1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14
15 #include "config/aom_config.h"
16
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 #define USE_B_QUANT_NO_TRELLIS 1
35
36 #define MAX_MB_PLANE 3
37
38 #define MAX_DIFFWTD_MASK_BITS 1
39
40 #define INTERINTRA_WEDGE_SIGN 0
41
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47
48 /*!\cond */
49
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52 DIFFWTD_38 = 0,
53 DIFFWTD_38_INV,
54 DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56
57 enum {
58 KEY_FRAME = 0,
59 INTER_FRAME = 1,
60 INTRA_ONLY_FRAME = 2, // replaces intra-only
61 S_FRAME = 3,
62 FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64
is_comp_ref_allowed(BLOCK_SIZE bsize)65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68
is_inter_mode(PREDICTION_MODE mode)69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70 return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72
73 typedef struct {
74 uint8_t *plane[MAX_MB_PLANE];
75 int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77
is_inter_singleref_mode(PREDICTION_MODE mode)78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79 return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
is_inter_compound_mode(PREDICTION_MODE mode)81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82 return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84
compound_ref0_mode(PREDICTION_MODE mode)85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86 static const PREDICTION_MODE lut[] = {
87 DC_PRED, // DC_PRED
88 V_PRED, // V_PRED
89 H_PRED, // H_PRED
90 D45_PRED, // D45_PRED
91 D135_PRED, // D135_PRED
92 D113_PRED, // D113_PRED
93 D157_PRED, // D157_PRED
94 D203_PRED, // D203_PRED
95 D67_PRED, // D67_PRED
96 SMOOTH_PRED, // SMOOTH_PRED
97 SMOOTH_V_PRED, // SMOOTH_V_PRED
98 SMOOTH_H_PRED, // SMOOTH_H_PRED
99 PAETH_PRED, // PAETH_PRED
100 NEARESTMV, // NEARESTMV
101 NEARMV, // NEARMV
102 GLOBALMV, // GLOBALMV
103 NEWMV, // NEWMV
104 NEARESTMV, // NEAREST_NEARESTMV
105 NEARMV, // NEAR_NEARMV
106 NEARESTMV, // NEAREST_NEWMV
107 NEWMV, // NEW_NEARESTMV
108 NEARMV, // NEAR_NEWMV
109 NEWMV, // NEW_NEARMV
110 GLOBALMV, // GLOBAL_GLOBALMV
111 NEWMV, // NEW_NEWMV
112 };
113 assert(NELEMENTS(lut) == MB_MODE_COUNT);
114 assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115 return lut[mode];
116 }
117
compound_ref1_mode(PREDICTION_MODE mode)118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119 static const PREDICTION_MODE lut[] = {
120 MB_MODE_COUNT, // DC_PRED
121 MB_MODE_COUNT, // V_PRED
122 MB_MODE_COUNT, // H_PRED
123 MB_MODE_COUNT, // D45_PRED
124 MB_MODE_COUNT, // D135_PRED
125 MB_MODE_COUNT, // D113_PRED
126 MB_MODE_COUNT, // D157_PRED
127 MB_MODE_COUNT, // D203_PRED
128 MB_MODE_COUNT, // D67_PRED
129 MB_MODE_COUNT, // SMOOTH_PRED
130 MB_MODE_COUNT, // SMOOTH_V_PRED
131 MB_MODE_COUNT, // SMOOTH_H_PRED
132 MB_MODE_COUNT, // PAETH_PRED
133 MB_MODE_COUNT, // NEARESTMV
134 MB_MODE_COUNT, // NEARMV
135 MB_MODE_COUNT, // GLOBALMV
136 MB_MODE_COUNT, // NEWMV
137 NEARESTMV, // NEAREST_NEARESTMV
138 NEARMV, // NEAR_NEARMV
139 NEWMV, // NEAREST_NEWMV
140 NEARESTMV, // NEW_NEARESTMV
141 NEWMV, // NEAR_NEWMV
142 NEARMV, // NEW_NEARMV
143 GLOBALMV, // GLOBAL_GLOBALMV
144 NEWMV, // NEW_NEWMV
145 };
146 assert(NELEMENTS(lut) == MB_MODE_COUNT);
147 assert(is_inter_compound_mode(mode));
148 return lut[mode];
149 }
150
have_nearmv_in_inter_mode(PREDICTION_MODE mode)151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152 return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153 mode == NEW_NEARMV);
154 }
155
have_newmv_in_inter_mode(PREDICTION_MODE mode)156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157 return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158 mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160
is_masked_compound_type(COMPOUND_TYPE type)161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162 return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166 modes for the Y blocks to the left and above us; for interframes, there
167 is a single probability table. */
168
169 typedef struct {
170 // Value of base colors for Y, U, and V
171 uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172 // Number of base colors for Y (0) and UV (1)
173 uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175
176 typedef struct {
177 FILTER_INTRA_MODE filter_intra_mode;
178 uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182 DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188
189 typedef struct RD_STATS {
190 int rate;
191 int64_t dist;
192 // Please be careful of using rdcost, it's not guaranteed to be set all the
193 // time.
194 // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
195 // these functions, make sure rdcost is always up-to-date according to
196 // rate/dist.
