• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2021 Google LLC
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//      http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// Convert makefile containing device configuration to Starlark file
16// The conversion can handle the following constructs in a makefile:
17//   * comments
18//   * simple variable assignments
19//   * $(call init-product,<file>)
20//   * $(call inherit-product-if-exists
21//   * if directives
22// All other constructs are carried over to the output starlark file as comments.
23//
24package mk2rbc
25
26import (
27	"bytes"
28	"fmt"
29	"io"
30	"io/fs"
31	"io/ioutil"
32	"os"
33	"path/filepath"
34	"regexp"
35	"sort"
36	"strconv"
37	"strings"
38	"text/scanner"
39
40	mkparser "android/soong/androidmk/parser"
41)
42
43const (
44	annotationCommentPrefix = "RBC#"
45	baseUri                 = "//build/make/core:product_config.rbc"
46	// The name of the struct exported by the product_config.rbc
47	// that contains the functions and variables available to
48	// product configuration Starlark files.
49	baseName = "rblf"
50
51	soongNsPrefix = "SOONG_CONFIG_"
52
53	// And here are the functions and variables:
54	cfnGetCfg         = baseName + ".cfg"
55	cfnMain           = baseName + ".product_configuration"
56	cfnBoardMain      = baseName + ".board_configuration"
57	cfnPrintVars      = baseName + ".printvars"
58	cfnInherit        = baseName + ".inherit"
59	cfnSetListDefault = baseName + ".setdefault"
60)
61
62const (
63	soongConfigAppend = "soong_config_append"
64	soongConfigAssign = "soong_config_set"
65)
66
67var knownFunctions = map[string]interface {
68	parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr
69}{
70	"abspath":                              &simpleCallParser{name: baseName + ".abspath", returnType: starlarkTypeString},
71	"add-product-dex-preopt-module-config": &simpleCallParser{name: baseName + ".add_product_dex_preopt_module_config", returnType: starlarkTypeString, addHandle: true},
72	"add_soong_config_namespace":           &simpleCallParser{name: baseName + ".soong_config_namespace", returnType: starlarkTypeVoid, addGlobals: true},
73	"add_soong_config_var_value":           &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true},
74	soongConfigAssign:                      &simpleCallParser{name: baseName + ".soong_config_set", returnType: starlarkTypeVoid, addGlobals: true},
75	soongConfigAppend:                      &simpleCallParser{name: baseName + ".soong_config_append", returnType: starlarkTypeVoid, addGlobals: true},
76	"soong_config_get":                     &simpleCallParser{name: baseName + ".soong_config_get", returnType: starlarkTypeString, addGlobals: true},
77	"add-to-product-copy-files-if-exists":  &simpleCallParser{name: baseName + ".copy_if_exists", returnType: starlarkTypeList},
78	"addprefix":                            &simpleCallParser{name: baseName + ".addprefix", returnType: starlarkTypeList},
79	"addsuffix":                            &simpleCallParser{name: baseName + ".addsuffix", returnType: starlarkTypeList},
80	"copy-files":                           &simpleCallParser{name: baseName + ".copy_files", returnType: starlarkTypeList},
81	"dir":                                  &simpleCallParser{name: baseName + ".dir", returnType: starlarkTypeString},
82	"dist-for-goals":                       &simpleCallParser{name: baseName + ".mkdist_for_goals", returnType: starlarkTypeVoid, addGlobals: true},
83	"enforce-product-packages-exist":       &simpleCallParser{name: baseName + ".enforce_product_packages_exist", returnType: starlarkTypeVoid, addHandle: true},
84	"error":                                &makeControlFuncParser{name: baseName + ".mkerror"},
85	"findstring":                           &simpleCallParser{name: baseName + ".findstring", returnType: starlarkTypeInt},
86	"find-copy-subdir-files":               &simpleCallParser{name: baseName + ".find_and_copy", returnType: starlarkTypeList},
