• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/GrFragmentProcessor.h"
9 
10 #include "src/core/SkRuntimeEffectPriv.h"
11 #include "src/gpu/GrPipeline.h"
12 #include "src/gpu/GrProcessorAnalysis.h"
13 #include "src/gpu/GrShaderCaps.h"
14 #include "src/gpu/KeyBuilder.h"
15 #include "src/gpu/effects/GrBlendFragmentProcessor.h"
16 #include "src/gpu/effects/GrSkSLFP.h"
17 #include "src/gpu/effects/GrTextureEffect.h"
18 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
19 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
20 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
21 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
22 
isEqual(const GrFragmentProcessor & that) const23 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
24     if (this->classID() != that.classID()) {
25         return false;
26     }
27     if (this->sampleUsage() != that.sampleUsage()) {
28         return false;
29     }
30     if (!this->onIsEqual(that)) {
31         return false;
32     }
33     if (this->numChildProcessors() != that.numChildProcessors()) {
34         return false;
35     }
36     for (int i = 0; i < this->numChildProcessors(); ++i) {
37         auto thisChild = this->childProcessor(i),
38              thatChild = that .childProcessor(i);
39         if (SkToBool(thisChild) != SkToBool(thatChild)) {
40             return false;
41         }
42         if (thisChild && !thisChild->isEqual(*thatChild)) {
43             return false;
44         }
45     }
46     return true;
47 }
48 
visitProxies(const GrVisitProxyFunc & func) const49 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
50     this->visitTextureEffects([&func](const GrTextureEffect& te) {
51         func(te.view().proxy(), te.samplerState().mipmapped());
52     });
53 }
54 
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const55 void GrFragmentProcessor::visitTextureEffects(
56         const std::function<void(const GrTextureEffect&)>& func) const {
57     if (auto* te = this->asTextureEffect()) {
58         func(*te);
59     }
60     for (auto& child : fChildProcessors) {
61         if (child) {
62             child->visitTextureEffects(func);
63         }
64     }
65 }
66 
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const67 void GrFragmentProcessor::visitWithImpls(
68         const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
69         ProgramImpl& impl) const {
70     f(*this, impl);
71     SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
72     for (int i = 0; i < this->numChildProcessors(); ++i) {
73         if (const auto* child = this->childProcessor(i)) {
74             child->visitWithImpls(f, *impl.childProcessor(i));
75         }
76     }
77 }
78 
asTextureEffect()79 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
80     if (this->classID() == kGrTextureEffect_ClassID) {
81         return static_cast<GrTextureEffect*>(this);
82     }
83     return nullptr;
84 }
85 
asTextureEffect() const86 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
87     if (this->classID() == kGrTextureEffect_ClassID) {
88         return static_cast<const GrTextureEffect*>(this);
89     }
90     return nullptr;
91 }
92 
93 #if GR_TEST_UTILS
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)94 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
95                                      SkString indent,
96                                      SkString* text) {
97     for (int index = 0; index < fp.numChildProcessors(); ++index) {
98         text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
99         if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
100             text->append(childFP->dumpInfo());
101             indent.append("\t");
102             recursive_dump_tree_info(*childFP, indent, text);
103         } else {
104             text->append("null");
105         }
106     }
107 }
108 
dumpTreeInfo() const109 SkString GrFragmentProcessor::dumpTreeInfo() const {
110     SkString text = this->dumpInfo();
111     recursive_dump_tree_info(*this, SkString("\t"), &text);
112     text.append("\n");
113     return text;
114 }
115 #endif
116 
makeProgramImpl() const117 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
118     std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
119     impl->fChildProcessors.push_back_n(fChildProcessors.count());
120     for (int i = 0; i < fChildProcessors.count(); ++i) {
121         impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
122                                                         : nullptr;
123     }
124     return impl;
125 }
126 
numNonNullChildProcessors() const127 int GrFragmentProcessor::numNonNullChildProcessors() const {
128     return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
129                          [](const auto& c) { return c != nullptr; });
130 }
131 
132 #ifdef SK_DEBUG
isInstantiated() const133 bool GrFragmentProcessor::isInstantiated() const {
134     bool result = true;
135     this->visitTextureEffects([&result](const GrTextureEffect& te) {
136         if (!te.texture()) {
137             result = false;
138         }
139     });
140     return result;
141 }
142 #endif
143 
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)144 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
145                                         SkSL::SampleUsage sampleUsage) {
146     SkASSERT(sampleUsage.isSampled());
147 
148     if (!child) {
149         fChildProcessors.push_back(nullptr);
150         return;
151     }
152 
153     // The child should not have been attached to another FP already and not had any sampling
154     // strategy set on it.
