1// Copyright 2021 Google LLC 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// http://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15// Convert makefile containing device configuration to Starlark file 16// The conversion can handle the following constructs in a makefile: 17// * comments 18// * simple variable assignments 19// * $(call init-product,<file>) 20// * $(call inherit-product-if-exists 21// * if directives 22// All other constructs are carried over to the output starlark file as comments. 23// 24package mk2rbc 25 26import ( 27 "bytes" 28 "fmt" 29 "io" 30 "io/fs" 31 "io/ioutil" 32 "os" 33 "path/filepath" 34 "regexp" 35 "sort" 36 "strconv" 37 "strings" 38 "text/scanner" 39 40 mkparser "android/soong/androidmk/parser" 41) 42 43const ( 44 annotationCommentPrefix = "RBC#" 45 baseUri = "//build/make/core:product_config.rbc" 46 // The name of the struct exported by the product_config.rbc 47 // that contains the functions and variables available to 48 // product configuration Starlark files. 49 baseName = "rblf" 50 51 soongNsPrefix = "SOONG_CONFIG_" 52 53 // And here are the functions and variables: 54 cfnGetCfg = baseName + ".cfg" 55 cfnMain = baseName + ".product_configuration" 56 cfnBoardMain = baseName + ".board_configuration" 57 cfnPrintVars = baseName + ".printvars" 58 cfnInherit = baseName + ".inherit" 59 cfnSetListDefault = baseName + ".setdefault" 60) 61 62const ( 63 soongConfigAppend = "soong_config_append" 64 soongConfigAssign = "soong_config_set" 65) 66 67var knownFunctions = map[string]interface { 68 parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr 69}{ 70 "abspath": &simpleCallParser{name: baseName + ".abspath", returnType: starlarkTypeString}, 71 "add-product-dex-preopt-module-config": &simpleCallParser{name: baseName + ".add_product_dex_preopt_module_config", returnType: starlarkTypeString, addHandle: true}, 72 "add_soong_config_namespace": &simpleCallParser{name: baseName + ".soong_config_namespace", returnType: starlarkTypeVoid, addGlobals: true}, 73 "add_soong_config_var_value": &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true}, 74 soongConfigAssign: &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true}, 75 soongConfigAppend: &simpleCallParser{name: baseName + ".soong_config_append", returnType: starlarkTypeVoid, addGlobals: true}, 76 "soong_config_get": &simpleCallParser{name: baseName + ".soong_config_get", returnType: starlarkTypeString, addGlobals: true}, 77 "add-to-product-copy-files-if-exists": &simpleCallParser{name: baseName + ".copy_if_exists", returnType: starlarkTypeList}, 78 "addprefix": &simpleCallParser{name: baseName + ".addprefix", returnType: starlarkTypeList}, 79 "addsuffix": &simpleCallParser{name: baseName + ".addsuffix", returnType: starlarkTypeList}, 80 "copy-files": &simpleCallParser{name: baseName + ".copy_files", returnType: starlarkTypeList}, 81 "dir": &simpleCallParser{name: baseName + ".dir", returnType: starlarkTypeString}, 82 "dist-for-goals": &simpleCallParser{name: baseName + ".mkdist_for_goals", returnType: starlarkTypeVoid, addGlobals: true}, 83 "enforce-product-packages-exist": &simpleCallParser{name: baseName + ".enforce_product_packages_exist", returnType: starlarkTypeVoid, addHandle: true}, 84 "error": &makeControlFuncParser{name: baseName + ".mkerror"}, 85 "findstring": &simpleCallParser{name: baseName + ".findstring", returnType: starlarkTypeInt}, 86 "find-copy-subdir-files": &simpleCallParser{name: baseName + ".find_and_copy", returnType: starlarkTypeList}, 87 "filter": &simpleCallParser{name: baseName + ".filter", returnType: starlarkTypeList}, 88 "filter-out": &simpleCallParser{name: baseName + ".filter_out", returnType: starlarkTypeList}, 89 "firstword": &firstOrLastwordCallParser{isLastWord: false}, 90 "foreach": &foreachCallParser{}, 91 "if": &ifCallParser{}, 92 "info": &makeControlFuncParser{name: baseName + ".mkinfo"}, 93 "is-board-platform": &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true}, 94 "is-board-platform2": &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true}, 95 "is-board-platform-in-list": &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true}, 96 "is-board-platform-in-list2": &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true}, 97 "is-product-in-list": &isProductInListCallParser{}, 98 "is-vendor-board-platform": &isVendorBoardPlatformCallParser{}, 99 "is-vendor-board-qcom": &isVendorBoardQcomCallParser{}, 100 "lastword": &firstOrLastwordCallParser{isLastWord: true}, 101 "notdir": &simpleCallParser{name: baseName + ".notdir", returnType: starlarkTypeString}, 102 "math_max": &mathMaxOrMinCallParser{function: "max"}, 103 "math_min": &mathMaxOrMinCallParser{function: "min"}, 104 "math_gt_or_eq": &mathComparisonCallParser{op: ">="}, 105 "math_gt": &mathComparisonCallParser{op: ">"}, 106 "math_lt": &mathComparisonCallParser{op: "<"}, 107 "my-dir": &myDirCallParser{}, 108 "patsubst": &substCallParser{fname: "patsubst"}, 109 "product-copy-files-by-pattern": &simpleCallParser{name: baseName + ".product_copy_files_by_pattern", returnType: starlarkTypeList}, 110 "require-artifacts-in-path": &simpleCallParser{name: baseName + ".require_artifacts_in_path", returnType: starlarkTypeVoid, addHandle: true}, 111 "require-artifacts-in-path-relaxed": &simpleCallParser{name: baseName + ".require_artifacts_in_path_relaxed", returnType: starlarkTypeVoid, addHandle: true}, 112 // TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002 113 "shell": &shellCallParser{}, 114 "sort": &simpleCallParser{name: baseName + ".mksort", returnType: starlarkTypeList}, 115 "strip": &simpleCallParser{name: baseName + ".mkstrip", returnType: starlarkTypeString}, 116 "subst": &substCallParser{fname: "subst"}, 117 "warning": &makeControlFuncParser{name: baseName + ".mkwarning"}, 118 "word": &wordCallParser{}, 119 "wildcard": &simpleCallParser{name: baseName + ".expand_wildcard", returnType: starlarkTypeList}, 120} 121 122// The same as knownFunctions, but returns a []starlarkNode instead of a starlarkExpr 123var knownNodeFunctions = map[string]interface { 124 parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode 125}{ 126 "eval": &evalNodeParser{}, 127 "if": &ifCallNodeParser{}, 128 "inherit-product": &inheritProductCallParser{loadAlways: true}, 129 "inherit-product-if-exists": &inheritProductCallParser{loadAlways: false}, 130 "foreach": &foreachCallNodeParser{}, 131} 132 133// These are functions that we don't implement conversions for, but 134// we allow seeing their definitions in the product config files. 135var ignoredDefines = map[string]bool{ 136 "find-word-in-list": true, // internal macro 137 "get-vendor-board-platforms": true, // internal macro, used by is-board-platform, etc. 138 "is-android-codename": true, // unused by product config 139 "is-android-codename-in-list": true, // unused by product config 140 "is-chipset-in-board-platform": true, // unused by product config 141 "is-chipset-prefix-in-board-platform": true, // unused by product config 142 "is-not-board-platform": true, // defined but never used 143 "is-platform-sdk-version-at-least": true, // unused by product config 144 "match-prefix": true, // internal macro 145 "match-word": true, // internal macro 146 "match-word-in-list": true, // internal macro 147 "tb-modules": true, // defined in hardware/amlogic/tb_modules/tb_detect.mk, unused 148} 149 150var identifierFullMatchRegex = regexp.MustCompile("^[a-zA-Z_][a-zA-Z0-9_]*$") 151 152// Conversion request parameters 153type Request struct { 154 MkFile string // file to convert 155 Reader io.Reader // if set, read input from this stream instead 156 OutputSuffix string // generated Starlark files suffix 157 OutputDir string // if set, root of the output hierarchy 158 ErrorLogger ErrorLogger 159 TracedVariables []string // trace assignment to these variables 160 TraceCalls bool 161 SourceFS fs.FS 162 MakefileFinder MakefileFinder 163} 164 165// ErrorLogger prints errors and gathers error statistics. 166// Its NewError function is called on every error encountered during the conversion. 167type ErrorLogger interface { 168 NewError(el ErrorLocation, node mkparser.Node, text string, args ...interface{}) 169} 170 171type ErrorLocation struct { 172 MkFile string 173 MkLine int 174} 175 176func (el ErrorLocation) String() string { 177 return fmt.Sprintf("%s:%d", el.MkFile, el.MkLine) 178} 179 180// Derives module name for a given file. It is base name 181// (file name without suffix), with some characters replaced to make it a Starlark identifier 182func moduleNameForFile(mkFile string) string { 183 base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile)) 184 // TODO(asmundak): what else can be in the product file names? 185 return strings.NewReplacer("-", "_", ".", "_").Replace(base) 186 187} 188 189func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString { 190 r := &mkparser.MakeString{StringPos: mkString.StringPos} 191 r.Strings = append(r.Strings, mkString.Strings...) 