87	"filter":                               &simpleCallParser{name: baseName + ".filter", returnType: starlarkTypeList},
88	"filter-out":                           &simpleCallParser{name: baseName + ".filter_out", returnType: starlarkTypeList},
89	"firstword":                            &firstOrLastwordCallParser{isLastWord: false},
90	"foreach":                              &foreachCallParser{},
91	"if":                                   &ifCallParser{},
92	"info":                                 &makeControlFuncParser{name: baseName + ".mkinfo"},
93	"is-board-platform":                    &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true},
94	"is-board-platform2":                   &simpleCallParser{name: baseName + ".board_platform_is", returnType: starlarkTypeBool, addGlobals: true},
95	"is-board-platform-in-list":            &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true},
96	"is-board-platform-in-list2":           &simpleCallParser{name: baseName + ".board_platform_in", returnType: starlarkTypeBool, addGlobals: true},
97	"is-product-in-list":                   &isProductInListCallParser{},
98	"is-vendor-board-platform":             &isVendorBoardPlatformCallParser{},
99	"is-vendor-board-qcom":                 &isVendorBoardQcomCallParser{},
100	"lastword":                             &firstOrLastwordCallParser{isLastWord: true},
101	"notdir":                               &simpleCallParser{name: baseName + ".notdir", returnType: starlarkTypeString},
102	"math_max":                             &mathMaxOrMinCallParser{function: "max"},
103	"math_min":                             &mathMaxOrMinCallParser{function: "min"},
104	"math_gt_or_eq":                        &mathComparisonCallParser{op: ">="},
105	"math_gt":                              &mathComparisonCallParser{op: ">"},
106	"math_lt":                              &mathComparisonCallParser{op: "<"},
107	"my-dir":                               &myDirCallParser{},
108	"patsubst":                             &substCallParser{fname: "patsubst"},
109	"product-copy-files-by-pattern":        &simpleCallParser{name: baseName + ".product_copy_files_by_pattern", returnType: starlarkTypeList},
110	"require-artifacts-in-path":            &simpleCallParser{name: baseName + ".require_artifacts_in_path", returnType: starlarkTypeVoid, addHandle: true},
111	"require-artifacts-in-path-relaxed":    &simpleCallParser{name: baseName + ".require_artifacts_in_path_relaxed", returnType: starlarkTypeVoid, addHandle: true},
112	// TODO(asmundak): remove it once all calls are removed from configuration makefiles. see b/183161002
113	"shell":    &shellCallParser{},
114	"sort":     &simpleCallParser{name: baseName + ".mksort", returnType: starlarkTypeList},
115	"strip":    &simpleCallParser{name: baseName + ".mkstrip", returnType: starlarkTypeString},
116	"subst":    &substCallParser{fname: "subst"},
117	"warning":  &makeControlFuncParser{name: baseName + ".mkwarning"},
118	"word":     &wordCallParser{},
119	"wildcard": &simpleCallParser{name: baseName + ".expand_wildcard", returnType: starlarkTypeList},
120}
121
122// The same as knownFunctions, but returns a []starlarkNode instead of a starlarkExpr
123var knownNodeFunctions = map[string]interface {
124	parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode
125}{
126	"eval":                      &evalNodeParser{},
127	"if":                        &ifCallNodeParser{},
128	"inherit-product":           &inheritProductCallParser{loadAlways: true},
129	"inherit-product-if-exists": &inheritProductCallParser{loadAlways: false},
130	"foreach":                   &foreachCallNodeParser{},
131}
132
133// These are functions that we don't implement conversions for, but
134// we allow seeing their definitions in the product config files.
135var ignoredDefines = map[string]bool{
136	"find-word-in-list":                   true, // internal macro
137	"get-vendor-board-platforms":          true, // internal macro, used by is-board-platform, etc.