197 int64_t rdcost;
198 int64_t sse;
199 int skip_txfm; // sse should equal to dist when skip_txfm == 1
200 int zero_rate;
201 #if CONFIG_RD_DEBUG
202 int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209 uint8_t *seg_mask;
210 int8_t wedge_index;
211 int8_t wedge_sign;
212 DIFFWTD_MASK_TYPE mask_type;
213 COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 /*!\endcond */
219
220 /*! \brief Stores the prediction/txfm mode of the current coding block
221 */
222 typedef struct MB_MODE_INFO {
223 /*****************************************************************************
224 * \name General Info of the Coding Block
225 ****************************************************************************/
226 /**@{*/
227 /*! \brief The block size of the current coding block */
228 BLOCK_SIZE bsize;
229 /*! \brief The partition type of the current coding block. */
230 PARTITION_TYPE partition;
231 /*! \brief The prediction mode used */
232 PREDICTION_MODE mode;
233 /*! \brief The UV mode when intra is used */
234 UV_PREDICTION_MODE uv_mode;
235 /*! \brief The q index for the current coding block. */
236 int current_qindex;
237 /**@}*/
238
239 /*****************************************************************************
240 * \name Inter Mode Info
241 ****************************************************************************/
242 /**@{*/
243 /*! \brief The motion vectors used by the current inter mode */
244 int_mv mv[2];
245 /*! \brief The reference frames for the MV */
246 MV_REFERENCE_FRAME ref_frame[2];
247 /*! \brief Filter used in subpel interpolation. */
248 int_interpfilters interp_filters;
249 /*! \brief The motion mode used by the inter prediction. */
250 MOTION_MODE motion_mode;
251 /*! \brief Number of samples used by warp causal */
252 uint8_t num_proj_ref;
253 /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
254 * mode. */
255 uint8_t overlappable_neighbors;
256 /*! \brief The parameters used in warp motion mode. */
257 WarpedMotionParams wm_params;
258 /*! \brief The type of intra mode used by inter-intra */
259 INTERINTRA_MODE interintra_mode;
260 /*! \brief The type of wedge used in interintra mode. */
261 int8_t interintra_wedge_index;
262 /*! \brief Struct that stores the data used in interinter compound mode. */
263 INTERINTER_COMPOUND_DATA interinter_comp;
264 /**@}*/
265
266 /*****************************************************************************
267 * \name Intra Mode Info
268 ****************************************************************************/
269 /**@{*/
270 /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
271 * step). */
272 int8_t angle_delta[PLANE_TYPES];
273 /*! \brief The type of filter intra mode used (if applicable). */
274 FILTER_INTRA_MODE_INFO filter_intra_mode_info;
275 /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
276 int8_t cfl_alpha_signs;
277 /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
278 uint8_t cfl_alpha_idx;
279 /*! \brief Stores the size and colors of palette mode */
280 PALETTE_MODE_INFO palette_mode_info;
281 /**@}*/
282
283 /*****************************************************************************
284 * \name Transform Info
285 ****************************************************************************/
286 /**@{*/
287 /*! \brief Whether to skip transforming and sending. */
288 int8_t skip_txfm;
289 /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
290 TX_SIZE tx_size;
291 /*! \brief Transform size when recursive txfm tree is on. */
292 TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
293 /**@}*/
294
295 /*****************************************************************************
296 * \name Loop Filter Info
297 ****************************************************************************/
298 /**@{*/
299 /*! \copydoc MACROBLOCKD::delta_lf_from_base */
300 int8_t delta_lf_from_base;
301 /*! \copydoc MACROBLOCKD::delta_lf */
302 int8_t delta_lf[FRAME_LF_COUNT];
303 /**@}*/
304
305 /*****************************************************************************
306 * \name Bitfield for Memory Reduction
307 ****************************************************************************/
308 /**@{*/
309 /*! \brief The segment id */
310 uint8_t segment_id : 3;
311 /*! \brief Only valid when temporal update if off. */
312 uint8_t seg_id_predicted : 1;
313 /*! \brief Which ref_mv to use */
314 uint8_t ref_mv_idx : 2;
315 /*! \brief Inter skip mode */
316 uint8_t skip_mode : 1;
317 /*! \brief Whether intrabc is used. */
318 uint8_t use_intrabc : 1;
319 /*! \brief Indicates if masked compound is used(1) or not (0). */
320 uint8_t comp_group_idx : 1;
321 /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
322 uint8_t compound_idx : 1;
323 /*! \brief Whether to use interintra wedge */
324 uint8_t use_wedge_interintra : 1;
325 /*! \brief CDEF strength per BLOCK_64X64 */
326 int8_t cdef_strength : 4;
327 /**@}*/
328
329 /*! \brief Skip CDEF for this superblock */
330 uint8_t skip_cdef_curr_sb;
331
332 #if CONFIG_RD_DEBUG
333 /*! \brief RD info used for debugging */
334 RD_STATS rd_stats;
335 /*! \brief The current row in unit of 4x4 blocks for debugging */
336 int mi_row;
337 /*! \brief The current col in unit of 4x4 blocks for debugging */
338 int mi_col;
339 #endif
340 #if CONFIG_INSPECTION
341 /*! \brief Whether we are skipping the current rows or columns. */
342 int16_t tx_skip[TXK_TYPE_BUF_LEN];
343 #endif
344 } MB_MODE_INFO;
345
346 /*!\cond */
347
is_intrabc_block(const MB_MODE_INFO * mbmi)348 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
349 return mbmi->use_intrabc;
350 }
351
get_uv_mode(UV_PREDICTION_MODE mode)352 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
353 assert(mode < UV_INTRA_MODES);
354 static const PREDICTION_MODE uv2y[] = {
355 DC_PRED, // UV_DC_PRED
356 V_PRED, // UV_V_PRED
357 H_PRED, // UV_H_PRED
358 D45_PRED, // UV_D45_PRED
359 D135_PRED, // UV_D135_PRED
360 D113_PRED, // UV_D113_PRED
361 D157_PRED, // UV_D157_PRED
362 D203_PRED, // UV_D203_PRED
363 D67_PRED, // UV_D67_PRED
364 SMOOTH_PRED, // UV_SMOOTH_PRED
365 SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
366 SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
367 PAETH_PRED, // UV_PAETH_PRED
368 DC_PRED, // UV_CFL_PRED
369 INTRA_INVALID, // UV_INTRA_MODES
370 INTRA_INVALID, // UV_MODE_INVALID
371 };
372 return uv2y[mode];
373 }
374
is_inter_block(const MB_MODE_INFO * mbmi)375 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
376 return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
377 }
378
has_second_ref(const MB_MODE_INFO * mbmi)379 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
380 return mbmi->ref_frame[1] > INTRA_FRAME;
381 }
382
has_uni_comp_refs(const MB_MODE_INFO * mbmi)383 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
384 return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
385 (mbmi->ref_frame[1] >= BWDREF_FRAME)));
386 }
387
comp_ref0(int ref_idx)388 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
389 static const MV_REFERENCE_FRAME lut[] = {
390 LAST_FRAME, // LAST_LAST2_FRAMES,
391 LAST_FRAME, // LAST_LAST3_FRAMES,
392 LAST_FRAME, // LAST_GOLDEN_FRAMES,
393 BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