155     SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
156 
157     // Configure child's sampling state first
158     child->fUsage = sampleUsage;
159 
160     // Propagate the "will read dest-color" flag up to parent FPs.
161     if (child->willReadDstColor()) {
162         this->setWillReadDstColor();
163     }
164 
165     // If this child receives passthrough or matrix transformed coords from its parent then note
166     // that the parent's coords are used indirectly to ensure that they aren't omitted.
167     if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
168         child->usesSampleCoords()) {
169         fFlags |= kUsesSampleCoordsIndirectly_Flag;
170     }
171 
172     // Record that the child is attached to us; this FP is the source of any uniform data needed
173     // to evaluate the child sample matrix.
174     child->fParent = this;
175     fChildProcessors.push_back(std::move(child));
176 
177     // Validate: our sample strategy comes from a parent we shouldn't have yet.
178     SkASSERT(!fUsage.isSampled() && !fParent);
179 }
180 
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)181 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
182     for (int i = 0; i < src.numChildProcessors(); ++i) {
183         if (auto fp = src.childProcessor(i)) {
184             this->registerChild(fp->clone(), fp->sampleUsage());
185         } else {
186             this->registerChild(nullptr);
187         }
188     }
189 }
190 
MakeColor(SkPMColor4f color)191 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
192     // Use ColorFilter signature/factory to get the constant output for constant input optimization
193     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
194         uniform half4 color;
195         half4 main(half4 inColor) { return color; }
196     )");
197     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
198     return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
199                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
200                                            : GrSkSLFP::OptFlags::kNone,
201                           "color", color);
202 }
203 
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)204 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
205         std::unique_ptr<GrFragmentProcessor> fp) {
206     if (!fp) {
207         return nullptr;
208     }
209     return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kSrcIn);
210 }
211 
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)212 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
213         std::unique_ptr<GrFragmentProcessor> child) {
214     SkASSERT(child);
215     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
216         uniform colorFilter fp;
217         half4 main(half4 inColor) {
218             return fp.eval(inColor.rgb1) * inColor.a;
219         }
220     )");
221     return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
222                           GrSkSLFP::OptFlags::kPreservesOpaqueInput |
223                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
224                           "fp", std::move(child));
225 }
226 
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)227 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
228         std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
229     auto colorFP = MakeColor(color);
230     return GrBlendFragmentProcessor::Make(std::move(colorFP),
231                                           std::move(inputFP),
232                                           SkBlendMode::kModulate);
233 }
234 
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)235 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
236         std::unique_ptr<GrFragmentProcessor> fp) {
237     SkASSERT(fp);
238     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
239         half4 main(half4 inColor) {
240             return saturate(inColor);
241         }
242     )");
243     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
244     return GrSkSLFP::Make(
245             effect, "Clamp", std::move(fp), GrSkSLFP::OptFlags::kPreservesOpaqueInput);
246 }
247 
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const skgpu::Swizzle & swizzle)248 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
249         std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) {
250     class SwizzleFragmentProcessor : public GrFragmentProcessor {
251     public:
252         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
253                                                          const skgpu::Swizzle& swizzle) {
254             return std::unique_ptr<GrFragmentProcessor>(
255                     new SwizzleFragmentProcessor(std::move(fp), swizzle));
256         }
257 
258         const char* name() const override { return "Swizzle"; }
259 
260         std::unique_ptr<GrFragmentProcessor> clone() const override {
261             return Make(this->childProcessor(0)->clone(), fSwizzle);
262         }
263 
264     private:
265         SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp,
266                                  const skgpu::Swizzle& swizzle)
267                 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
268                 , fSwizzle(swizzle) {
269             this->registerChild(std::move(fp));
270         }
271 
272         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
273             class Impl : public ProgramImpl {
274             public:
275                 void emitCode(EmitArgs& args) override {
276                     SkString childColor = this->invokeChild(0, args);
277 
278                     const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
279                     const skgpu::Swizzle& swizzle = sfp.fSwizzle;
280                     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
281 
282                     fragBuilder->codeAppendf("return %s.%s;",
283                                              childColor.c_str(), swizzle.asString().c_str());