138	"is-android-codename":                 true, // unused by product config
139	"is-android-codename-in-list":         true, // unused by product config
140	"is-chipset-in-board-platform":        true, // unused by product config
141	"is-chipset-prefix-in-board-platform": true, // unused by product config
142	"is-not-board-platform":               true, // defined but never used
143	"is-platform-sdk-version-at-least":    true, // unused by product config
144	"match-prefix":                        true, // internal macro
145	"match-word":                          true, // internal macro
146	"match-word-in-list":                  true, // internal macro
147	"tb-modules":                          true, // defined in hardware/amlogic/tb_modules/tb_detect.mk, unused
148}
149
150var identifierFullMatchRegex = regexp.MustCompile("^[a-zA-Z_][a-zA-Z0-9_]*$")
151
152// Conversion request parameters
153type Request struct {
154	MkFile          string    // file to convert
155	Reader          io.Reader // if set, read input from this stream instead
156	OutputSuffix    string    // generated Starlark files suffix
157	OutputDir       string    // if set, root of the output hierarchy
158	ErrorLogger     ErrorLogger
159	TracedVariables []string // trace assignment to these variables
160	TraceCalls      bool
161	SourceFS        fs.FS
162	MakefileFinder  MakefileFinder
163}
164
165// ErrorLogger prints errors and gathers error statistics.
166// Its NewError function is called on every error encountered during the conversion.
167type ErrorLogger interface {
168	NewError(el ErrorLocation, node mkparser.Node, text string, args ...interface{})
169}
170
171type ErrorLocation struct {
172	MkFile string
173	MkLine int
174}
175
176func (el ErrorLocation) String() string {
177	return fmt.Sprintf("%s:%d", el.MkFile, el.MkLine)
178}
179
180// Derives module name for a given file. It is base name
181// (file name without suffix), with some characters replaced to make it a Starlark identifier
182func moduleNameForFile(mkFile string) string {
183	base := strings.TrimSuffix(filepath.Base(mkFile), filepath.Ext(mkFile))
184	// TODO(asmundak): what else can be in the product file names?
185	return strings.NewReplacer("-", "_", ".", "_").Replace(base)
186
187}
188
189func cloneMakeString(mkString *mkparser.MakeString) *mkparser.MakeString {
190	r := &mkparser.MakeString{StringPos: mkString.StringPos}
191	r.Strings = append(r.Strings, mkString.Strings...)
192	r.Variables = append(r.Variables, mkString.Variables...)
193	return r
194}
195
196func isMakeControlFunc(s string) bool {
197	return s == "error" || s == "warning" || s == "info"
198}
199
200// varAssignmentScope points to the last assignment for each variable
201// in the current block. It is used during the parsing to chain
202// the assignments to a variable together.
203type varAssignmentScope struct {
204	outer *varAssignmentScope
205	vars  map[string]bool
206}
207
208// Starlark output generation context
209type generationContext struct {
210	buf            strings.Builder
211	starScript     *StarlarkScript
212	indentLevel    int
213	inAssignment   bool
214	tracedCount    int
215	varAssignments *varAssignmentScope
216}
217
218func NewGenerateContext(ss *StarlarkScript) *generationContext {