192 r.Variables = append(r.Variables, mkString.Variables...) 193 return r 194} 195 196func isMakeControlFunc(s string) bool { 197 return s == "error" || s == "warning" || s == "info" 198} 199 200// varAssignmentScope points to the last assignment for each variable 201// in the current block. It is used during the parsing to chain 202// the assignments to a variable together. 203type varAssignmentScope struct { 204 outer *varAssignmentScope 205 vars map[string]bool 206} 207 208// Starlark output generation context 209type generationContext struct { 210 buf strings.Builder 211 starScript *StarlarkScript 212 indentLevel int 213 inAssignment bool 214 tracedCount int 215 varAssignments *varAssignmentScope 216} 217 218func NewGenerateContext(ss *StarlarkScript) *generationContext { 219 return &generationContext{ 220 starScript: ss, 221 varAssignments: &varAssignmentScope{ 222 outer: nil, 223 vars: make(map[string]bool), 224 }, 225 } 226} 227 228func (gctx *generationContext) pushVariableAssignments() { 229 va := &varAssignmentScope{ 230 outer: gctx.varAssignments, 231 vars: make(map[string]bool), 232 } 233 gctx.varAssignments = va 234} 235 236func (gctx *generationContext) popVariableAssignments() { 237 gctx.varAssignments = gctx.varAssignments.outer 238} 239 240func (gctx *generationContext) hasBeenAssigned(v variable) bool { 241 for va := gctx.varAssignments; va != nil; va = va.outer { 242 if _, ok := va.vars[v.name()]; ok { 243 return true 244 } 245 } 246 return false 247} 248 249func (gctx *generationContext) setHasBeenAssigned(v variable) { 250 gctx.varAssignments.vars[v.name()] = true 251} 252 253// emit returns generated script 254func (gctx *generationContext) emit() string { 255 ss := gctx.starScript 256 257 // The emitted code has the following layout: 258 // <initial comments> 259 // preamble, i.e., 260 // load statement for the runtime support 261 // load statement for each unique submodule pulled in by this one 262 // def init(g, handle): 263 // cfg = rblf.cfg(handle) 264 // <statements> 265 // <warning if conversion was not clean> 266 267 iNode := len(ss.nodes) 268 for i, node := range ss.nodes { 269 if _, ok := node.(*commentNode); !ok { 270 iNode = i 271 break 272 } 273 node.emit(gctx) 274 } 275 276 gctx.emitPreamble() 277 278 gctx.newLine() 279 // The arguments passed to the init function are the global dictionary 280 // ('g') and the product configuration dictionary ('cfg') 281 gctx.write("def init(g, handle):") 282 gctx.indentLevel++ 283 if gctx.starScript.traceCalls { 284 gctx.newLine() 285 gctx.writef(`print(">%s")`, gctx.starScript.mkFile) 286 } 287 gctx.newLine() 288 gctx.writef("cfg = %s(handle)", cfnGetCfg) 289 for _, node := range ss.nodes[iNode:] { 290 node.emit(gctx) 291 } 292 293 if gctx.starScript.traceCalls { 294 gctx.newLine() 295 gctx.writef(`print("<%s")`, gctx.starScript.mkFile) 296 } 297 gctx.indentLevel-- 298 gctx.write("\n") 299 return gctx.buf.String() 300} 301 302func (gctx *generationContext) emitPreamble() { 303 gctx.newLine() 304 gctx.writef("load(%q, %q)", baseUri, baseName) 305 // Emit exactly one load statement for each URI. 306 loadedSubConfigs := make(map[string]string) 307 for _, mi := range gctx.starScript.inherited { 308 uri := mi.path 309 if m, ok := loadedSubConfigs[uri]; ok { 310 // No need to emit load statement, but fix module name. 311 mi.moduleLocalName = m 312 continue 313 } 314 if mi.optional || mi.missing { 315 uri += "|init" 316 } 317 gctx.newLine() 318 gctx.writef("load(%q, %s = \"init\")", uri, mi.entryName()) 319 loadedSubConfigs[uri] = mi.moduleLocalName 320 } 321 gctx.write("\n") 322} 323 324func (gctx *generationContext) emitPass() { 325 gctx.newLine() 326 gctx.write("pass") 327} 328 329func (gctx *generationContext) write(ss ...string) { 330 for _, s := range ss { 331 gctx.buf.WriteString(s) 332 } 333} 334 335func (gctx *generationContext) writef(format string, args ...interface{}) { 336 gctx.write(fmt.Sprintf(format, args...)) 337} 338 339func (gctx *generationContext) newLine() { 340 if gctx.buf.Len() == 0 { 341 return 342 } 343 gctx.write("\n") 344 gctx.writef("%*s", 2*gctx.indentLevel, "") 345} 346 347func (gctx *generationContext) emitConversionError(el ErrorLocation, message string) { 348 gctx.writef(`rblf.mk2rbc_error("%s", %q)`, el, message) 349} 350 351func (gctx *generationContext) emitLoadCheck(im inheritedModule) { 352 if !im.needsLoadCheck() { 353 return 354 } 355 gctx.newLine() 356 gctx.writef("if not %s:", im.entryName()) 357 gctx.indentLevel++ 358 gctx.newLine() 359 gctx.write(`rblf.mkerror("`, gctx.starScript.mkFile, `", "Cannot find %s" % (`) 360 im.pathExpr().emit(gctx) 361 gctx.write("))") 362 gctx.indentLevel-- 363} 364 365type knownVariable struct { 366 name string 367 class varClass 368 valueType starlarkType 369} 370 371type knownVariables map[string]knownVariable 372 373func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) { 374 v, exists := pcv[name] 375 if !exists { 376 pcv[name] = knownVariable{name, varClass, valueType} 377 return 378 } 379 // Conflict resolution: 380 // * config class trumps everything 381 // * any type trumps unknown type 382 match := varClass == v.class 383 if !match { 384 if varClass == VarClassConfig { 385 v.class = VarClassConfig 386 match = true 387 } else if v.class == VarClassConfig { 388 match = true 389 } 390 } 391 if valueType != v.valueType { 392 if valueType != starlarkTypeUnknown { 393 if v.valueType == starlarkTypeUnknown { 394 v.valueType = valueType 395 } else { 396 match = false 397 } 398 } 399 } 400 if !match { 401 fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n", 402 name, varClass, valueType, v.class, v.valueType) 403 } 404} 405 406// All known product variables. 407var KnownVariables = make(knownVariables) 408 409func init() { 410 for _, kv := range []string{ 411 // Kernel-related variables that we know are lists. 412 "BOARD_VENDOR_KERNEL_MODULES", 413 "BOARD_VENDOR_RAMDISK_KERNEL_MODULES", 414 "BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD", 415 "BOARD_RECOVERY_KERNEL_MODULES", 416 // Other variables we knwo are lists 417 "ART_APEX_JARS", 418 } { 419 KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList) 420 } 421} 422 423// Information about the generated Starlark script. 424type StarlarkScript struct { 425 mkFile string 426 moduleName string 427 mkPos scanner.Position 428 nodes []starlarkNode 429 inherited []*moduleInfo 430 hasErrors bool 431 traceCalls bool // print enter/exit each init function 432 sourceFS fs.FS 433 makefileFinder MakefileFinder 434 nodeLocator func(pos mkparser.Pos) int 435} 436 437// parseContext holds the script we are generating and all the ephemeral data 438// needed during the parsing. 439type parseContext struct { 440 script *StarlarkScript 441 nodes []mkparser.Node // Makefile as parsed by mkparser 442 currentNodeIndex int // Node in it we are processing 443 ifNestLevel int 444 moduleNameCount map[string]int // count of imported modules with given basename 445 fatalError error 446 outputSuffix string 447 errorLogger ErrorLogger 448 tracedVariables map[string]bool // variables to be traced in the generated script 449 variables map[string]variable 450 outputDir string 451 dependentModules map[string]*moduleInfo 452 soongNamespaces map[string]map[string]bool 453 includeTops []string 454 typeHints map[string]starlarkType 455 atTopOfMakefile bool 456} 457 458func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext { 459 predefined := []struct{ name, value string }{ 460 {"SRC_TARGET_DIR", filepath.Join("build", "make", "target")}, 461 {"LOCAL_PATH", filepath.Dir(ss.mkFile)}, 462 {"TOPDIR", ""}, // TOPDIR is just set to an empty string in cleanbuild.mk and core.mk 463 // TODO(asmundak): maybe read it from build/make/core/envsetup.mk? 464 {"TARGET_COPY_OUT_SYSTEM", "system"}, 465 {"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"}, 466 {"TARGET_COPY_OUT_DATA", "data"}, 467 {"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")}, 468 {"TARGET_COPY_OUT_OEM", "oem"}, 469 {"TARGET_COPY_OUT_RAMDISK", "ramdisk"}, 470 {"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"}, 471 {"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"}, 472 {"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"}, 473 {"TARGET_COPY_OUT_ROOT", "root"}, 474 {"TARGET_COPY_OUT_RECOVERY", "recovery"}, 475 {"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"}, 476 // TODO(asmundak): to process internal config files, we need the following variables: 477 // TARGET_VENDOR 478 // target_base_product 479 // 480 481 // the following utility variables are set in build/make/common/core.mk: 482 {"empty", ""}, 483 {"space", " "}, 484 {"comma", ","}, 485 {"newline", "\n"}, 486 {"pound", "#"}, 487 {"backslash", "\\"}, 488 } 489 ctx := &parseContext{ 490 script: ss, 491 nodes: nodes, 492 currentNodeIndex: 0, 493 ifNestLevel: 0, 494 moduleNameCount: make(map[string]int), 495 variables: make(map[string]variable), 496 dependentModules: make(map[string]*moduleInfo), 497 soongNamespaces: make(map[string]map[string]bool), 498 includeTops: []string{}, 499 typeHints: make(map[string]starlarkType), 500 atTopOfMakefile: true, 501 } 502 for _, item := range predefined { 503 ctx.variables[item.name] = &predefinedVariable{ 504 baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString}, 505 value: &stringLiteralExpr{item.value}, 506 } 507 } 508 509 return ctx 510} 511 512func (ctx *parseContext) hasNodes() bool { 513 return ctx.currentNodeIndex < len(ctx.nodes) 514} 515 516func (ctx *parseContext) getNode() mkparser.Node { 517 if !ctx.hasNodes() { 518 return nil 519 } 520 node := ctx.nodes[ctx.currentNodeIndex] 521 ctx.currentNodeIndex++ 522 return node 523} 524 525func (ctx *parseContext) backNode() { 526 if ctx.currentNodeIndex <= 0 { 527 panic("Cannot back off") 528 } 529 ctx.currentNodeIndex-- 530} 531 532func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) []starlarkNode { 533 // Handle only simple variables 534 if !a.Name.Const() { 535 return []starlarkNode{ctx.newBadNode(a, "Only simple variables are handled")} 536 } 537 name := a.Name.Strings[0] 538 // The `override` directive 539 // override FOO := 540 // is parsed as an assignment to a variable named `override FOO`. 