhigh;
1833 const int split_idx = (vert_split << 1) | horz_split;
1834 assert(split_idx != 0);
1835
1836 static const PARTITION_TYPE base_partitions[4] = {
1837 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1838 };
1839
1840 return base_partitions[split_idx];
1841 }
1842
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1843 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1844 BLOCK_SIZE sb_size) {
1845 seq_params->sb_size = sb_size;
1846 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1847 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1848 }
1849
1850 // Returns true if the frame is fully lossless at the coded resolution.
1851 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1852 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1853 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1854 const MACROBLOCKD *xd) {
1855 int coded_lossless = 1;
1856 if (cm->seg.enabled) {
1857 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1858 if (!xd->lossless[i]) {
1859 coded_lossless = 0;
1860 break;
1861 }
1862 }
1863 } else {
1864 coded_lossless = xd->lossless[0];
1865 }
1866 return coded_lossless;
1867 }
1868
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1869 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1870 return seq_level_idx == SEQ_LEVEL_MAX ||
1871 (seq_level_idx < SEQ_LEVELS &&
1872 // The following levels are currently undefined.
1873 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1874 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1875 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1876 seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1877 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1878 }
1879
1880 /*!\endcond */
1881
1882 #ifdef __cplusplus
1883 } // extern "C"
1884 #endif
1885
1886 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1887