219	return &generationContext{
220		starScript: ss,
221		varAssignments: &varAssignmentScope{
222			outer: nil,
223			vars:  make(map[string]bool),
224		},
225	}
226}
227
228func (gctx *generationContext) pushVariableAssignments() {
229	va := &varAssignmentScope{
230		outer: gctx.varAssignments,
231		vars:  make(map[string]bool),
232	}
233	gctx.varAssignments = va
234}
235
236func (gctx *generationContext) popVariableAssignments() {
237	gctx.varAssignments = gctx.varAssignments.outer
238}
239
240func (gctx *generationContext) hasBeenAssigned(v variable) bool {
241	for va := gctx.varAssignments; va != nil; va = va.outer {
242		if _, ok := va.vars[v.name()]; ok {
243			return true
244		}
245	}
246	return false
247}
248
249func (gctx *generationContext) setHasBeenAssigned(v variable) {
250	gctx.varAssignments.vars[v.name()] = true
251}
252
253// emit returns generated script
254func (gctx *generationContext) emit() string {
255	ss := gctx.starScript
256
257	// The emitted code has the following layout:
258	//    <initial comments>
259	//    preamble, i.e.,
260	//      load statement for the runtime support
261	//      load statement for each unique submodule pulled in by this one
262	//    def init(g, handle):
263	//      cfg = rblf.cfg(handle)
264	//      <statements>
265	//      <warning if conversion was not clean>
266
267	iNode := len(ss.nodes)
268	for i, node := range ss.nodes {
269		if _, ok := node.(*commentNode); !ok {
270			iNode = i
271			break
272		}
273		node.emit(gctx)
274	}
275
276	gctx.emitPreamble()
277
278	gctx.newLine()
279	// The arguments passed to the init function are the global dictionary
280	// ('g') and the product configuration dictionary ('cfg')
281	gctx.write("def init(g, handle):")
282	gctx.indentLevel++
283	if gctx.starScript.traceCalls {
284		gctx.newLine()
285		gctx.writef(`print(">%s")`, gctx.starScript.mkFile)
286	}
287	gctx.newLine()
288	gctx.writef("cfg = %s(handle)", cfnGetCfg)
289	for _, node := range ss.nodes[iNode:] {
290		node.emit(gctx)
291	}
292
293	if gctx.starScript.traceCalls {
294		gctx.newLine()
295		gctx.writef(`print("<%s")`, gctx.starScript.mkFile)
296	}
297	gctx.indentLevel--
298	gctx.write("\n")
299	return gctx.buf.String()
300}
301
302func (gctx *generationContext) emitPreamble() {
303	gctx.newLine()
304	gctx.writef("load(%q, %q)", baseUri, baseName)
305	// Emit exactly one load statement for each URI.
306	loadedSubConfigs := make(map[string]string)
307	for _, mi := range gctx.starScript.inherited {
308		uri := mi.path
309		if m, ok := loadedSubConfigs[uri]; ok {
310			// No need to emit load statement, but fix module name.
311			mi.moduleLocalName = m
312			continue
313		}
314		if mi.optional || mi.missing {
315			uri += "|init"
316		}
317		gctx.newLine()
318		gctx.writef("load(%q, %s = \"init\")", uri, mi.entryName())
319		loadedSubConfigs[uri] = mi.moduleLocalName
320	}
321	gctx.write("\n")
322}
323
324func (gctx *generationContext) emitPass() {
325	gctx.newLine()
326	gctx.write("pass")
327}
328
329func (gctx *generationContext) write(ss ...string) {
330	for _, s := range ss {
331		gctx.buf.WriteString(s)
332	}
333}
334
335func (gctx *generationContext) writef(format string, args ...interface{}) {
336	gctx.write(fmt.Sprintf(format, args...))