541 // There are very few places where `override` is used, just flag it. 542 if strings.HasPrefix(name, "override ") { 543 return []starlarkNode{ctx.newBadNode(a, "cannot handle override directive")} 544 } 545 546 // Soong configuration 547 if strings.HasPrefix(name, soongNsPrefix) { 548 return ctx.handleSoongNsAssignment(strings.TrimPrefix(name, soongNsPrefix), a) 549 } 550 lhs := ctx.addVariable(name) 551 if lhs == nil { 552 return []starlarkNode{ctx.newBadNode(a, "unknown variable %s", name)} 553 } 554 _, isTraced := ctx.tracedVariables[lhs.name()] 555 asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced, location: ctx.errorLocation(a)} 556 if lhs.valueType() == starlarkTypeUnknown { 557 // Try to divine variable type from the RHS 558 asgn.value = ctx.parseMakeString(a, a.Value) 559 if xBad, ok := asgn.value.(*badExpr); ok { 560 return []starlarkNode{&exprNode{xBad}} 561 } 562 inferred_type := asgn.value.typ() 563 if inferred_type != starlarkTypeUnknown { 564 lhs.setValueType(inferred_type) 565 } 566 } 567 if lhs.valueType() == starlarkTypeList { 568 xConcat, xBad := ctx.buildConcatExpr(a) 569 if xBad != nil { 570 return []starlarkNode{&exprNode{expr: xBad}} 571 } 572 switch len(xConcat.items) { 573 case 0: 574 asgn.value = &listExpr{} 575 case 1: 576 asgn.value = xConcat.items[0] 577 default: 578 asgn.value = xConcat 579 } 580 } else { 581 asgn.value = ctx.parseMakeString(a, a.Value) 582 if xBad, ok := asgn.value.(*badExpr); ok { 583 return []starlarkNode{&exprNode{expr: xBad}} 584 } 585 } 586 587 if asgn.lhs.valueType() == starlarkTypeString && 588 asgn.value.typ() != starlarkTypeUnknown && 589 asgn.value.typ() != starlarkTypeString { 590 asgn.value = &toStringExpr{expr: asgn.value} 591 } 592 593 switch a.Type { 594 case "=", ":=": 595 asgn.flavor = asgnSet 596 case "+=": 597 asgn.flavor = asgnAppend 598 case "?=": 599 asgn.flavor = asgnMaybeSet 600 default: 601 panic(fmt.Errorf("unexpected assignment type %s", a.Type)) 602 } 603 604 return []starlarkNode{asgn} 605} 606 607func (ctx *parseContext) handleSoongNsAssignment(name string, asgn *mkparser.Assignment) []starlarkNode { 608 val := ctx.parseMakeString(asgn, asgn.Value) 609 if xBad, ok := val.(*badExpr); ok { 610 return []starlarkNode{&exprNode{expr: xBad}} 611 } 612 613 // Unfortunately, Soong namespaces can be set up by directly setting corresponding Make 614 // variables instead of via add_soong_config_namespace + add_soong_config_var_value. 615 // Try to divine the call from the assignment as follows: 616 if name == "NAMESPACES" { 617 // Upon seeng 618 // SOONG_CONFIG_NAMESPACES += foo 619 // remember that there is a namespace `foo` and act as we saw 620 // $(call add_soong_config_namespace,foo) 621 s, ok := maybeString(val) 622 if !ok { 623 return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_NAMESPACES assignment, please use add_soong_config_namespace instead")} 624 } 625 result := make([]starlarkNode, 0) 626 for _, ns := range strings.Fields(s) { 627 ctx.addSoongNamespace(ns) 628 result = append(result, &exprNode{&callExpr{ 629 name: baseName + ".soong_config_namespace", 630 args: []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{ns}}, 631 returnType: starlarkTypeVoid, 632 }}) 633 } 634 return result 635 } else { 636 // Upon seeing 637 // SOONG_CONFIG_x_y = v 638 // find a namespace called `x` and act as if we encountered 639 // $(call soong_config_set,x,y,v) 640 // or check that `x_y` is a namespace, and then add the RHS of this assignment as variables in 641 // it. 642 // Emit an error in the ambiguous situation (namespaces `foo_bar` with a variable `baz` 643 // and `foo` with a variable `bar_baz`. 644 namespaceName := "" 645 if ctx.hasSoongNamespace(name) { 646 namespaceName = name 647 } 648 var varName string 649 for pos, ch := range name { 650 if !(ch == '_' && ctx.hasSoongNamespace(name[0:pos])) { 651 continue 652 } 653 if namespaceName != "" { 654 return []starlarkNode{ctx.newBadNode(asgn, "ambiguous soong namespace (may be either `%s` or `%s`)", namespaceName, name[0:pos])} 655 } 656 namespaceName = name[0:pos] 657 varName = name[pos+1:] 658 } 659 if namespaceName == "" { 660 return []starlarkNode{ctx.newBadNode(asgn, "cannot figure out Soong namespace, please use add_soong_config_var_value macro instead")} 661 } 662 if varName == "" { 663 // Remember variables in this namespace 664 s, ok := maybeString(val) 665 if !ok { 666 return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_ assignment, please use add_soong_config_var_value instead")} 667 } 668 ctx.updateSoongNamespace(asgn.Type != "+=", namespaceName, strings.Fields(s)) 669 return []starlarkNode{} 670 } 671 672 // Finally, handle assignment to a namespace variable 673 if !ctx.hasNamespaceVar(namespaceName, varName) { 674 return []starlarkNode{ctx.newBadNode(asgn, "no %s variable in %s namespace, please use add_soong_config_var_value instead", varName, namespaceName)} 675 } 676 fname := baseName + "." + soongConfigAssign 677 if asgn.Type == "+=" { 678 fname = baseName + "." + soongConfigAppend 679 } 680 return []starlarkNode{&exprNode{&callExpr{ 681 name: fname, 682 args: []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{namespaceName}, &stringLiteralExpr{varName}, val}, 683 returnType: starlarkTypeVoid, 684 }}} 685 } 686} 687 688func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) (*concatExpr, *badExpr) { 689 xConcat := &concatExpr{} 690 var xItemList *listExpr 691 addToItemList := func(x ...starlarkExpr) { 692 if xItemList == nil { 693 xItemList = &listExpr{[]starlarkExpr{}} 694 } 695 xItemList.items = append(xItemList.items, x...) 696 } 697 finishItemList := func() { 698 if xItemList != nil { 699 xConcat.items = append(xConcat.items, xItemList) 700 xItemList = nil 701 } 702 } 703 704 items := a.Value.Words() 705 for _, item := range items { 706 // A function call in RHS is supposed to return a list, all other item 707 // expressions return individual elements. 708 switch x := ctx.parseMakeString(a, item).(type) { 709 case *badExpr: 710 return nil, x 711 case *stringLiteralExpr: 712 addToItemList(maybeConvertToStringList(x).(*listExpr).items...) 713 default: 714 switch x.typ() { 715 case starlarkTypeList: 716 finishItemList() 717 xConcat.items = append(xConcat.items, x) 718 case starlarkTypeString: 719 finishItemList() 720 xConcat.items = append(xConcat.items, &callExpr{ 721 object: x, 722 name: "split", 723 args: nil, 724 returnType: starlarkTypeList, 725 }) 726 default: 727 addToItemList(x) 728 } 729 } 730 } 731 if xItemList != nil { 732 xConcat.items = append(xConcat.items, xItemList) 733 } 734 return xConcat, nil 735} 736 737func (ctx *parseContext) newDependentModule(path string, optional bool) *moduleInfo { 738 modulePath := ctx.loadedModulePath(path) 739 if mi, ok := ctx.dependentModules[modulePath]; ok { 740 mi.optional = mi.optional && optional 741 return mi 742 } 743 moduleName := moduleNameForFile(path) 744 moduleLocalName := "_" + moduleName 745 n, found := ctx.moduleNameCount[moduleName] 746 if found { 747 moduleLocalName += fmt.Sprintf("%d", n) 748 } 749 ctx.moduleNameCount[moduleName] = n + 1 750 _, err := fs.Stat(ctx.script.sourceFS, path) 751 mi := &moduleInfo{ 752 path: modulePath, 753 originalPath: path, 754 moduleLocalName: moduleLocalName, 755 optional: optional, 756 missing: err != nil, 757 } 758 ctx.dependentModules[modulePath] = mi 759 ctx.script.inherited = append(ctx.script.inherited, mi) 760 return mi 761} 762 763func (ctx *parseContext) handleSubConfig( 764 v mkparser.Node, pathExpr starlarkExpr, loadAlways bool, processModule func(inheritedModule) starlarkNode) []starlarkNode { 765 766 // Allow seeing $(sort $(wildcard realPathExpr)) or $(wildcard realPathExpr) 767 // because those are functionally the same as not having the sort/wildcard calls. 