394 LAST2_FRAME, // LAST2_LAST3_FRAMES
395 LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
396 LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
397 BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
398 ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
399 };
400 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
401 return lut[ref_idx];
402 }
403
comp_ref1(int ref_idx)404 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
405 static const MV_REFERENCE_FRAME lut[] = {
406 LAST2_FRAME, // LAST_LAST2_FRAMES,
407 LAST3_FRAME, // LAST_LAST3_FRAMES,
408 GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
409 ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
410 LAST3_FRAME, // LAST2_LAST3_FRAMES
411 GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
412 GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
413 ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
414 ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
415 };
416 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
417 return lut[ref_idx];
418 }
419
420 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
421
422 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
423
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)424 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
425 TransformationType type) {
426 const PREDICTION_MODE mode = mbmi->mode;
427 const BLOCK_SIZE bsize = mbmi->bsize;
428 const int block_size_allowed =
429 AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
430 return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
431 block_size_allowed;
432 }
433
434 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)435 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
436 int mi_row, int tx_blk_col, int tx_blk_row,
437 int subsampling_x, int subsampling_y) {
438 *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
439 (tx_blk_col << MI_SIZE_LOG2);
440 *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
441 (tx_blk_row << MI_SIZE_LOG2);
442 }
443 #endif
444
445 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
446
447 struct buf_2d {
448 uint8_t *buf;
449 uint8_t *buf0;
450 int width;
451 int height;
452 int stride;
453 };
454
455 typedef struct eob_info {
456 uint16_t eob;
457 uint16_t max_scan_line;
458 } eob_info;
459
460 typedef struct {
461 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
462 eob_info eob_data[MAX_MB_PLANE]
463 [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
464 DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
465 } CB_BUFFER;
466
467 typedef struct macroblockd_plane {
468 PLANE_TYPE plane_type;
469 int subsampling_x;
470 int subsampling_y;
471 struct buf_2d dst;
472 struct buf_2d pre[2];
473 ENTROPY_CONTEXT *above_entropy_context;
474 ENTROPY_CONTEXT *left_entropy_context;
475
476 // The dequantizers below are true dequantizers used only in the
477 // dequantization process. They have the same coefficient
478 // shift/scale as TX.
479 int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
480 // Pointer to color index map of:
481 // - Current coding block, on encoder side.
482 // - Current superblock, on decoder side.
483 uint8_t *color_index_map;
484
485 // block size in pixels
486 uint8_t width, height;
487
488 qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
489 qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
490 } MACROBLOCKD_PLANE;
491
492 #define BLOCK_OFFSET(i) ((i) << 4)
493
494 /*!\endcond */
495
496 /*!\brief Parameters related to Wiener Filter */
497 typedef struct {
498 /*!
499 * Vertical filter kernel.
500 */
501 DECLARE_ALIGNED(16, InterpKernel, vfilter);
502
503 /*!
504 * Horizontal filter kernel.
505 */
506 DECLARE_ALIGNED(16, InterpKernel, hfilter);
507 } WienerInfo;
508
509 /*!\brief Parameters related to Sgrproj Filter */
510 typedef struct {
511 /*!
512 * Parameter index.
513 */
514 int ep;
515
516 /*!
517 * Weights for linear combination of filtered versions
518 */
519 int xqd[2];
520 } SgrprojInfo;
521
522 /*!\cond */
523
524 #if CONFIG_DEBUG
525 #define CFL_SUB8X8_VAL_MI_SIZE (4)
526 #define CFL_SUB8X8_VAL_MI_SQUARE \
527 (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
528 #endif // CONFIG_DEBUG
529 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
530 #define CFL_BUF_LINE (32)
531 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
532 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
533 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
534 typedef struct cfl_ctx {
535 // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
536 // shifts)
537 uint16_t recon_buf_q3[CFL_BUF_SQUARE];
538 // Q3 AC contributions (reconstructed luma pixels - tx block avg)
539 int16_t ac_buf_q3[CFL_BUF_SQUARE];
540
541 // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
542 // for every scaling parameter
543 int dc_pred_is_cached[CFL_PRED_PLANES];
544 // The DC_PRED cache is disable when decoding
545 int use_dc_pred_cache;
546 // Only cache the first row of the DC_PRED
547 int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
548
549 // Height and width currently used in the CfL prediction buffer.
550 int buf_height, buf_width;
551
552 int are_parameters_computed;
553
554 // Chroma subsampling
555 int subsampling_x, subsampling_y;
556
557 // Whether the reconstructed luma pixels need to be stored
558 int store_y;
559 } CFL_CTX;
560
561 typedef struct dist_wtd_comp_params {
562 int use_dist_wtd_comp_avg;
563 int fwd_offset;
564 int bck_offset;
565 } DIST_WTD_COMP_PARAMS;
566
567 struct scale_factors;
568
569 /*!\endcond */
570
571 /*! \brief Variables related to current coding block.
572 *
573 * This is a common set of variables used by both encoder and decoder.
574 * Most/all of the pointers are mere pointers to actual arrays are allocated
575 * elsewhere. This is mostly for coding convenience.
576 */
577 typedef struct macroblockd {
578 /**
579 * \name Position of current macroblock in mi units
580 */
581 /**@{*/
582 int mi_row; /*!< Row position in mi units. */
583 int mi_col; /*!< Column position in mi units. */
584 /**@}*/
585
586 /*!
587 * Same as cm->mi_params.mi_stride, copied here for convenience.
588 */
589 int mi_stride;
590
591 /*!
592 * True if current block transmits chroma information.
593 * More detail:
594 * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
595 * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
596 * blocks smaller than 8x8 maybe combined into one chroma block.
597 * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
598 * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
599 * these four luma blocks. This is implemented in bitstream as follows:
600 * - There are four MB_MODE_INFO structs for the four luma blocks.
601 * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
602 * any information for chroma planes.
603 * - Last block will have is_chroma_ref = true and transmits chroma
604 * information for the 4x4 chroma block that covers whole 8x8 area covered by
605 * four luma blocks.
606 * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
607 */
608 bool is_chroma_ref;
609
610 /*!
611 * Info specific to each plane.
612 */
613 struct macroblockd_plane plane[MAX_MB_PLANE];
614
615 /*!
616 * Tile related info.