284                 }
285             };
286             return std::make_unique<Impl>();
287         }
288 
289         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
290             b->add32(fSwizzle.asKey());
291         }
292 
293         bool onIsEqual(const GrFragmentProcessor& other) const override {
294             const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
295             return fSwizzle == sfp.fSwizzle;
296         }
297 
298         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
299             return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
300         }
301 
302         skgpu::Swizzle fSwizzle;
303 
304         using INHERITED = GrFragmentProcessor;
305     };
306 
307     if (!fp) {
308         return nullptr;
309     }
310     if (skgpu::Swizzle::RGBA() == swizzle) {
311         return fp;
312     }
313     return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
314 }
315 
316 //////////////////////////////////////////////////////////////////////////////
317 
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)318 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
319         std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
320     if (!fp) {
321         return nullptr;
322     }
323     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
324         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
325         uniform half4 color;
326         half4 main(half4 inColor) {
327             return fp.eval(color);
328         }
329     )");
330     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
331     return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
332                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
333                                            : GrSkSLFP::OptFlags::kNone,
334                           "fp", std::move(fp),
335                           "color", color);
336 }
337 
338 //////////////////////////////////////////////////////////////////////////////
339 
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)340 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
341         std::unique_ptr<GrFragmentProcessor> fp) {
342     if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
343         return fp;
344     }
345     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
346         half4 main(half4 inColor) { return inColor; }
347     )");
348     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
349     return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
350                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
351 }
352 
353 //////////////////////////////////////////////////////////////////////////////
354 
UseDestColorAsInput(std::unique_ptr<GrFragmentProcessor> fp)355 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::UseDestColorAsInput(
356         std::unique_ptr<GrFragmentProcessor> fp) {
357     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender, R"(
358         uniform colorFilter fp;  // Declared as colorFilter so we can pass a color
359         half4 main(half4 src, half4 dst) {
360             return fp.eval(dst);
361         }
362     )");
363     return GrSkSLFP::Make(effect, "UseDestColorAsInput", /*inputFP=*/nullptr,
364                           GrSkSLFP::OptFlags::kNone, "fp", std::move(fp));
365 }
366 
367 //////////////////////////////////////////////////////////////////////////////
368 
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)369 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
370         std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
371     class ComposeProcessor : public GrFragmentProcessor {
372     public:
373         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
374                                                          std::unique_ptr<GrFragmentProcessor> g) {
375             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
376                                                                              std::move(g)));
377         }
378 
379         const char* name() const override { return "Compose"; }
380 
381         std::unique_ptr<GrFragmentProcessor> clone() const override {
382             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
383         }
384 
385     private:
386         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
387             class Impl : public ProgramImpl {
388             public:
389                 void emitCode(EmitArgs& args) override {
390                     SkString result = this->invokeChild(1, args);         // g(x)
391                     result = this->invokeChild(0, result.c_str(), args);  // f(g(x))
392                     args.fFragBuilder->codeAppendf("return %s;", result.c_str());
393                 }
394             };
395             return std::make_unique<Impl>();
396         }
397 
398         ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
399                          std::unique_ptr<GrFragmentProcessor> g)
400                 : INHERITED(kSeriesFragmentProcessor_ClassID,
401                             f->optimizationFlags() & g->optimizationFlags()) {
402             this->registerChild(std::move(f));
403             this->registerChild(std::move(g));
404         }
405 
406         ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
407 
408         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
409 
410         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
411 
412         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
413             SkPMColor4f color = inColor;
414             color = ConstantOutputForConstantInput(this->childProcessor(1), color);
415             color = ConstantOutputForConstantInput(this->childProcessor(0), color);
416             return color;
417         }
418 
419         using INHERITED = GrFragmentProcessor;
420     };
421 
422     // Allow either of the composed functions to be null.