768 if ce, ok := pathExpr.(*callExpr); ok && ce.name == "rblf.mksort" && len(ce.args) == 1 { 769 if ce2, ok2 := ce.args[0].(*callExpr); ok2 && ce2.name == "rblf.expand_wildcard" && len(ce2.args) == 1 { 770 pathExpr = ce2.args[0] 771 } 772 } else if ce2, ok2 := pathExpr.(*callExpr); ok2 && ce2.name == "rblf.expand_wildcard" && len(ce2.args) == 1 { 773 pathExpr = ce2.args[0] 774 } 775 776 // In a simple case, the name of a module to inherit/include is known statically. 777 if path, ok := maybeString(pathExpr); ok { 778 // Note that even if this directive loads a module unconditionally, a module may be 779 // absent without causing any harm if this directive is inside an if/else block. 780 moduleShouldExist := loadAlways && ctx.ifNestLevel == 0 781 if strings.Contains(path, "*") { 782 if paths, err := fs.Glob(ctx.script.sourceFS, path); err == nil { 783 sort.Strings(paths) 784 result := make([]starlarkNode, 0) 785 for _, p := range paths { 786 mi := ctx.newDependentModule(p, !moduleShouldExist) 787 result = append(result, processModule(inheritedStaticModule{mi, loadAlways})) 788 } 789 return result 790 } else { 791 return []starlarkNode{ctx.newBadNode(v, "cannot glob wildcard argument")} 792 } 793 } else { 794 mi := ctx.newDependentModule(path, !moduleShouldExist) 795 return []starlarkNode{processModule(inheritedStaticModule{mi, loadAlways})} 796 } 797 } 798 799 // If module path references variables (e.g., $(v1)/foo/$(v2)/device-config.mk), find all the paths in the 800 // source tree that may be a match and the corresponding variable values. For instance, if the source tree 801 // contains vendor1/foo/abc/dev.mk and vendor2/foo/def/dev.mk, the first one will be inherited when 802 // (v1, v2) == ('vendor1', 'abc'), and the second one when (v1, v2) == ('vendor2', 'def'). 803 // We then emit the code that loads all of them, e.g.: 804 // load("//vendor1/foo/abc:dev.rbc", _dev1_init="init") 805 // load("//vendor2/foo/def/dev.rbc", _dev2_init="init") 806 // And then inherit it as follows: 807 // _e = { 808 // "vendor1/foo/abc/dev.mk": ("vendor1/foo/abc/dev", _dev1_init), 809 // "vendor2/foo/def/dev.mk": ("vendor2/foo/def/dev", _dev_init2) }.get("%s/foo/%s/dev.mk" % (v1, v2)) 810 // if _e: 811 // rblf.inherit(handle, _e[0], _e[1]) 812 // 813 var matchingPaths []string 814 varPath, ok := pathExpr.(*interpolateExpr) 815 if !ok { 816 return []starlarkNode{ctx.newBadNode(v, "inherit-product/include argument is too complex")} 817 } 818 819 pathPattern := []string{varPath.chunks[0]} 820 for _, chunk := range varPath.chunks[1:] { 821 if chunk != "" { 822 pathPattern = append(pathPattern, chunk) 823 } 824 } 825 if pathPattern[0] == "" && len(ctx.includeTops) > 0 { 826 // If pattern starts from the top. restrict it to the directories where 827 // we know inherit-product uses dynamically calculated path. 828 for _, p := range ctx.includeTops { 829 pathPattern[0] = p 830 matchingPaths = append(matchingPaths, ctx.findMatchingPaths(pathPattern)...) 831 } 832 } else { 833 matchingPaths = ctx.findMatchingPaths(pathPattern) 834 } 835 // Safeguard against $(call inherit-product,$(PRODUCT_PATH)) 836 const maxMatchingFiles = 150 837 if len(matchingPaths) > maxMatchingFiles { 838 return []starlarkNode{ctx.newBadNode(v, "there are >%d files matching the pattern, please rewrite it", maxMatchingFiles)} 839 } 840 841 needsWarning := pathPattern[0] == "" && len(ctx.includeTops) == 0 842 res := inheritedDynamicModule{*varPath, []*moduleInfo{}, loadAlways, ctx.errorLocation(v), needsWarning} 843 for _, p := range matchingPaths { 844 // A product configuration files discovered dynamically may attempt to inherit 845 // from another one which does not exist in this source tree. Prevent load errors 846 // by always loading the dynamic files as optional. 847 res.candidateModules = append(res.candidateModules, ctx.newDependentModule(p, true)) 848 } 849 return []starlarkNode{processModule(res)} 850} 851 852func (ctx *parseContext) findMatchingPaths(pattern []string) []string { 853 files := ctx.script.makefileFinder.Find(".") 854 if len(pattern) == 0 { 855 return files 856 } 857 858 // Create regular expression from the pattern 859 s_regexp := "^" + regexp.QuoteMeta(pattern[0]) 860 for _, s := range pattern[1:] { 861 s_regexp += ".*" + regexp.QuoteMeta(s) 862 } 863 s_regexp += "$" 864 rex := regexp.MustCompile(s_regexp) 865 866 // Now match 867 var res []string 868 for _, p := range files { 869 if rex.MatchString(p) { 870 res = append(res, p) 871 } 872 } 873 return res 874} 875 876type inheritProductCallParser struct { 877 loadAlways bool 878} 879 880func (p *inheritProductCallParser) parse(ctx *parseContext, v mkparser.Node, args *mkparser.MakeString) []starlarkNode { 881 args.TrimLeftSpaces() 882 args.TrimRightSpaces() 883 pathExpr := ctx.parseMakeString(v, args) 884 if _, ok := pathExpr.(*badExpr); ok { 885 return []starlarkNode{ctx.newBadNode(v, "Unable to parse argument to inherit")} 886 } 887 return ctx.handleSubConfig(v, pathExpr, p.loadAlways, func(im inheritedModule) starlarkNode { 888 return &inheritNode{im, p.loadAlways} 889 }) 890} 891 892func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) []starlarkNode { 893 return ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) starlarkNode { 894 return &includeNode{im, loadAlways} 895 }) 896} 897 898func (ctx *parseContext) handleVariable(v *mkparser.Variable) []starlarkNode { 899 // Handle: 900 // $(call inherit-product,...) 901 // $(call inherit-product-if-exists,...) 902 // $(info xxx) 903 // $(warning xxx) 904 // $(error xxx) 905 // $(call other-custom-functions,...) 906 907 if name, args, ok := ctx.maybeParseFunctionCall(v, v.Name); ok { 908 if kf, ok := knownNodeFunctions[name]; ok { 909 return kf.parse(ctx, v, args) 910 } 911 } 912 913 return []starlarkNode{&exprNode{expr: ctx.parseReference(v, v.Name)}} 914} 915 916func (ctx *parseContext) maybeHandleDefine(directive *mkparser.Directive) starlarkNode { 917 macro_name := strings.Fields(directive.Args.Strings[0])[0] 918 // Ignore the macros that we handle 919 _, ignored := ignoredDefines[macro_name] 920 _, known := knownFunctions[macro_name] 921 if !ignored && !known { 922 return ctx.newBadNode(directive, "define is not supported: %s", macro_name) 923 } 924 return nil 925} 926 927func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) starlarkNode { 928 ssSwitch := &switchNode{ 929 ssCases: []*switchCase{ctx.processBranch(ifDirective)}, 930 } 931 for ctx.hasNodes() && ctx.fatalError == nil { 932 node := ctx.getNode() 933 switch x := node.(type) { 934 case *mkparser.Directive: 935 switch x.Name { 936 case "else", "elifdef", "elifndef", "elifeq", "elifneq": 937 ssSwitch.ssCases = append(ssSwitch.ssCases, ctx.processBranch(x)) 938 case "endif": 939 return ssSwitch 940 default: 941 return ctx.newBadNode(node, "unexpected directive %s", x.Name) 942 } 943 default: 944 return ctx.newBadNode(ifDirective, "unexpected statement") 945 } 946 } 947 if ctx.fatalError == nil { 948 ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump()) 949 } 950 return ctx.newBadNode(ifDirective, "no matching endif for %s", ifDirective.Dump()) 951} 952 953// processBranch processes a single branch (if/elseif/else) until the next directive 954// on the same level. 955func (ctx *parseContext) processBranch(check *mkparser.Directive) *switchCase { 956 block := &switchCase{gate: ctx.parseCondition(check)} 957 defer func() { 958 ctx.ifNestLevel-- 959 }() 960 ctx.ifNestLevel++ 961 962 for ctx.hasNodes() { 963 node := ctx.getNode() 964 if d, ok := node.(*mkparser.Directive); ok { 965 switch d.Name { 966 case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif": 967 ctx.backNode() 968 return block 969 } 970 } 971 block.nodes = append(block.nodes, ctx.handleSimpleStatement(node)...) 972 } 973 ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump()) 974 return block 975} 976 977func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode { 978 switch check.Name { 979 case "ifdef", "ifndef", "elifdef", "elifndef": 980 if !check.Args.Const() { 981 return ctx.newBadNode(check, "ifdef variable ref too complex: %s", check.Args.Dump()) 982 } 983 v := NewVariableRefExpr(ctx.addVariable(check.Args.Strings[0])) 984 if strings.HasSuffix(check.Name, "ndef") { 985 v = ¬Expr{v} 986 } 987 return &ifNode{ 988 isElif: strings.HasPrefix(check.Name, "elif"), 989 expr: v, 990 } 991 case "ifeq", "ifneq", "elifeq", "elifneq": 992 return &ifNode{ 993 isElif: strings.HasPrefix(check.Name, "elif"), 994 expr: ctx.parseCompare(check), 995 } 996 case "else": 997 return &elseNode{} 998 default: 999 panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump())) 1000 } 1001} 1002 1003func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr { 1004 if ctx.errorLogger != nil { 1005 ctx.errorLogger.NewError(ctx.errorLocation(node), node, text, args...) 1006 } 1007 ctx.script.hasErrors = true 1008 return &badExpr{errorLocation: ctx.errorLocation(node), message: fmt.Sprintf(text, args...)