617 */
618 TileInfo tile;
619
620 /*!
621 * Appropriate offset inside cm->mi_params.mi_grid_base based on current
622 * mi_row and mi_col.
623 */
624 MB_MODE_INFO **mi;
625
626 /*!
627 * True if 4x4 block above the current block is available.
628 */
629 bool up_available;
630 /*!
631 * True if 4x4 block to the left of the current block is available.
632 */
633 bool left_available;
634 /*!
635 * True if the above chrome reference block is available.
636 */
637 bool chroma_up_available;
638 /*!
639 * True if the left chrome reference block is available.
640 */
641 bool chroma_left_available;
642
643 /*!
644 * MB_MODE_INFO for 4x4 block to the left of the current block, if
645 * left_available == true; otherwise NULL.
646 */
647 MB_MODE_INFO *left_mbmi;
648 /*!
649 * MB_MODE_INFO for 4x4 block above the current block, if
650 * up_available == true; otherwise NULL.
651 */
652 MB_MODE_INFO *above_mbmi;
653 /*!
654 * Above chroma reference block if is_chroma_ref == true for the current block
655 * and chroma_up_available == true; otherwise NULL.
656 * See also: the special case logic when current chroma block covers more than
657 * one luma blocks in set_mi_row_col().
658 */
659 MB_MODE_INFO *chroma_left_mbmi;
660 /*!
661 * Left chroma reference block if is_chroma_ref == true for the current block
662 * and chroma_left_available == true; otherwise NULL.
663 * See also: the special case logic when current chroma block covers more than
664 * one luma blocks in set_mi_row_col().
665 */
666 MB_MODE_INFO *chroma_above_mbmi;
667
668 /*!
669 * Appropriate offset based on current 'mi_row' and 'mi_col', inside
670 * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
671 * 'MACROBLOCK' structs.
672 */
673 uint8_t *tx_type_map;
674 /*!
675 * Stride for 'tx_type_map'. Note that this may / may not be same as
676 * 'mi_stride', depending on which actual array 'tx_type_map' points to.
677 */
678 int tx_type_map_stride;
679
680 /**
681 * \name Distance of this macroblock from frame edges in 1/8th pixel units.
682 */
683 /**@{*/
684 int mb_to_left_edge; /*!< Distance from left edge */
685 int mb_to_right_edge; /*!< Distance from right edge */
686 int mb_to_top_edge; /*!< Distance from top edge */
687 int mb_to_bottom_edge; /*!< Distance from bottom edge */
688 /**@}*/
689
690 /*!
691 * Scale factors for reference frames of the current block.
692 * These are pointers into 'cm->ref_scale_factors'.
693 */
694 const struct scale_factors *block_ref_scale_factors[2];
695
696 /*!
697 * - On encoder side: points to cpi->source, which is the buffer containing
698 * the current *source* frame (maybe filtered).
699 * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
700 * which current frame is being *decoded*.
701 */
702 const YV12_BUFFER_CONFIG *cur_buf;
703
704 /*!
705 * Entropy contexts for the above blocks.
706 * above_entropy_context[i][j] corresponds to above entropy context for ith
707 * plane and jth mi column of this *frame*, wrt current 'mi_row'.
708 * These are pointers into 'cm->above_contexts.entropy'.
709 */
710 ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
711 /*!
712 * Entropy contexts for the left blocks.
713 * left_entropy_context[i][j] corresponds to left entropy context for ith
714 * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
715 * Note: These contain actual data, NOT pointers.
716 */
717 ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
718
719 /*!
720 * Partition contexts for the above blocks.
721 * above_partition_context[i] corresponds to above partition context for ith
722 * mi column of this *frame*, wrt current 'mi_row'.
723 * This is a pointer into 'cm->above_contexts.partition'.
724 */
725 PARTITION_CONTEXT *above_partition_context;
726 /*!
727 * Partition contexts for the left blocks.
728 * left_partition_context[i] corresponds to left partition context for ith
729 * mi row of this *superblock*, wrt current 'mi_col'.
730 * Note: These contain actual data, NOT pointers.
731 */
732 PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
733
734 /*!
735 * Transform contexts for the above blocks.
736 * above_txfm_context[i] corresponds to above transform context for ith mi col
737 * from the current position (mi row and mi column) for this *frame*.
738 * This is a pointer into 'cm->above_contexts.txfm'.
739 */
740 TXFM_CONTEXT *above_txfm_context;
741 /*!
742 * Transform contexts for the left blocks.
743 * left_txfm_context[i] corresponds to left transform context for ith mi row
744 * from the current position (mi_row and mi_col) for this *superblock*.
745 * This is a pointer into 'left_txfm_context_buffer'.
746 */
747 TXFM_CONTEXT *left_txfm_context;
748 /*!
749 * left_txfm_context_buffer[i] is the left transform context for ith mi_row
750 * in this *superblock*.
751 * Behaves like an internal actual buffer which 'left_txt_context' points to,
752 * and never accessed directly except to fill in initial default values.
753 */
754 TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
755
756 /**
757 * \name Default values for the two restoration filters for each plane.
758 * Default values for the two restoration filters for each plane.
759 * These values are used as reference values when writing the bitstream. That
760 * is, we transmit the delta between the actual values in
761 * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
762 */
763 /**@{*/
764 WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/
765 SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
766 /**@}*/
767
768 /**
769 * \name Block dimensions in MB_MODE_INFO units.
770 */
771 /**@{*/
772 uint8_t width; /*!< Block width in MB_MODE_INFO units */
773 uint8_t height; /*!< Block height in MB_MODE_INFO units */
774 /**@}*/
775
776 /*!
777 * Contains the motion vector candidates found during motion vector prediction
778 * process. ref_mv_stack[i] contains the candidates for ith type of
779 * reference frame (single/compound). The actual number of candidates found in
780 * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
781 * or mbmi_ext->ref_mv_count[i] (encoder side).
782 */
783 CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
784 /*!
785 * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
786 * DRL (dynamic reference list) mode contexts.
787 */
788 uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
789
790 /*!
791 * True if this is the last vertical rectangular block in a VERTICAL or
792 * VERTICAL_4 partition.
793 */
794 bool is_last_vertical_rect;
795 /*!
796 * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
797 * HORIZONTAL_4 partition.