423     if (f == nullptr) {
424         return g;
425     }
426     if (g == nullptr) {
427         return f;
428     }
429 
430     // Run an optimization pass on this composition.
431     GrProcessorAnalysisColor inputColor;
432     inputColor.setToUnknown();
433 
434     std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
435     GrColorFragmentProcessorAnalysis info(inputColor, series, SK_ARRAY_COUNT(series));
436 
437     SkPMColor4f knownColor;
438     int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
439     switch (leadingFPsToEliminate) {
440         default:
441             // We shouldn't eliminate more than we started with.
442             SkASSERT(leadingFPsToEliminate <= 2);
443             [[fallthrough]];
444         case 0:
445             // Compose the two processors as requested.
446             return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
447         case 1:
448             // Replace the first processor with a constant color.
449             return ComposeProcessor::Make(/*f=*/std::move(series[1]),
450                                           /*g=*/MakeColor(knownColor));
451         case 2:
452             // Replace the entire composition with a constant color.
453             return MakeColor(knownColor);
454     }
455 }
456 
457 //////////////////////////////////////////////////////////////////////////////
458 
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)459 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
460         std::unique_ptr<GrFragmentProcessor> child,
461         const float matrix[20],
462         bool unpremulInput,
463         bool clampRGBOutput,
464         bool premulOutput) {
465     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
466         uniform half4x4 m;
467         uniform half4   v;
468         uniform int unpremulInput;   // always specialized
469         uniform int clampRGBOutput;  // always specialized
470         uniform int premulOutput;    // always specialized
471         half4 main(half4 color) {
472             if (bool(unpremulInput)) {
473                 color = unpremul(color);
474             }
475             color = m * color + v;
476             if (bool(clampRGBOutput)) {
477                 color = saturate(color);
478             } else {
479                 color.a = saturate(color.a);
480             }
481             if (bool(premulOutput)) {
482                 color.rgb *= color.a;
483             }
484             return color;
485         }
486     )");
487     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
488 
489     SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
490               matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
491               matrix[10], matrix[11], matrix[12], matrix[13],
492               matrix[15], matrix[16], matrix[17], matrix[18]);
493     SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
494     return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
495                           "m", m44,
496                           "v", v4,
497                           "unpremulInput",  GrSkSLFP::Specialize(unpremulInput  ? 1 : 0),
498                           "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
499                           "premulOutput",   GrSkSLFP::Specialize(premulOutput   ? 1 : 0));
500 }
501 
502 //////////////////////////////////////////////////////////////////////////////
503 
SurfaceColor()504 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
505     class SurfaceColorProcessor : public GrFragmentProcessor {
506     public:
507         static std::unique_ptr<GrFragmentProcessor> Make() {
508             return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
509         }
510 
511         std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
512 
513         const char* name() const override { return "SurfaceColor"; }
514 
515     private:
516         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
517             class Impl : public ProgramImpl {
518             public:
519                 void emitCode(EmitArgs& args) override {
520                     const char* dstColor = args.fFragBuilder->dstColor();
521                     args.fFragBuilder->codeAppendf("return %s;", dstColor);
522                 }
523             };
524             return std::make_unique<Impl>();
525         }
526 
527         SurfaceColorProcessor()
528                 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
529             this->setWillReadDstColor();
530         }
531 
532         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
533 
534         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
535 
536         using INHERITED = GrFragmentProcessor;
537     };
538 
539     return SurfaceColorProcessor::Make();
540 }
541 
542 //////////////////////////////////////////////////////////////////////////////
543 
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)544 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
545         std::unique_ptr<GrFragmentProcessor> fp) {
546     if (!fp) {
547         return nullptr;
548     }
549 
550     class DeviceSpace : GrFragmentProcessor {
551     public:
552         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
553             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
554         }
555 
556     private:
557         DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
558                 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
559             // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
560             this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
561         }
562 
563         std::unique_ptr<GrFragmentProcessor> clone() const override {
564             auto child = this->childProcessor(0)->clone();
565             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
566         }
567 
568         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
569             return this->childProcessor(0)->constantOutputForConstantInput(f);
570         }
571 
572         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
573             class Impl : public ProgramImpl {