} 1009} 1010 1011// records that the given node failed to be converted and includes an explanatory message 1012func (ctx *parseContext) newBadNode(failedNode mkparser.Node, message string, args ...interface{}) starlarkNode { 1013 return &exprNode{ctx.newBadExpr(failedNode, message, args...)} 1014} 1015 1016func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr { 1017 // Strip outer parentheses 1018 mkArg := cloneMakeString(cond.Args) 1019 mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ") 1020 n := len(mkArg.Strings) 1021 mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ") 1022 args := mkArg.Split(",") 1023 // TODO(asmundak): handle the case where the arguments are in quotes and space-separated 1024 if len(args) != 2 { 1025 return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump()) 1026 } 1027 args[0].TrimRightSpaces() 1028 args[1].TrimLeftSpaces() 1029 1030 isEq := !strings.HasSuffix(cond.Name, "neq") 1031 xLeft := ctx.parseMakeString(cond, args[0]) 1032 xRight := ctx.parseMakeString(cond, args[1]) 1033 if bad, ok := xLeft.(*badExpr); ok { 1034 return bad 1035 } 1036 if bad, ok := xRight.(*badExpr); ok { 1037 return bad 1038 } 1039 1040 if expr, ok := ctx.parseCompareSpecialCases(cond, xLeft, xRight); ok { 1041 return expr 1042 } 1043 1044 var stringOperand string 1045 var otherOperand starlarkExpr 1046 if s, ok := maybeString(xLeft); ok { 1047 stringOperand = s 1048 otherOperand = xRight 1049 } else if s, ok := maybeString(xRight); ok { 1050 stringOperand = s 1051 otherOperand = xLeft 1052 } 1053 1054 // If we've identified one of the operands as being a string literal, check 1055 // for some special cases we can do to simplify the resulting expression. 1056 if otherOperand != nil { 1057 if stringOperand == "" { 1058 if isEq { 1059 return negateExpr(otherOperand) 1060 } else { 1061 return otherOperand 1062 } 1063 } 1064 if stringOperand == "true" && otherOperand.typ() == starlarkTypeBool { 1065 if !isEq { 1066 return negateExpr(otherOperand) 1067 } else { 1068 return otherOperand 1069 } 1070 } 1071 if intOperand, err := strconv.Atoi(strings.TrimSpace(stringOperand)); err == nil && otherOperand.typ() == starlarkTypeInt { 1072 return &eqExpr{ 1073 left: otherOperand, 1074 right: &intLiteralExpr{literal: intOperand}, 1075 isEq: isEq, 1076 } 1077 } 1078 } 1079 1080 return &eqExpr{left: xLeft, right: xRight, isEq: isEq} 1081} 1082 1083// Given an if statement's directive and the left/right starlarkExprs, 1084// check if the starlarkExprs are one of a few hardcoded special cases 1085// that can be converted to a simpler equality expression than simply comparing 1086// the two. 1087func (ctx *parseContext) parseCompareSpecialCases(directive *mkparser.Directive, left starlarkExpr, 1088 right starlarkExpr) (starlarkExpr, bool) { 1089 isEq := !strings.HasSuffix(directive.Name, "neq") 1090 1091 // All the special cases require a call on one side and a 1092 // string literal/variable on the other. Turn the left/right variables into 1093 // call/value variables, and return false if that's not possible. 1094 var value starlarkExpr = nil 1095 call, ok := left.(*callExpr) 1096 if ok { 1097 switch right.(type) { 1098 case *stringLiteralExpr, *variableRefExpr: 1099 value = right 1100 } 1101 } else { 1102 call, _ = right.(*callExpr) 1103 switch left.(type) { 1104 case *stringLiteralExpr, *variableRefExpr: 1105 value = left 1106 } 1107 } 1108 1109 if call == nil || value == nil { 1110 return nil, false 1111 } 1112 1113 switch call.name { 1114 case baseName + ".filter": 1115 return ctx.parseCompareFilterFuncResult(directive, call, value, isEq) 1116 case baseName + ".expand_wildcard": 1117 return ctx.parseCompareWildcardFuncResult(directive, call, value, !isEq), true 1118 case baseName + ".findstring": 1119 return ctx.parseCheckFindstringFuncResult(directive, call, value, !isEq), true 1120 case baseName + ".strip": 1121 return ctx.parseCompareStripFuncResult(directive, call, value, !isEq), true 1122 } 1123 return nil, false 1124} 1125 1126func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive, 1127 filterFuncCall *callExpr, xValue starlarkExpr, negate bool) (starlarkExpr, bool) { 1128 // We handle: 1129 // * ifeq/ifneq (,$(filter v1 v2 ..., EXPR) becomes if EXPR not in/in ["v1", "v2", ...] 1130 // * ifeq/ifneq (,$(filter EXPR, v1 v2 ...) becomes if EXPR not in/in ["v1", "v2", ...] 1131 if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" { 1132 return nil, false 1133 } 1134 xPattern := filterFuncCall.args[0] 1135 xText := filterFuncCall.args[1] 1136 var xInList *stringLiteralExpr 1137 var expr starlarkExpr 1138 var ok bool 1139 if xInList, ok = xPattern.(*stringLiteralExpr); ok && !strings.ContainsRune(xInList.literal, '%') && xText.typ() == starlarkTypeList { 1140 expr = xText 1141 } else if xInList, ok = xText.(*stringLiteralExpr); ok { 1142 expr = xPattern 1143 } else { 1144 return nil, false 1145 } 1146 slExpr := newStringListExpr(strings.Fields(xInList.literal)) 1147 // Generate simpler code for the common cases: 1148 if expr.typ() == starlarkTypeList { 1149 if len(slExpr.items) == 1 { 1150 // Checking that a string belongs to list 1151 return &inExpr{isNot: negate, list: expr, expr: slExpr.items[0]}, true 1152 } else { 1153 return nil, false 1154 } 1155 } else if len(slExpr.items) == 1 { 1156 return &eqExpr{left: expr, right: slExpr.items[0], isEq: !negate}, true 1157 } else { 1158 return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: expr}, true 1159 } 1160} 1161 1162func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive, 1163 xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { 1164 if !isEmptyString(xValue) { 1165 return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue) 1166 } 1167 callFunc := baseName + ".file_wildcard_exists" 1168 if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") { 1169 callFunc = baseName + ".file_exists" 1170 } 1171 var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool} 1172 if !negate { 1173 cc = ¬Expr{cc} 1174 } 1175 return cc 1176} 1177 1178func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive, 1179 xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { 1180 if isEmptyString(xValue) { 1181 return &eqExpr{ 1182 left: &callExpr{ 1183 object: xCall.args[1], 1184 name: "find", 1185 args: []starlarkExpr{xCall.args[0]}, 1186 returnType: starlarkTypeInt, 1187 }, 1188 right: &intLiteralExpr{-1}, 1189 isEq: !negate, 1190 } 1191 } else if s, ok := maybeString(xValue); ok { 1192 if s2, ok := maybeString(xCall.args[0]); ok && s == s2 { 1193 return &eqExpr{ 1194 left: &callExpr{ 1195 object: xCall.args[1], 1196 name: "find", 1197 args: []starlarkExpr{xCall.args[0]}, 1198 returnType: starlarkTypeInt, 1199 }, 1200 right: &intLiteralExpr{-1}, 1201 isEq: negate, 1202 } 1203 } 1204 } 1205 return ctx.newBadExpr(directive, "$(findstring) can only be compared to nothing or its first argument") 1206} 1207 1208func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive, 1209 xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr { 1210 if _, ok := xValue.(*stringLiteralExpr); !ok { 1211 return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue) 1212 } 1213 return &eqExpr{ 1214 left: &callExpr{ 1215 name: "strip", 1216 args: xCall.args, 1217 returnType: starlarkTypeString, 1218 }, 1219 right: xValue, isEq: !negate} 1220} 1221 1222func (ctx *parseContext) maybeParseFunctionCall(node mkparser.Node, ref *mkparser.MakeString) (name string, args *mkparser.MakeString, ok bool) { 1223 ref.TrimLeftSpaces() 1224 ref.TrimRightSpaces() 1225 1226 words := ref.SplitN(" ", 2) 1227 if !words[0].Const() { 1228 return "", nil, false 1229 } 1230 1231 name = words[0].Dump() 1232 args = mkparser.SimpleMakeString("", words[0].Pos()) 1233 if len(words) >= 2 { 1234 args = words[1] 1235 } 1236 args.TrimLeftSpaces() 1237 if name == "call" { 1238 words = args.SplitN(",", 2) 1239 if words[0].Empty() || !words[0].Const() { 1240 return "", nil, false 1241 } 1242 name = words[0].Dump() 1243 if len(words) < 2 { 1244 args = mkparser.SimpleMakeString("", words[0].Pos()) 1245 } else { 1246 args = words[1] 1247 } 1248 } 1249 ok = true 1250 return 1251} 1252 1253// parses $(...), returning an expression 1254func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr { 1255 ref.TrimLeftSpaces() 1256 ref.TrimRightSpaces() 1257 refDump := ref.Dump() 1258 1259 // Handle only the case where the first (or only) word is constant 1260 words := ref.SplitN(" ", 2) 1261 if !words[0].Const() { 1262 return ctx.newBadExpr(node, "reference is too complex: %s", refDump) 1263 } 1264 1265 // If it is a single word, it can be a simple variable 1266 // reference or a function call 1267 if len(words) == 1 && !isMakeControlFunc(refDump) && refDump != "shell" && refDump != "eval" { 1268 if strings.HasPrefix(refDump, soongNsPrefix) { 1269 // TODO (asmundak): if we find many, maybe handle them. 1270 return ctx.newBadExpr(node, "SOONG_CONFIG_ variables cannot be referenced, use soong_config_get instead: %s", refDump) 1271 } 1272 // Handle substitution references: https://www.gnu.org/software/make/manual/html_node/Substitution-Refs.html 1273 if strings.Contains(refDump, ":") { 1274 parts := strings.SplitN(refDump, ":", 2) 1275 substParts := strings.SplitN(parts[1], "=", 2) 1276 if len(substParts) < 2 || strings.Count(substParts[0], "%") > 1 { 1277 return ctx.newBadExpr(node, "Invalid substitution reference") 1278 } 1279 if !strings.Contains(substParts[0], "%") { 1280 if strings.Contains(substParts[1], "%") { 1281 return ctx.newBadExpr(node, "A substitution reference must have a %% in the \"before\" part of the substitution if it has one in the \"after\" part.") 1282 } 1283 substParts[0] = "%" + substParts[0] 1284 substParts[1] = "%" + substParts[1] 1285 } 1286 v := ctx.addVariable(parts[0]) 1287 if v == nil { 1288 return ctx.newBadExpr(node, "unknown variable %s", refDump) 1289 } 1290 return &callExpr{ 1291 name: baseName + ".mkpatsubst", 1292 returnType: starlarkTypeString, 1293 args: []starlarkExpr{ 1294 &stringLiteralExpr{literal: substParts[0]}, 1295 &stringLiteralExpr{literal: substParts[1]}, 1296 NewVariableRefExpr(v), 1297 }, 1298 } 1299 } 1300 if v := ctx.addVariable(refDump); v != nil { 1301 return NewVariableRefExpr(v) 1302 } 1303 return ctx.newBadExpr(node, "unknown variable %s", refDump) 1304 } 1305 1306 if name, args, ok := ctx.maybeParseFunctionCall(node, ref); ok { 1307 if kf, found := knownFunctions[name]; found { 1308 return kf.parse(ctx, node, args) 1309 } else { 1310 return ctx.newBadExpr(node, "cannot handle invoking %s", name) 1311 } 1312 } else { 1313 return ctx.newBadExpr(node, "cannot handle %s", refDump) 1314 } 1315} 1316 1317type simpleCallParser struct { 1318 name string 1319 returnType starlarkType 1320 addGlobals bool 1321 addHandle bool 1322} 1323 1324func (p *simpleCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1325 expr := &callExpr{name: p.name, returnType: p.returnType} 1326 if p.addGlobals { 1327 expr.args = append(expr.args, &globalsExpr{}) 1328 } 1329 if p.addHandle { 1330 expr.args = append(expr.args, &identifierExpr{name: "handle"}) 1331 } 1332 for _, arg := range args.Split(",") { 1333 arg.TrimLeftSpaces() 1334 arg.TrimRightSpaces() 1335 x := ctx.parseMakeString(node, arg) 1336 if xBad, ok := x.(*badExpr); ok { 1337 return xBad 1338 } 1339 expr.args = append(expr.args, x) 1340 } 1341 return expr 1342} 1343 1344type makeControlFuncParser struct { 1345 name string 1346} 1347 1348func (p *makeControlFuncParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1349 // Make control functions need special treatment as everything 1350 // after the name is a single text argument 1351 x := ctx.parseMakeString(node, args) 1352 if xBad, ok := x.(*badExpr); ok { 1353 return xBad 1354 } 1355 return &callExpr{ 1356 name: p.name, 1357 args: []starlarkExpr{ 1358 &stringLiteralExpr{ctx.script.mkFile}, 1359 x, 1360 }, 1361 returnType: starlarkTypeUnknown, 1362 } 1363} 1364 1365type shellCallParser struct{} 1366 1367func (p *shellCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1368 // Shell functions need special treatment as everything 1369 // after the name is a single text argument 1370 x := ctx.parseMakeString(node, args) 1371 if xBad, ok := x.(*badExpr); ok { 1372 return xBad 1373 } 1374 return &callExpr{ 1375 name: baseName + ".shell", 1376 args: []starlarkExpr{x}, 1377 returnType: starlarkTypeUnknown, 1378 } 1379} 1380 1381type myDirCallParser struct{} 1382 1383func (p *myDirCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1384 if !args.Empty() { 1385 return ctx.newBadExpr(node, "my-dir function cannot have any arguments passed to it.") 1386 } 1387 return &stringLiteralExpr{literal: filepath.Dir(ctx.script.mkFile)} 1388} 1389 1390type isProductInListCallParser struct{} 1391 1392func (p *isProductInListCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1393 if args.Empty() { 1394 return ctx.newBadExpr(node, "is-product-in-list requires an argument") 1395 } 1396 return &inExpr{ 1397 expr: NewVariableRefExpr(ctx.addVariable("TARGET_PRODUCT")), 1398 list: maybeConvertToStringList(ctx.parseMakeString(node, args)), 1399 isNot: false, 1400 } 1401} 1402 1403type isVendorBoardPlatformCallParser struct{} 1404 1405func (p *isVendorBoardPlatformCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1406 if args.Empty() || !identifierFullMatchRegex.MatchString(args.Dump()) { 1407 return ctx.newBadExpr(node, "cannot handle non-constant argument to is-vendor-board-platform") 1408 } 1409 return &inExpr{ 1410 expr: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM")), 1411 list: NewVariableRefExpr(ctx.addVariable(args.Dump() + "_BOARD_PLATFORMS")), 1412 isNot: false, 1413 } 1414} 1415 1416type isVendorBoardQcomCallParser struct{} 1417 1418func (p *isVendorBoardQcomCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1419 if !args.Empty() { 1420 return ctx.newBadExpr(node, "is-vendor-board-qcom does not accept any arguments") 1421 } 1422 return &inExpr{ 1423 expr: NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM")), 1424 list: NewVariableRefExpr(ctx.addVariable("QCOM_BOARD_PLATFORMS")), 1425 isNot: false, 1426 } 1427} 1428 1429type substCallParser struct { 1430 fname string 1431} 1432 1433func (p *substCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1434 words := args.Split(",") 1435 if len(words) != 3 { 1436 return ctx.newBadExpr(node, "%s function should have 3 arguments", p.fname) 1437 } 1438 from := ctx.parseMakeString(node, words[0]) 1439 if xBad, ok := from.(*badExpr); ok { 1440 return xBad 1441 } 1442 to := ctx.parseMakeString(node, words[1]) 1443 if xBad, ok := to.(*badExpr); ok { 1444 return xBad 1445 } 1446 words[2].TrimLeftSpaces() 1447 words[2].TrimRightSpaces() 1448 obj := ctx.parseMakeString(node, words[2]) 1449 typ := obj.typ() 1450 if typ == starlarkTypeString && p.fname == "subst" { 1451 // Optimization: if it's $(subst from, to, string), emit string.replace(from, to) 1452 return &callExpr{ 1453 object: obj, 1454 name: "replace", 1455 args: []starlarkExpr{from, to}, 1456 returnType: typ, 1457 } 1458 } 1459 return &callExpr{ 1460 name: baseName + ".mk" + p.fname, 1461 args: []starlarkExpr{from, to, obj}, 1462 returnType: obj.typ(), 1463 } 1464} 1465 1466type ifCallParser struct{} 1467 1468func (p *ifCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1469 words := args.Split(",") 1470 if len(words) != 2 && len(words) != 3 { 1471 return ctx.newBadExpr(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words))) 1472 } 1473 condition := ctx.parseMakeString(node, words[0]) 1474 ifTrue := ctx.parseMakeString(node, words[1]) 1475 var ifFalse starlarkExpr 1476 if len(words) == 3 { 1477 ifFalse = ctx.parseMakeString(node, words[2]) 1478 } else { 1479 switch ifTrue.typ() { 1480 case starlarkTypeList: 1481 ifFalse = &listExpr{items: []starlarkExpr{}} 1482 case starlarkTypeInt: 1483 ifFalse = &intLiteralExpr{literal: 0} 1484 case starlarkTypeBool: 1485 ifFalse = &boolLiteralExpr{literal: false} 1486 default: 1487 ifFalse = &stringLiteralExpr{literal: ""} 1488 } 1489 } 1490 return &ifExpr{ 1491 condition, 1492 ifTrue, 1493 ifFalse, 1494 } 1495} 1496 1497type ifCallNodeParser struct{} 1498 1499func (p *ifCallNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode { 1500 words := args.Split(",") 1501 if len(words) != 2 && len(words) != 3 { 1502 return []starlarkNode{ctx.newBadNode(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words)))} 1503 } 1504 1505 ifn := &ifNode{expr: ctx.parseMakeString(node, words[0])} 1506 cases := []*switchCase{ 1507 { 1508 gate: ifn, 1509 nodes: ctx.parseNodeMakeString(node, words[1]), 1510 }, 1511 } 1512 if len(words) == 3 { 1513 cases = append(cases, &switchCase{ 1514 gate: &elseNode{}, 1515 nodes: ctx.parseNodeMakeString(node, words[2]), 1516 }) 1517 } 1518 if len(cases) == 2 { 1519 if len(cases[1].nodes) == 0 { 1520 // Remove else branch if it has no contents 1521 cases = cases[:1] 1522 } else if len(cases[0].nodes) == 0 { 1523 // If the if branch has no contents but the else does, 1524 // move them to the if and negate its condition 1525 ifn.expr = negateExpr(ifn.expr) 1526 cases[0].nodes = cases[1].nodes 1527 cases = cases[:1] 1528 } 1529 } 1530 1531 return []starlarkNode{&switchNode{ssCases: cases}} 1532} 1533 1534type foreachCallParser struct{} 1535 1536func (p *foreachCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1537 words := args.Split(",") 1538 if len(words) != 3 { 1539 return ctx.newBadExpr(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words))) 1540 } 1541 if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) { 1542 return ctx.newBadExpr(node, "first argument to foreach function must be a simple string identifier") 1543 } 1544 loopVarName := words[0].Strings[0] 1545 list := ctx.parseMakeString(node, words[1]) 1546 action := ctx.parseMakeString(node, words[2]).transform(func(expr starlarkExpr) starlarkExpr { 1547 if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName { 1548 return &identifierExpr{loopVarName} 1549 } 1550 return nil 1551 }) 1552 1553 if list.typ() != starlarkTypeList { 1554 list = &callExpr{ 1555 name: baseName + ".words", 1556 returnType: starlarkTypeList, 1557 args: []starlarkExpr{list}, 1558 } 1559 } 1560 1561 return &foreachExpr{ 1562 varName: loopVarName, 1563 list: list, 1564 action: action, 1565 } 1566} 1567 1568func transformNode(node starlarkNode, transformer func(expr starlarkExpr) starlarkExpr) { 1569 switch a := node.