798 */
799 bool is_first_horizontal_rect;
800
801 /*!
802 * Counts of each reference frame in the above and left neighboring blocks.
803 * NOTE: Take into account both single and comp references.
804 */
805 uint8_t neighbors_ref_counts[REF_FRAMES];
806
807 /*!
808 * Current CDFs of all the symbols for the current tile.
809 */
810 FRAME_CONTEXT *tile_ctx;
811
812 /*!
813 * Bit depth: copied from cm->seq_params->bit_depth for convenience.
814 */
815 int bd;
816
817 /*!
818 * Quantizer index for each segment (base qindex + delta for each segment).
819 */
820 int qindex[MAX_SEGMENTS];
821 /*!
822 * lossless[s] is true if segment 's' is coded losslessly.
823 */
824 int lossless[MAX_SEGMENTS];
825 /*!
826 * Q index for the coding blocks in this superblock will be stored in
827 * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
828 * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
829 * the base, and adding any transmitted delta qindex on top of it.
830 * Precisely, this is the latest qindex used by the first coding block of a
831 * non-skip superblock in the current tile; OR
832 * same as cm->quant_params.base_qindex (if not explicitly set yet).
833 * Note: This is 'CurrentQIndex' in the AV1 spec.
834 */
835 int current_base_qindex;
836
837 /*!
838 * Same as cm->features.cur_frame_force_integer_mv.
839 */
840 int cur_frame_force_integer_mv;
841
842 /*!
843 * Pointer to cm->error.
844 */
845 struct aom_internal_error_info *error_info;
846
847 /*!
848 * Same as cm->global_motion.
849 */
850 const WarpedMotionParams *global_motion;
851
852 /*!
853 * Since actual frame level loop filtering level value is not available
854 * at the beginning of the tile (only available during actual filtering)
855 * at encoder side.we record the delta_lf (against the frame level loop
856 * filtering level) and code the delta between previous superblock's delta
857 * lf and current delta lf. It is equivalent to the delta between previous
858 * superblock's actual lf and current lf.
859 */
860 int8_t delta_lf_from_base;
861 /*!
862 * We have four frame filter levels for different plane and direction. So, to
863 * support the per superblock update, we need to add a few more params:
864 * 0. delta loop filter level for y plane vertical
865 * 1. delta loop filter level for y plane horizontal
866 * 2. delta loop filter level for u plane
867 * 3. delta loop filter level for v plane
868 * To make it consistent with the reference to each filter level in segment,
869 * we need to -1, since
870 * - SEG_LVL_ALT_LF_Y_V = 1;
871 * - SEG_LVL_ALT_LF_Y_H = 2;
872 * - SEG_LVL_ALT_LF_U = 3;
873 * - SEG_LVL_ALT_LF_V = 4;
874 */
875 int8_t delta_lf[FRAME_LF_COUNT];
876 /*!
877 * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
878 * current superblock has already been read from (decoder) / written to
879 * (encoder) the bitstream; and false otherwise.
880 * More detail:
881 * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
882 * non-skip coding block. So, we need this array to keep track of whether CDEF
883 * strengths for the given CDEF units have been transmitted yet or not.
884 * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
885 * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
886 * superblock size is 128x128). Hence the array size is 4.
887 * 3. In the current implementation, CDEF strength for this CDEF unit is
888 * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
889 * cm->mi_params.mi_grid_base).
890 */
891 bool cdef_transmitted[4];
892
893 /*!
894 * Mask for this block used for compound prediction.
895 */
896 uint8_t *seg_mask;
897
898 /*!
899 * CFL (chroma from luma) related parameters.
900 */
901 CFL_CTX cfl;
902
903 /*!
904 * Offset to plane[p].color_index_map.
905 * Currently:
906 * - On encoder side, this is always 0 as 'color_index_map' is allocated per
907 * *coding block* there.
908 * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
909 * memory pointing to the base of a *superblock* there, and we need an offset
910 * to it to get the color index map for current coding block.
911 */
912 uint16_t color_index_map_offset[2];
913
914 /*!
915 * Temporary buffer used for convolution in case of compound reference only
916 * for (weighted or uniform) averaging operation.
917 * There are pointers to actual buffers allocated elsewhere: e.g.
918 * - In decoder, 'pbi->td.tmp_conv_dst' or
919 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
920 * - In encoder, 'x->tmp_conv_dst' or
921 * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
922 */
923 CONV_BUF_TYPE *tmp_conv_dst;
924 /*!
925 * Temporary buffers used to build OBMC prediction by above (index 0) and left
926 * (index 1) predictors respectively.
927 * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
928 * There are pointers to actual buffers allocated elsewhere: e.g.
929 * - In decoder, 'pbi->td.tmp_obmc_bufs' or
930 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
931 * -In encoder, 'x->tmp_pred_bufs' or
932 * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
933 */
934 uint8_t *tmp_obmc_bufs[2];
935 } MACROBLOCKD;
936
937 /*!\cond */
938
is_cur_buf_hbd(const MACROBLOCKD * xd)939 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
940 #if CONFIG_AV1_HIGHBITDEPTH
941 return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
942 #else
943 (void)xd;
944 return 0;
945 #endif
946 }
947
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)948 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
949 #if CONFIG_AV1_HIGHBITDEPTH
950 return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
951 ? CONVERT_TO_BYTEPTR(buf16)
952 : buf16;
953 #else
954 (void)xd;
955 return buf16;
956 #endif
957 }
958
959 typedef struct BitDepthInfo {
960 int bit_depth;
961 /*! Is the image buffer high bit depth?
962 * Low bit depth buffer uses uint8_t.
963 * High bit depth buffer uses uint16_t.
964 * Equivalent to cm->seq_params->use_highbitdepth
965 */
966 int use_highbitdepth_buf;
967 } BitDepthInfo;
968
get_bit_depth_info(const MACROBLOCKD * xd)969 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
970 BitDepthInfo bit_depth_info;
971 bit_depth_info.bit_depth = xd->bd;
972 bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
973 assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
974 bit_depth_info.bit_depth == 8));
975 return bit_depth_info;
976 }
977
get_sqr_bsize_idx(BLOCK_SIZE bsize)978 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
979 switch (bsize) {
980 case BLOCK_4X4: return 0;
981 case BLOCK_8X8: return 1;
982 case BLOCK_16X16: return 2;
983 case BLOCK_32X32: return 3;
984 case BLOCK_64X64: return 4;
985 case BLOCK_128X128: return 5;
986 default: return SQR_BLOCK_SIZES;
987 }
988 }
989
990 // For a square block size 'bsize', returns the size of the sub-blocks used by
991 // the given partition type. If the partition produces sub-blocks of different
992 // sizes, then the function returns the largest sub-block size.