337}
338
339func (gctx *generationContext) newLine() {
340	if gctx.buf.Len() == 0 {
341		return
342	}
343	gctx.write("\n")
344	gctx.writef("%*s", 2*gctx.indentLevel, "")
345}
346
347func (gctx *generationContext) emitConversionError(el ErrorLocation, message string) {
348	gctx.writef(`rblf.mk2rbc_error("%s", %q)`, el, message)
349}
350
351func (gctx *generationContext) emitLoadCheck(im inheritedModule) {
352	if !im.needsLoadCheck() {
353		return
354	}
355	gctx.newLine()
356	gctx.writef("if not %s:", im.entryName())
357	gctx.indentLevel++
358	gctx.newLine()
359	gctx.write(`rblf.mkerror("`, gctx.starScript.mkFile, `", "Cannot find %s" % (`)
360	im.pathExpr().emit(gctx)
361	gctx.write("))")
362	gctx.indentLevel--
363}
364
365type knownVariable struct {
366	name      string
367	class     varClass
368	valueType starlarkType
369}
370
371type knownVariables map[string]knownVariable
372
373func (pcv knownVariables) NewVariable(name string, varClass varClass, valueType starlarkType) {
374	v, exists := pcv[name]
375	if !exists {
376		pcv[name] = knownVariable{name, varClass, valueType}
377		return
378	}
379	// Conflict resolution:
380	//    * config class trumps everything
381	//    * any type trumps unknown type
382	match := varClass == v.class
383	if !match {
384		if varClass == VarClassConfig {
385			v.class = VarClassConfig
386			match = true
387		} else if v.class == VarClassConfig {
388			match = true
389		}
390	}
391	if valueType != v.valueType {
392		if valueType != starlarkTypeUnknown {
393			if v.valueType == starlarkTypeUnknown {
394				v.valueType = valueType
395			} else {
396				match = false
397			}
398		}
399	}
400	if !match {
401		fmt.Fprintf(os.Stderr, "cannot redefine %s as %v/%v (already defined as %v/%v)\n",
402			name, varClass, valueType, v.class, v.valueType)
403	}
404}
405
406// All known product variables.
407var KnownVariables = make(knownVariables)
408
409func init() {
410	for _, kv := range []string{
411		// Kernel-related variables that we know are lists.
412		"BOARD_VENDOR_KERNEL_MODULES",
413		"BOARD_VENDOR_RAMDISK_KERNEL_MODULES",
414		"BOARD_VENDOR_RAMDISK_KERNEL_MODULES_LOAD",
415		"BOARD_RECOVERY_KERNEL_MODULES",
416		// Other variables we knwo are lists
417		"ART_APEX_JARS",
418	} {
419		KnownVariables.NewVariable(kv, VarClassSoong, starlarkTypeList)
420	}
421}
422
423// Information about the generated Starlark script.
424type StarlarkScript struct {
425	mkFile         string
426	moduleName     string
427	mkPos          scanner.Position
428	nodes          []starlarkNode
429	inherited      []*moduleInfo
430	hasErrors      bool
431	traceCalls     bool // print enter/exit each init function
432	sourceFS       fs.FS
433	makefileFinder MakefileFinder
434	nodeLocator    func(pos mkparser.Pos) int
435}
436
437// parseContext holds the script we are generating and all the ephemeral data
438// needed during the parsing.
439type parseContext struct {
440	script           *StarlarkScript
441	nodes            []mkparser.Node // Makefile as parsed by mkparser
442	currentNodeIndex int             // Node in it we are processing
443	ifNestLevel      int
444	moduleNameCount  map[string]int // count of imported modules with given basename
445	fatalError       error
446	outputSuffix     string
447	errorLogger      ErrorLogger
448	tracedVariables  map[string]bool // variables to be traced in the generated script
449	variables        map[string]variable
450	outputDir        string
451	dependentModules map[string]*moduleInfo
452	soongNamespaces  map[string]map[string]bool
453	includeTops      []string
454	typeHints        map[string]starlarkType
455	atTopOfMakefile  bool
456}
457
458func newParseContext(ss *StarlarkScript, nodes []mkparser.Node) *parseContext {
459	predefined := []struct{ name, value string }{
460		{"SRC_TARGET_DIR", filepath.Join("build", "make", "target")},
461		{"LOCAL_PATH", filepath.Dir(ss.mkFile)},
462		{"TOPDIR", ""}, // TOPDIR is just set to an empty string in cleanbuild.mk and core.mk
463		// TODO(asmundak): maybe read it from build/make/core/envsetup.mk?