574             public:
575                 Impl() = default;
576                 void emitCode(ProgramImpl::EmitArgs& args) override {
577                     auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
578                     args.fFragBuilder->codeAppendf("return %s;", child.c_str());
579                 }
580             };
581             return std::make_unique<Impl>();
582         }
583 
584         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
585 
586         bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
587 
588         const char* name() const override { return "DeviceSpace"; }
589     };
590 
591     return DeviceSpace::Make(std::move(fp));
592 }
593 
594 //////////////////////////////////////////////////////////////////////////////
595 
596 #define CLIP_EDGE_SKSL              \
597     "const int kFillBW = 0;"        \
598     "const int kFillAA = 1;"        \
599     "const int kInverseFillBW = 2;" \
600     "const int kInverseFillAA = 3;"
601 
602 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
603 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
604 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
605 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
606 
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)607 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
608         std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
609     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
610         uniform int edgeType;  // GrClipEdgeType, specialized
611         uniform float4 rectUniform;
612 
613         half4 main(float2 xy, half4 inColor) {
614             half coverage;
615             if (edgeType == kFillBW || edgeType == kInverseFillBW) {
616                 // non-AA
617                 coverage = all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),
618                                            float4(rectUniform.xy, sk_FragCoord.xy))) ? 1 : 0;
619             } else {
620                 // compute coverage relative to left and right edges, add, then subtract 1 to
621                 // account for double counting. And similar for top/bottom.
622                 half4 dists4 = clamp(half4(1, 1, -1, -1) *
623                                      half4(sk_FragCoord.xyxy - rectUniform), 0, 1);
624                 half2 dists2 = dists4.xy + dists4.zw - 1;
625                 coverage = dists2.x * dists2.y;
626             }
627 
628             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
629                 coverage = 1.0 - coverage;
630             }
631 
632             return inColor * coverage;
633         }
634     )");
635 
636     SkASSERT(rect.isSorted());
637     // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
638     // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
639     SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
640 
641     return GrSkSLFP::Make(effect, "Rect", std::move(inputFP),
642                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
643                           "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
644                           "rectUniform", rectUniform);
645 }
646 
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)647 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
648                                        GrClipEdgeType edgeType,
649                                        SkPoint center,
650                                        float radius) {
651     // A radius below half causes the implicit insetting done by this processor to become
652     // inverted. We could handle this case by making the processor code more complicated.
653     if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
654         return GrFPFailure(std::move(inputFP));
655     }
656 
657     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
658         uniform int edgeType;  // GrClipEdgeType, specialized
659         // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
660         // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
661         uniform float4 circle;
662 
663         half4 main(float2 xy, half4 inColor) {
664             // TODO: Right now the distance to circle calculation is performed in a space normalized
665             // to the radius and then denormalized. This is to mitigate overflow on devices that
666             // don't have full float.
667             half d;
668             if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {
669                 d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);
670             } else {
671                 d = half((1.0 - length((circle.xy - sk_FragCoord.xy) *  circle.w)) * circle.z);
672             }
673             if (edgeType == kFillAA || edgeType == kInverseFillAA) {
674                 return inColor * saturate(d);
675             } else {
676                 return d > 0.5 ? inColor : half4(0);
677             }
678         }
679     )");
680 
681     SkScalar effectiveRadius = radius;
682     if (GrClipEdgeTypeIsInverseFill(edgeType)) {
683         effectiveRadius -= 0.5f;
684         // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
685         effectiveRadius = std::max(0.001f, effectiveRadius);
686     } else {
687         effectiveRadius += 0.5f;
688     }
689     SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
690 
691     return GrFPSuccess(GrSkSLFP::Make(effect, "Circle", std::move(inputFP),
692                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
693                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
694                                       "circle", circle));
695 }
696 
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)697 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
698                                         GrClipEdgeType edgeType,
699                                         SkPoint center,
700                                         SkPoint radii,
701                                         const GrShaderCaps& caps) {
702     const bool medPrecision = !caps.floatIs32Bits();
703 
704     // Small radii produce bad results on devices without full float.