993 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
994 // Conversion tables).
995 // Note: the input block size should be square.
996 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)997 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
998 PARTITION_TYPE partition) {
999 if (partition == PARTITION_INVALID) {
1000 return BLOCK_INVALID;
1001 } else {
1002 const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
1003 return sqr_bsize_idx >= SQR_BLOCK_SIZES
1004 ? BLOCK_INVALID
1005 : subsize_lookup[partition][sqr_bsize_idx];
1006 }
1007 }
1008
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)1009 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1010 PLANE_TYPE plane_type) {
1011 static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1012 DCT_DCT, // DC_PRED
1013 ADST_DCT, // V_PRED
1014 DCT_ADST, // H_PRED
1015 DCT_DCT, // D45_PRED
1016 ADST_ADST, // D135_PRED
1017 ADST_DCT, // D113_PRED
1018 DCT_ADST, // D157_PRED
1019 DCT_ADST, // D203_PRED
1020 ADST_DCT, // D67_PRED
1021 ADST_ADST, // SMOOTH_PRED
1022 ADST_DCT, // SMOOTH_V_PRED
1023 DCT_ADST, // SMOOTH_H_PRED
1024 ADST_ADST, // PAETH_PRED
1025 };
1026 const PREDICTION_MODE mode =
1027 (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1028 assert(mode < INTRA_MODES);
1029 return _intra_mode_to_tx_type[mode];
1030 }
1031
is_rect_tx(TX_SIZE tx_size)1032 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1033
block_signals_txsize(BLOCK_SIZE bsize)1034 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1035 return bsize > BLOCK_4X4;
1036 }
1037
1038 // Number of transform types in each set type
1039 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1040 1, 2, 5, 7, 12, 16,
1041 };
1042
1043 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1044 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1045 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1046 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1047 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1048 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1049 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1050 };
1051
1052 // The bitmask corresponds to the transform types as defined in
1053 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1054 // the use of the corresponding transform type in that table.
1055 // The av1_derived_intra_tx_used_flag table is used when
1056 // use_reduced_intra_txset is set to 2, where one only searches
1057 // the transform types derived from residual statistics.
1058 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1059 0x0209, // DC_PRED: 0000 0010 0000 1001
1060 0x0403, // V_PRED: 0000 0100 0000 0011
1061 0x0805, // H_PRED: 0000 1000 0000 0101
1062 0x020F, // D45_PRED: 0000 0010 0000 1111
1063 0x0009, // D135_PRED: 0000 0000 0000 1001
1064 0x0009, // D113_PRED: 0000 0000 0000 1001
1065 0x0009, // D157_PRED: 0000 0000 0000 1001
1066 0x0805, // D203_PRED: 0000 1000 0000 0101
1067 0x0403, // D67_PRED: 0000 0100 0000 0011
1068 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1069 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1070 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1071 0x0209, // PAETH_PRED: 0000 0010 0000 1001
1072 };
1073
1074 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1075 0x080F, // DC_PRED: 0000 1000 0000 1111
1076 0x040F, // V_PRED: 0000 0100 0000 1111
1077 0x080F, // H_PRED: 0000 1000 0000 1111
1078 0x020F, // D45_PRED: 0000 0010 0000 1111
1079 0x080F, // D135_PRED: 0000 1000 0000 1111
1080 0x040F, // D113_PRED: 0000 0100 0000 1111
1081 0x080F, // D157_PRED: 0000 1000 0000 1111
1082 0x080F, // D203_PRED: 0000 1000 0000 1111
1083 0x040F, // D67_PRED: 0000 0100 0000 1111
1084 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1085 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1086 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1087 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1088 };
1089
1090 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1091 0x0001, // 0000 0000 0000 0001
1092 0x0201, // 0000 0010 0000 0001
1093 0x020F, // 0000 0010 0000 1111
1094 0x0E0F, // 0000 1110 0000 1111
1095 0x0FFF, // 0000 1111 1111 1111
1096 0xFFFF, // 1111 1111 1111 1111
1097 };
1098
1099 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1100 { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1101 { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1102 };
1103
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)1104 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1105 int use_reduced_set) {
1106 const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1107 if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1108 if (tx_size_sqr_up == TX_32X32)
1109 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1110 if (use_reduced_set)
1111 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1112 const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1113 return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1114 }
1115
1116 // Maps tx set types to the indices.
1117 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1118 { // Intra
1119 0, -1, 2, 1, -1, -1 },
1120 { // Inter
1121 0, 3, -1, -1, 2, 1 },
1122 };
1123
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)1124 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1125 int use_reduced_set) {
1126 const TxSetType set_type =
1127 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128 return ext_tx_set_index[is_inter][set_type];
1129 }
1130
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)1131 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1132 int use_reduced_set) {
1133 const int set_type =
1134 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1135 return av1_num_ext_tx_set[set_type];
1136 }
1137
1138 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1139 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1140
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)1141 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1142 const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1143 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1144 if (bsize == BLOCK_4X4)
1145 return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1146 if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1147 return max_rect_tx_size;
1148 else
1149 return largest_tx_size;
1150 }
1151
1152 static const uint8_t mode_to_angle_map[] = {
1153 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1154 };
1155
1156 // Converts block_index for given transform size to index of the block in raster
1157 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)1158 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1159 int block_idx) {
1160 // For transform size 4x8, the possible block_idx values are 0 & 2, because
1161 // block_idx values are incremented in steps of size 'tx_width_unit x
1162 // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1163 // block number 1 in raster order, inside an 8x8 MI block.
1164 // For any other transform size, the two indices are equivalent.
1165 return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1166 }
1167
1168 // Inverse of above function.