(type) { 1570 case *ifNode: 1571 a.expr = a.expr.transform(transformer) 1572 case *switchCase: 1573 transformNode(a.gate, transformer) 1574 for _, n := range a.nodes { 1575 transformNode(n, transformer) 1576 } 1577 case *switchNode: 1578 for _, n := range a.ssCases { 1579 transformNode(n, transformer) 1580 } 1581 case *exprNode: 1582 a.expr = a.expr.transform(transformer) 1583 case *assignmentNode: 1584 a.value = a.value.transform(transformer) 1585 case *foreachNode: 1586 a.list = a.list.transform(transformer) 1587 for _, n := range a.actions { 1588 transformNode(n, transformer) 1589 } 1590 } 1591} 1592 1593type foreachCallNodeParser struct{} 1594 1595func (p *foreachCallNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode { 1596 words := args.Split(",") 1597 if len(words) != 3 { 1598 return []starlarkNode{ctx.newBadNode(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words)))} 1599 } 1600 if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) { 1601 return []starlarkNode{ctx.newBadNode(node, "first argument to foreach function must be a simple string identifier")} 1602 } 1603 1604 loopVarName := words[0].Strings[0] 1605 1606 list := ctx.parseMakeString(node, words[1]) 1607 if list.typ() != starlarkTypeList { 1608 list = &callExpr{ 1609 name: baseName + ".words", 1610 returnType: starlarkTypeList, 1611 args: []starlarkExpr{list}, 1612 } 1613 } 1614 1615 actions := ctx.parseNodeMakeString(node, words[2]) 1616 // TODO(colefaust): Replace transforming code with something more elegant 1617 for _, action := range actions { 1618 transformNode(action, func(expr starlarkExpr) starlarkExpr { 1619 if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName { 1620 return &identifierExpr{loopVarName} 1621 } 1622 return nil 1623 }) 1624 } 1625 1626 return []starlarkNode{&foreachNode{ 1627 varName: loopVarName, 1628 list: list, 1629 actions: actions, 1630 }} 1631} 1632 1633type wordCallParser struct{} 1634 1635func (p *wordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1636 words := args.Split(",") 1637 if len(words) != 2 { 1638 return ctx.newBadExpr(node, "word function should have 2 arguments") 1639 } 1640 var index uint64 = 0 1641 if words[0].Const() { 1642 index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64) 1643 } 1644 if index < 1 { 1645 return ctx.newBadExpr(node, "word index should be constant positive integer") 1646 } 1647 words[1].TrimLeftSpaces() 1648 words[1].TrimRightSpaces() 1649 array := ctx.parseMakeString(node, words[1]) 1650 if xBad, ok := array.(*badExpr); ok { 1651 return xBad 1652 } 1653 if array.typ() != starlarkTypeList { 1654 array = &callExpr{object: array, name: "split", returnType: starlarkTypeList} 1655 } 1656 return &indexExpr{array, &intLiteralExpr{int(index - 1)}} 1657} 1658 1659type firstOrLastwordCallParser struct { 1660 isLastWord bool 1661} 1662 1663func (p *firstOrLastwordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1664 arg := ctx.parseMakeString(node, args) 1665 if bad, ok := arg.(*badExpr); ok { 1666 return bad 1667 } 1668 index := &intLiteralExpr{0} 1669 if p.isLastWord { 1670 if v, ok := arg.(*variableRefExpr); ok && v.ref.name() == "MAKEFILE_LIST" { 1671 return &stringLiteralExpr{ctx.script.mkFile} 1672 } 1673 index.literal = -1 1674 } 1675 if arg.typ() == starlarkTypeList { 1676 return &indexExpr{arg, index} 1677 } 1678 return &indexExpr{&callExpr{object: arg, name: "split", returnType: starlarkTypeList}, index} 1679} 1680 1681func parseIntegerArguments(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString, expectedArgs int) ([]starlarkExpr, error) { 1682 parsedArgs := make([]starlarkExpr, 0) 1683 for _, arg := range args.Split(",") { 1684 expr := ctx.parseMakeString(node, arg) 1685 if expr.typ() == starlarkTypeList { 1686 return nil, fmt.Errorf("argument to math argument has type list, which cannot be converted to int") 1687 } 1688 if s, ok := maybeString(expr); ok { 1689 intVal, err := strconv.Atoi(strings.TrimSpace(s)) 1690 if err != nil { 1691 return nil, err 1692 } 1693 expr = &intLiteralExpr{literal: intVal} 1694 } else if expr.typ() != starlarkTypeInt { 1695 expr = &callExpr{ 1696 name: "int", 1697 args: []starlarkExpr{expr}, 1698 returnType: starlarkTypeInt, 1699 } 1700 } 1701 parsedArgs = append(parsedArgs, expr) 1702 } 1703 if len(parsedArgs) != expectedArgs { 1704 return nil, fmt.Errorf("function should have %d arguments", expectedArgs) 1705 } 1706 return parsedArgs, nil 1707} 1708 1709type mathComparisonCallParser struct { 1710 op string 1711} 1712 1713func (p *mathComparisonCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1714 parsedArgs, err := parseIntegerArguments(ctx, node, args, 2) 1715 if err != nil { 1716 return ctx.newBadExpr(node, err.Error()) 1717 } 1718 return &binaryOpExpr{ 1719 left: parsedArgs[0], 1720 right: parsedArgs[1], 1721 op: p.op, 1722 returnType: starlarkTypeBool, 1723 } 1724} 1725 1726type mathMaxOrMinCallParser struct { 1727 function string 1728} 1729 1730func (p *mathMaxOrMinCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr { 1731 parsedArgs, err := parseIntegerArguments(ctx, node, args, 2) 1732 if err != nil { 1733 return ctx.newBadExpr(node, err.Error()) 1734 } 1735 return &callExpr{ 1736 object: nil, 1737 name: p.function, 1738 args: parsedArgs, 1739 returnType: starlarkTypeInt, 1740 } 1741} 1742 1743type evalNodeParser struct{} 1744 1745func (p *evalNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode { 1746 parser := mkparser.NewParser("Eval expression", strings.NewReader(args.Dump())) 1747 nodes, errs := parser.Parse() 1748 if errs != nil { 1749 return []starlarkNode{ctx.newBadNode(node, "Unable to parse eval statement")} 1750 } 1751 1752 if len(nodes) == 0 { 1753 return []starlarkNode{} 1754 } else if len(nodes) == 1 { 1755 switch n := nodes[0].(type) { 1756 case *mkparser.Assignment: 1757 if n.Name.Const() { 1758 return ctx.handleAssignment(n) 1759 } 1760 case *mkparser.Comment: 1761 return []starlarkNode{&commentNode{strings.TrimSpace("#" + n.Comment)}} 1762 } 1763 } 1764 1765 return []starlarkNode{ctx.newBadNode(node, "Eval expression too complex; only assignments and comments are supported")} 1766} 1767 1768func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr { 1769 if mk.Const() { 1770 return &stringLiteralExpr{mk.Dump()} 1771 } 1772 if mkRef, ok := mk.SingleVariable(); ok { 1773 return ctx.parseReference(node, mkRef) 1774 } 1775 // If we reached here, it's neither string literal nor a simple variable, 1776 // we need a full-blown interpolation node that will generate 1777 // "a%b%c" % (X, Y) for a$(X)b$(Y)c 1778 parts := make([]starlarkExpr, len(mk.Variables)+len(mk.Strings)) 1779 for i := 0; i < len(parts); i++ { 1780 if i%2 == 0 { 1781 parts[i] = &stringLiteralExpr{literal: mk.Strings[i/2]} 1782 } else { 1783 parts[i] = ctx.parseReference(node, mk.Variables[i/2].Name) 1784 if x, ok := parts[i].(*badExpr); ok { 1785 return x 1786 } 1787 } 1788 } 1789 return NewInterpolateExpr(parts) 1790} 1791 1792func (ctx *parseContext) parseNodeMakeString(node mkparser.Node, mk *mkparser.MakeString) []starlarkNode { 1793 // Discard any constant values in the make string, as they would be top level 1794 // string literals and do nothing. 1795 result := make([]starlarkNode, 0, len(mk.Variables)) 1796 for i := range mk.Variables { 1797 result = append(result, ctx.handleVariable(&mk.Variables[i])...) 1798 } 1799 return result 1800} 1801 1802// Handles the statements whose treatment is the same in all contexts: comment, 1803// assignment, variable (which is a macro call in reality) and all constructs that 1804// do not handle in any context ('define directive and any unrecognized stuff). 1805func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) []starlarkNode { 1806 var result []starlarkNode 1807 switch x := node.(type) { 1808 case *mkparser.Comment: 1809 if n, handled := ctx.maybeHandleAnnotation(x); handled && n != nil { 1810 result = []starlarkNode{n} 1811 } else if !handled { 1812 result = []starlarkNode{&commentNode{strings.TrimSpace("#" + x.Comment)}} 1813 } 1814 case *mkparser.Assignment: 1815 result = ctx.handleAssignment(x) 1816 case *mkparser.Variable: 1817 result = ctx.handleVariable(x) 1818 case *mkparser.Directive: 1819 switch x.Name { 1820 case "define": 1821 if res := ctx.maybeHandleDefine(x); res != nil { 1822 result = []starlarkNode{res} 1823 } 1824 case "include", "-include": 1825 result = ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-') 1826 case "ifeq", "ifneq", "ifdef", "ifndef": 1827 result = []starlarkNode{ctx.handleIfBlock(x)} 1828 default: 1829 result = []starlarkNode{ctx.newBadNode(x, "unexpected directive %s", x.Name)} 1830 } 1831 default: 1832 result = []starlarkNode{ctx.newBadNode(x, "unsupported line %s", strings.ReplaceAll(x.Dump(), "\n", "\n#"))} 1833 } 1834 1835 // Clear the includeTops after each non-comment statement 1836 // so that include annotations placed on certain statements don't apply 1837 // globally for the rest of the makefile was well. 1838 if _, wasComment := node.