705     if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
706         return GrFPFailure(std::move(inputFP));
707     }
708     // Very narrow ellipses produce bad results on devices without full float
709     if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
710         return GrFPFailure(std::move(inputFP));
711     }
712     // Very large ellipses produce bad results on devices without full float
713     if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
714         return GrFPFailure(std::move(inputFP));
715     }
716 
717     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"(
718         uniform int edgeType;      // GrClipEdgeType, specialized
719         uniform int medPrecision;  // !sk_Caps.floatIs32Bits, specialized
720 
721         uniform float4 ellipse;
722         uniform float2 scale;    // only for medPrecision
723 
724         half4 main(float2 xy, half4 inColor) {
725             // d is the offset to the ellipse center
726             float2 d = sk_FragCoord.xy - ellipse.xy;
727             // If we're on a device with a "real" mediump then we'll do the distance computation in
728             // a space that is normalized by the larger radius or 128, whichever is smaller. The
729             // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
730             // already in this normalized space. The center is not.
731             if (bool(medPrecision)) {
732                 d *= scale.y;
733             }
734             float2 Z = d * ellipse.zw;
735             // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
736             float implicit = dot(Z, d) - 1;
737             // grad_dot is the squared length of the gradient of the implicit.
738             float grad_dot = 4 * dot(Z, Z);
739             // Avoid calling inversesqrt on zero.
740             if (bool(medPrecision)) {
741                 grad_dot = max(grad_dot, 6.1036e-5);
742             } else {
743                 grad_dot = max(grad_dot, 1.1755e-38);
744             }
745             float approx_dist = implicit * inversesqrt(grad_dot);
746             if (bool(medPrecision)) {
747                 approx_dist *= scale.x;
748             }
749 
750             half alpha;
751             if (edgeType == kFillBW) {
752                 alpha = approx_dist > 0.0 ? 0.0 : 1.0;
753             } else if (edgeType == kFillAA) {
754                 alpha = saturate(0.5 - half(approx_dist));
755             } else if (edgeType == kInverseFillBW) {
756                 alpha = approx_dist > 0.0 ? 1.0 : 0.0;
757             } else {  // edgeType == kInverseFillAA
758                 alpha = saturate(0.5 + half(approx_dist));
759             }
760             return inColor * alpha;
761         }
762     )");
763 
764     float invRXSqd;
765     float invRYSqd;
766     SkV2 scale = {1, 1};
767     // If we're using a scale factor to work around precision issues, choose the larger radius as
768     // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
769     if (medPrecision) {
770         if (radii.fX > radii.fY) {
771             invRXSqd = 1.f;
772             invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
773             scale = {radii.fX, 1.f / radii.fX};
774         } else {
775             invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
776             invRYSqd = 1.f;
777             scale = {radii.fY, 1.f / radii.fY};
778         }
779     } else {
780         invRXSqd = 1.f / (radii.fX * radii.fX);
781         invRYSqd = 1.f / (radii.fY * radii.fY);
782     }
783     SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
784 
785     return GrFPSuccess(GrSkSLFP::Make(effect, "Ellipse", std::move(inputFP),
786                                       GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
787                                       "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
788                                       "medPrecision",  GrSkSLFP::Specialize<int>(medPrecision),
789                                       "ellipse", ellipse,
790                                       "scale", scale));
791 }
792 
793 //////////////////////////////////////////////////////////////////////////////
794 
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)795 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
796         std::unique_ptr<GrFragmentProcessor> fp) {
797     class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
798     public:
799         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
800             return std::unique_ptr<GrFragmentProcessor>(
801                     new HighPrecisionFragmentProcessor(std::move(fp)));
802         }
803 
804         const char* name() const override { return "HighPrecision"; }
805 
806         std::unique_ptr<GrFragmentProcessor> clone() const override {
807             return Make(this->childProcessor(0)->clone());
808         }
809 
810     private:
811         HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
812                 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
813                             ProcessorOptimizationFlags(fp.get())) {
814             this->registerChild(std::move(fp));
815         }
816 
817         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
818             class Impl : public ProgramImpl {
819             public:
820                 void emitCode(EmitArgs& args) override {
821                     SkString childColor = this->invokeChild(0, args);
822 