1169 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)1170 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1171 int raster_order) {
1172 assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1173 // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1174 return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1175 }
1176
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int use_screen_content_tools)1177 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1178 const MACROBLOCKD *xd,
1179 TX_SIZE tx_size,
1180 int use_screen_content_tools) {
1181 const MB_MODE_INFO *const mbmi = xd->mi[0];
1182
1183 if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1184 xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1185 use_screen_content_tools)
1186 return DEFAULT_INTER_TX_TYPE;
1187
1188 return intra_mode_to_tx_type(mbmi, plane_type);
1189 }
1190
1191 // Implements the get_plane_residual_size() function in the spec (Section
1192 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1193 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1194 int subsampling_x,
1195 int subsampling_y) {
1196 assert(bsize < BLOCK_SIZES_ALL);
1197 assert(subsampling_x >= 0 && subsampling_x < 2);
1198 assert(subsampling_y >= 0 && subsampling_y < 2);
1199 return ss_size_lookup[bsize][subsampling_x][subsampling_y];
1200 }
1201
1202 /*
1203 * Logic to generate the lookup tables:
1204 *
1205 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1206 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1207 * txs = sub_tx_size_map[txs];
1208 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1209 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1210 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1211 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1212 */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1213 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1214 int blk_col) {
1215 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1216 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1217 };
1218 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1219 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1220 };
1221 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1222 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1223 };
1224 const int index =
1225 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1226 (blk_col >> tw_w_log2_table[bsize]);
1227 assert(index < INTER_TX_SIZE_BUF_LEN);
1228 return index;
1229 }
1230
1231 #if CONFIG_INSPECTION
1232 /*
1233 * Here is the logic to generate the lookup tables:
1234 *
1235 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1236 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1237 * txs = sub_tx_size_map[txs];
1238 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1239 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1240 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1241 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1242 */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1243 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1244 int blk_col) {
1245 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1246 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1247 };
1248 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1249 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1250 };
1251 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1252 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1253 };
1254 const int index =
1255 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1256 (blk_col >> tw_w_log2_table[bsize]);
1257 assert(index < TXK_TYPE_BUF_LEN);
1258 return index;
1259 }
1260 #endif // CONFIG_INSPECTION
1261
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)1262 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1263 int blk_col, TX_SIZE tx_size,
1264 TX_TYPE tx_type) {
1265 const int stride = xd->tx_type_map_stride;
1266 xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1267
1268 const int txw = tx_size_wide_unit[tx_size];
1269 const int txh = tx_size_high_unit[tx_size];
1270 // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1271 // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1272 // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1273 // the intricacy, cover all the 16x16 units inside a 64 level transform.
1274 if (txw == tx_size_wide_unit[TX_64X64] ||
1275 txh == tx_size_high_unit[TX_64X64]) {
1276 const int tx_unit = tx_size_wide_unit[TX_16X16];
1277 for (int idy = 0; idy < txh; idy += tx_unit) {
1278 for (int idx = 0; idx < txw; idx += tx_unit) {
1279 xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1280 }
1281 }
1282 }
1283 }
1284
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)1285 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1286 PLANE_TYPE plane_type, int blk_row,
1287 int blk_col, TX_SIZE tx_size,
1288 int reduced_tx_set) {
1289 const MB_MODE_INFO *const mbmi = xd->mi[0];
1290 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1291 return DCT_DCT;
1292 }
1293
1294 TX_TYPE tx_type;
1295 if (plane_type == PLANE_TYPE_Y) {
1296 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297 } else {
1298 if (is_inter_block(mbmi)) {
1299 // scale back to y plane's coordinate
1300 const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1301 blk_row <<= pd->subsampling_y;
1302 blk_col <<= pd->subsampling_x;
1303 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1304 } else {
1305 // In intra mode, uv planes don't share the same prediction mode as y
1306 // plane, so the tx_type should not be shared
1307 tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1308 }
1309 const TxSetType tx_set_type =
1310 av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1311 if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1312 }
1313 assert(tx_type < TX_TYPES);
1314 assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1315 reduced_tx_set)][tx_type]);
1316 return tx_type;
1317 }
1318
1319 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1320 const int num_planes);
1321
1322 /*
1323 * Logic to generate the lookup table:
1324 *
1325 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1326 * int depth = 0;
1327 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1328 * depth++;
1329 * tx_size = sub_tx_size_map[tx_size];
1330 * }
1331 */
bsize_to_max_depth(BLOCK_SIZE bsize)1332 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1333 static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1334 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1335 };
1336 return bsize_to_max_depth_table[bsize];
1337 }
1338
1339 /*
1340 * Logic to generate the lookup table:
1341 *
1342 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1343 * assert(tx_size != TX_4X4);
1344 * int depth = 0;
1345 * while (tx_size != TX_4X4) {
1346 * depth++;
1347 * tx_size = sub_tx_size_map[tx_size];
1348 * }
1349 * assert(depth < 10);
1350 */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1351 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1352 assert(bsize < BLOCK_SIZES_ALL);
1353 static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1354 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1355 };
1356 const int depth = bsize_to_tx_size_depth_table[bsize];
1357 assert(depth <= MAX_TX_CATS);
1358 return depth - 1;
1359 }
1360
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1361 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1362 TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1363 TX_SIZE tx_size = max_tx_size;
1364 for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1365 return tx_size;
1366 }
1367
av1_get_adjusted_tx_size(TX_SIZE tx_size)1368 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1369 switch (tx_size) {
1370 case TX_64X64:
1371 case TX_64X32:
1372 case TX_32X64: return TX_32X32;
1373 case TX_64X16: return TX_32X16;
1374 case TX_16X64: return TX_16X32;
1375 default: return tx_size;
1376 }
1377 }
1378
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1379 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1380 int subsampling_y) {
1381 const BLOCK_SIZE plane_bsize =
1382 get_plane_block_size(bsize, subsampling_x, subsampling_y);
1383 assert(plane_bsize < BLOCK_SIZES_ALL);
1384 const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1385 return av1_get_adjusted_tx_size(uv_tx);
1386 }
1387
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1388 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1389 const MB_MODE_INFO *mbmi = xd->mi[0];
1390 if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1391 if (plane == 0) return mbmi->tx_size;