(*mkparser.Comment); !wasComment { 1839 ctx.atTopOfMakefile = false 1840 ctx.includeTops = []string{} 1841 } 1842 1843 if result == nil { 1844 result = []starlarkNode{} 1845 } 1846 1847 return result 1848} 1849 1850// The types allowed in a type_hint 1851var typeHintMap = map[string]starlarkType{ 1852 "string": starlarkTypeString, 1853 "list": starlarkTypeList, 1854} 1855 1856// Processes annotation. An annotation is a comment that starts with #RBC# and provides 1857// a conversion hint -- say, where to look for the dynamically calculated inherit/include 1858// paths. Returns true if the comment was a successfully-handled annotation. 1859func (ctx *parseContext) maybeHandleAnnotation(cnode *mkparser.Comment) (starlarkNode, bool) { 1860 maybeTrim := func(s, prefix string) (string, bool) { 1861 if strings.HasPrefix(s, prefix) { 1862 return strings.TrimSpace(strings.TrimPrefix(s, prefix)), true 1863 } 1864 return s, false 1865 } 1866 annotation, ok := maybeTrim(cnode.Comment, annotationCommentPrefix) 1867 if !ok { 1868 return nil, false 1869 } 1870 if p, ok := maybeTrim(annotation, "include_top"); ok { 1871 // Don't allow duplicate include tops, because then we will generate 1872 // invalid starlark code. (duplicate keys in the _entry dictionary) 1873 for _, top := range ctx.includeTops { 1874 if top == p { 1875 return nil, true 1876 } 1877 } 1878 ctx.includeTops = append(ctx.includeTops, p) 1879 return nil, true 1880 } else if p, ok := maybeTrim(annotation, "type_hint"); ok { 1881 // Type hints must come at the beginning the file, to avoid confusion 1882 // if a type hint was specified later and thus only takes effect for half 1883 // of the file. 1884 if !ctx.atTopOfMakefile { 1885 return ctx.newBadNode(cnode, "type_hint annotations must come before the first Makefile statement"), true 1886 } 1887 1888 parts := strings.Fields(p) 1889 if len(parts) <= 1 { 1890 return ctx.newBadNode(cnode, "Invalid type_hint annotation: %s. Must be a variable type followed by a list of variables of that type", p), true 1891 } 1892 1893 var varType starlarkType 1894 if varType, ok = typeHintMap[parts[0]]; !ok { 1895 varType = starlarkTypeUnknown 1896 } 1897 if varType == starlarkTypeUnknown { 1898 return ctx.newBadNode(cnode, "Invalid type_hint annotation. Only list/string types are accepted, found %s", parts[0]), true 1899 } 1900 1901 for _, name := range parts[1:] { 1902 // Don't allow duplicate type hints 1903 if _, ok := ctx.typeHints[name]; ok { 1904 return ctx.newBadNode(cnode, "Duplicate type hint for variable %s", name), true 1905 } 1906 ctx.typeHints[name] = varType 1907 } 1908 return nil, true 1909 } 1910 return ctx.newBadNode(cnode, "unsupported annotation %s", cnode.Comment), true 1911} 1912 1913func (ctx *parseContext) loadedModulePath(path string) string { 1914 // During the transition to Roboleaf some of the product configuration files 1915 // will be converted and checked in while the others will be generated on the fly 1916 // and run. The runner (rbcrun application) accommodates this by allowing three 1917 // different ways to specify the loaded file location: 1918 // 1) load(":<file>",...) loads <file> from the same directory 1919 // 2) load("//path/relative/to/source/root:<file>", ...) loads <file> source tree 1920 // 3) load("/absolute/path/to/<file> absolute path 1921 // If the file being generated and the file it wants to load are in the same directory, 1922 // generate option 1. 1923 // Otherwise, if output directory is not specified, generate 2) 1924 // Finally, if output directory has been specified and the file being generated and 1925 // the file it wants to load from are in the different directories, generate 2) or 3): 1926 // * if the file being loaded exists in the source tree, generate 2) 1927 // * otherwise, generate 3) 1928 // Finally, figure out the loaded module path and name and create a node for it 1929 loadedModuleDir := filepath.Dir(path) 1930 base := filepath.Base(path) 1931 loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix 1932 if loadedModuleDir == filepath.Dir(ctx.script.mkFile) { 1933 return ":" + loadedModuleName 1934 } 1935 if ctx.outputDir == "" { 1936 return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) 1937 } 1938 if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil { 1939 return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName) 1940 } 1941 return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName) 1942} 1943 1944func (ctx *parseContext) addSoongNamespace(ns string) { 1945 if _, ok := ctx.soongNamespaces[ns]; ok { 1946 return 1947 } 1948 ctx.soongNamespaces[ns] = make(map[string]bool) 1949} 1950 1951func (ctx *parseContext) hasSoongNamespace(name string) bool { 1952 _, ok := ctx.soongNamespaces[name] 1953 return ok 1954} 1955 1956func (ctx *parseContext) updateSoongNamespace(replace bool, namespaceName string, varNames []string) { 1957 ctx.addSoongNamespace(namespaceName) 1958 vars := ctx.soongNamespaces[namespaceName] 1959 if replace { 1960 vars = make(map[string]bool) 1961 ctx.soongNamespaces[namespaceName] = vars 1962 } 1963 for _, v := range varNames { 1964 vars[v] = true 1965 } 1966} 1967 1968func (ctx *parseContext) hasNamespaceVar(namespaceName string, varName string) bool { 1969 vars, ok := ctx.soongNamespaces[namespaceName] 1970 if ok { 1971 _, ok = vars[varName] 1972 } 1973 return ok 1974} 1975 1976func (ctx *parseContext) errorLocation(node mkparser.Node) ErrorLocation { 1977 return ErrorLocation{ctx.script.mkFile, ctx.script.nodeLocator(node.Pos())} 1978} 1979 1980func (ss *StarlarkScript) String() string { 1981 return NewGenerateContext(ss).emit() 1982} 1983 1984func (ss *StarlarkScript) SubConfigFiles() []string { 1985 1986 var subs []string 1987 for _, src := range ss.inherited { 1988 subs = append(subs, src.originalPath) 1989 } 1990 return subs 1991} 1992 1993func (ss *StarlarkScript) HasErrors() bool { 1994 return ss.hasErrors 1995} 1996 1997// Convert reads and parses a makefile. If successful, parsed tree 1998// is returned and then can be passed to String() to get the generated 1999// Starlark file. 2000func Convert(req Request) (*StarlarkScript, error) { 2001 reader := req.Reader 2002 if reader == nil { 2003 mkContents, err := ioutil.ReadFile(req.MkFile) 2004 if err != nil { 2005 return nil, err 2006 } 2007 reader = bytes.NewBuffer(mkContents) 2008 } 2009 parser := mkparser.NewParser(req.MkFile, reader) 2010 nodes, errs := parser.Parse() 2011 if len(errs) > 0 { 2012 for _, e := range errs { 2013 fmt.Fprintln(os.Stderr, "ERROR:", e) 2014 } 2015 return nil, fmt.Errorf("bad makefile %s", req.MkFile) 2016 } 2017 starScript := &StarlarkScript{ 2018 moduleName: moduleNameForFile(req.MkFile), 2019 mkFile: req.MkFile, 2020 traceCalls: req.TraceCalls, 2021 sourceFS: req.SourceFS, 2022 makefileFinder: req.MakefileFinder, 2023 nodeLocator: func(pos mkparser.Pos) int { return parser.Unpack(pos).Line }, 2024 nodes: make([]starlarkNode, 0), 2025 } 2026 ctx := newParseContext(starScript, nodes) 2027 ctx.outputSuffix = req.OutputSuffix 2028 ctx.outputDir = req.OutputDir 2029 ctx.errorLogger = req.ErrorLogger 2030 if len(req.TracedVariables) > 0 { 2031 ctx.tracedVariables = make(map[string]bool) 2032 for _, v := range req.TracedVariables { 2033 ctx.tracedVariables[v] = true 2034 } 2035 } 2036 for ctx.hasNodes() && ctx.fatalError == nil { 2037 starScript.nodes = append(starScript.nodes, ctx.handleSimpleStatement(ctx.getNode())...) 2038 } 2039 if ctx.fatalError != nil { 2040 return nil, ctx.fatalError 2041 } 2042 return starScript, nil 2043} 2044 2045func Launcher(mainModuleUri, inputVariablesUri, mainModuleName string) string { 2046 var buf bytes.Buffer 2047 fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName) 2048 fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri) 2049 fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri) 2050 fmt.Fprintf(&buf, "%s(%s(%q, init, input_variables_init))\n", cfnPrintVars, cfnMain, mainModuleName) 2051 return buf.String() 2052} 2053 2054func BoardLauncher(mainModuleUri string, inputVariablesUri string) string { 2055 var buf bytes.Buffer 2056 fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName) 2057 fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri) 2058 fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri) 2059 fmt.Fprintf(&buf, "%s(%s(init, input_variables_init))\n", cfnPrintVars, cfnBoardMain) 2060 return buf.String() 2061} 2062 2063func MakePath2ModuleName(mkPath string) string { 2064 return strings.TrimSuffix(mkPath, filepath.Ext(mkPath)) 2065} 2066