823                     args.fFragBuilder->forceHighPrecision();
824                     args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
825                 }
826             };
827             return std::make_unique<Impl>();
828         }
829 
830         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
831         bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
832 
833         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
834             return ConstantOutputForConstantInput(this->childProcessor(0), input);
835         }
836 
837         using INHERITED = GrFragmentProcessor;
838     };
839 
840     return HighPrecisionFragmentProcessor::Make(std::move(fp));
841 }
842 
843 //////////////////////////////////////////////////////////////////////////////
844 
845 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
846 
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)847 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
848                           const GrFragmentProcessor& processor) {
849     this->onSetData(pdman, processor);
850 }
851 
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,std::string_view skslCoords)852 SkString ProgramImpl::invokeChild(int childIndex,
853                                   const char* inputColor,
854                                   const char* destColor,
855                                   EmitArgs& args,
856                                   std::string_view skslCoords) {
857     SkASSERT(childIndex >= 0);
858 
859     if (!inputColor) {
860         inputColor = args.fInputColor;
861     }
862 
863     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
864     if (!childProc) {
865         // If no child processor is provided, return the input color as-is.
866         return SkString(inputColor);
867     }
868 
869     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
870                                      inputColor);
871 
872     if (childProc->isBlendFunction()) {
873         if (!destColor) {
874             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
875         }
876         invocation.appendf(", %s", destColor);
877     }
878 
879     // Assert that the child has no sample matrix. A uniform matrix sample call would go through
880     // invokeChildWithMatrix, not here.
881     SkASSERT(!childProc->sampleUsage().isUniformMatrix());
882 
883     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
884         SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
885         // The child's function takes a half4 color and a float2 coordinate
886         if (!skslCoords.empty()) {
887             invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data());
888         } else {
889             invocation.appendf(", %s", args.fSampleCoord);
890         }
891     }
892 
893     invocation.append(")");
894     return invocation;
895 }
896 
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)897 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
898                                             const char* inputColor,
899                                             const char* destColor,
900                                             EmitArgs& args) {
901     SkASSERT(childIndex >= 0);
902 
903     if (!inputColor) {
904         inputColor = args.fInputColor;
905     }
906 
907     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
908     if (!childProc) {
909         // If no child processor is provided, return the input color as-is.
910         return SkString(inputColor);
911     }
912 
913     SkASSERT(childProc->sampleUsage().isUniformMatrix());
914 
915     // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
916     GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
917             args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
918     SkASSERT(uniform.getType() == SkSLType::kFloat3x3);
919     const SkString& matrixName(uniform.getName());
920 
921     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
922                                      inputColor);
923 
924     if (childProc->isBlendFunction()) {
925         if (!destColor) {
926             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
927         }
928         invocation.appendf(", %s", destColor);
929     }
930 
931     // Produce a string containing the call to the helper function. We have a uniform variable
932     // containing our transform (matrixName). If the parent coords were produced by uniform
933     // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
934     // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
935     // function signature will not take in coords.
936     //
937     // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
938     // the function.
939     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
940         // Only check perspective for this specific matrix transform, not the aggregate FP property.
941         // Any parent perspective will have already been applied when evaluated in the FS.
942         if (childProc->sampleUsage().hasPerspective()) {
943             invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
944         } else if (args.fShaderCaps->nonsquareMatrixSupport()) {
945             invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
946         } else {
947             invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
948         }
949     }
950 
951     invocation.append(")");
952     return invocation;
953 }
954