1392 const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1393 return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1394 pd->subsampling_y);
1395 }
1396
1397 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1398 const int num_planes);
1399
1400 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1401
1402 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1403
1404 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1405 int blk_row, int blk_col,
1406 BLOCK_SIZE plane_bsize,
1407 TX_SIZE tx_size, void *arg);
1408
1409 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1410 struct macroblockd_plane *pd, int plane,
1411 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1412 int has_eob, int aoff, int loff);
1413
1414 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1415 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1416 return (mbmi->ref_frame[0] > INTRA_FRAME &&
1417 mbmi->ref_frame[1] == INTRA_FRAME);
1418 }
1419
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1420 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1421 return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1422 }
1423
is_interintra_allowed_mode(const PREDICTION_MODE mode)1424 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1425 return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1426 }
1427
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1428 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1429 return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1430 }
1431
is_interintra_allowed(const MB_MODE_INFO * mbmi)1432 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1433 return is_interintra_allowed_bsize(mbmi->bsize) &&
1434 is_interintra_allowed_mode(mbmi->mode) &&
1435 is_interintra_allowed_ref(mbmi->ref_frame);
1436 }
1437
is_interintra_allowed_bsize_group(int group)1438 static INLINE int is_interintra_allowed_bsize_group(int group) {
1439 int i;
1440 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1441 if (size_group_lookup[i] == group &&
1442 is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1443 return 1;
1444 }
1445 }
1446 return 0;
1447 }
1448
is_interintra_pred(const MB_MODE_INFO * mbmi)1449 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1450 return mbmi->ref_frame[0] > INTRA_FRAME &&
1451 mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1452 }
1453
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1454 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1455 int plane) {
1456 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1457 const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1458 if (plane == 0) return max_txsize; // luma
1459 return av1_get_adjusted_tx_size(max_txsize); // chroma
1460 }
1461
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1462 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1463 assert(bsize < BLOCK_SIZES_ALL);
1464 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1465 }
1466
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1467 static INLINE int is_motion_variation_allowed_compound(
1468 const MB_MODE_INFO *mbmi) {
1469 return !has_second_ref(mbmi);
1470 }
1471
1472 // input: log2 of length, 0(4), 1(8), ...
1473 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1474
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1475 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1476 return mbmi->overlappable_neighbors != 0;
1477 }
1478
1479 static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1480 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1481 const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1482 if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1483 if (xd->cur_frame_force_integer_mv == 0) {
1484 const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1485 if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1486 }
1487 if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1488 is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1489 is_motion_variation_allowed_compound(mbmi)) {
1490 assert(!has_second_ref(mbmi));
1491 if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1492 !xd->cur_frame_force_integer_mv &&
1493 !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1494 return WARPED_CAUSAL;
1495 }
1496 return OBMC_CAUSAL;
1497 }
1498 return SIMPLE_TRANSLATION;
1499 }
1500
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1501 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1502 return (is_inter_block(mbmi));
1503 }
1504
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1505 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1506 BLOCK_SIZE sb_type) {
1507 assert(sb_type < BLOCK_SIZES_ALL);
1508 return allow_screen_content_tools &&
1509 block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1510 block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1511 sb_type >= BLOCK_8X8;
1512 }
1513
1514 // Returns sub-sampled dimensions of the given block.
1515 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1516 // differ from 'height' and 'width' when part of the block is outside the
1517 // right
1518 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1519 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1520 const MACROBLOCKD *xd, int *width,
1521 int *height,
1522 int *rows_within_bounds,
1523 int *cols_within_bounds) {
1524 const int block_height = block_size_high[bsize];
1525 const int block_width = block_size_wide[bsize];
1526 const int block_rows = (xd->mb_to_bottom_edge >= 0)
1527 ? block_height
1528 : (xd->mb_to_bottom_edge >> 3) + block_height;
1529 const int block_cols = (xd->mb_to_right_edge >= 0)
1530 ? block_width
1531 : (xd->mb_to_right_edge >> 3) + block_width;
1532 const struct macroblockd_plane *const pd = &xd->plane[plane];
1533 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1534 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1535 assert(block_width >= block_cols);
1536 assert(block_height >= block_rows);
1537 const int plane_block_width = block_width >> pd->subsampling_x;
1538 const int plane_block_height = block_height >> pd->subsampling_y;
1539 // Special handling for chroma sub8x8.
1540 const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1541 const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1542 if (width) {
1543 *width = plane_block_width + 2 * is_chroma_sub8_x;
1544 assert(*width >= 0);
1545 }
1546 if (height) {
1547 *height = plane_block_height + 2 * is_chroma_sub8_y;
1548 assert(*height >= 0);
1549 }
1550 if (rows_within_bounds) {
1551 *rows_within_bounds =
1552 (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1553 assert(*rows_within_bounds >= 0);
1554 }
1555 if (cols_within_bounds) {
1556 *cols_within_bounds =
1557 (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1558 assert(*cols_within_bounds >= 0);
1559 }
1560 }
1561
1562 /* clang-format off */
1563 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1564 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1565 [CDF_SIZE(PALETTE_COLORS)];
1566 // Pointer to a const three-dimensional array whose first dimension is
1567 // PALETTE_SIZES.
1568 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1569 /* clang-format on */
1570
1571 typedef struct {
1572 int rows;
1573 int cols;
1574 int n_colors;
1575 int plane_width;
1576 int plane_height;
1577 uint8_t *color_map;
1578 MapCdf map_cdf;
1579 ColorCost color_cost;
1580 } Av1ColorMapParam;
1581
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1582 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1583 const MB_MODE_INFO *mbmi) {
1584 int ref;
1585
1586 // First check if all modes are GLOBALMV
1587 if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1588
1589 if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1590 return 0;
1591
1592 // Now check if all global motion is non translational
1593 for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1594 if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1595 }
1596 return 1;
1597 }
1598
get_plane_type(int plane)1599 static INLINE PLANE_TYPE get_plane_type(int plane) {
1600 return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1601 }
1602
av1_get_max_eob(TX_SIZE tx_size)1603 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1604 if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1605 return 1024;
1606 }
1607 if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1608 return 512;
1609 }
1610 return tx_size_2d[tx_size];
1611 }
1612
1613 /*!\endcond */
1614
1615 #ifdef __cplusplus
1616 } // extern "C"
1617 #endif
1618
1619 #endif // AOM_AV1_COMMON_BLOCKD_H_
1620