464		{"TARGET_COPY_OUT_SYSTEM", "system"},
465		{"TARGET_COPY_OUT_SYSTEM_OTHER", "system_other"},
466		{"TARGET_COPY_OUT_DATA", "data"},
467		{"TARGET_COPY_OUT_ASAN", filepath.Join("data", "asan")},
468		{"TARGET_COPY_OUT_OEM", "oem"},
469		{"TARGET_COPY_OUT_RAMDISK", "ramdisk"},
470		{"TARGET_COPY_OUT_DEBUG_RAMDISK", "debug_ramdisk"},
471		{"TARGET_COPY_OUT_VENDOR_DEBUG_RAMDISK", "vendor_debug_ramdisk"},
472		{"TARGET_COPY_OUT_TEST_HARNESS_RAMDISK", "test_harness_ramdisk"},
473		{"TARGET_COPY_OUT_ROOT", "root"},
474		{"TARGET_COPY_OUT_RECOVERY", "recovery"},
475		{"TARGET_COPY_OUT_VENDOR_RAMDISK", "vendor_ramdisk"},
476		// TODO(asmundak): to process internal config files, we need the following variables:
477		//    TARGET_VENDOR
478		//    target_base_product
479		//
480
481		// the following utility variables are set in build/make/common/core.mk:
482		{"empty", ""},
483		{"space", " "},
484		{"comma", ","},
485		{"newline", "\n"},
486		{"pound", "#"},
487		{"backslash", "\\"},
488	}
489	ctx := &parseContext{
490		script:           ss,
491		nodes:            nodes,
492		currentNodeIndex: 0,
493		ifNestLevel:      0,
494		moduleNameCount:  make(map[string]int),
495		variables:        make(map[string]variable),
496		dependentModules: make(map[string]*moduleInfo),
497		soongNamespaces:  make(map[string]map[string]bool),
498		includeTops:      []string{},
499		typeHints:        make(map[string]starlarkType),
500		atTopOfMakefile:  true,
501	}
502	for _, item := range predefined {
503		ctx.variables[item.name] = &predefinedVariable{
504			baseVariable: baseVariable{nam: item.name, typ: starlarkTypeString},
505			value:        &stringLiteralExpr{item.value},
506		}
507	}
508
509	return ctx
510}
511
512func (ctx *parseContext) hasNodes() bool {
513	return ctx.currentNodeIndex < len(ctx.nodes)
514}
515
516func (ctx *parseContext) getNode() mkparser.Node {
517	if !ctx.hasNodes() {
518		return nil
519	}
520	node := ctx.nodes[ctx.currentNodeIndex]
521	ctx.currentNodeIndex++
522	return node
523}
524
525func (ctx *parseContext) backNode() {
526	if ctx.currentNodeIndex <= 0 {
527		panic("Cannot back off")
528	}
529	ctx.currentNodeIndex--
530}
531
532func (ctx *parseContext) handleAssignment(a *mkparser.Assignment) []starlarkNode {
533	// Handle only simple variables
534	if !a.Name.Const() {
535		return []starlarkNode{ctx.newBadNode(a, "Only simple variables are handled")}
536	}
537	name := a.Name.Strings[0]
538	// The `override` directive
539	//      override FOO :=
540	// is parsed as an assignment to a variable named `override FOO`.
541	// There are very few places where `override` is used, just flag it.
542	if strings.HasPrefix(name, "override ") {
543		return []starlarkNode{ctx.newBadNode(a, "cannot handle override directive")}
544	}
545
546	// Soong configuration
547	if strings.HasPrefix(name, soongNsPrefix) {
548		return ctx.handleSoongNsAssignment(strings.TrimPrefix(name, soongNsPrefix), a)
549	}
550	lhs := ctx.addVariable(name)
551	if lhs == nil {
552		return []starlarkNode{ctx.newBadNode(a, "unknown variable %s", name)}
553	}
554	_, isTraced := ctx.tracedVariables[lhs.name()]
555	asgn := &assignmentNode{lhs: lhs, mkValue: a.Value, isTraced: isTraced, location: ctx.errorLocation(a)}
556	if lhs.valueType() == starlarkTypeUnknown {
557		// Try to divine variable type from the RHS
558		asgn.value = ctx.parseMakeString(a, a.Value)
559		if xBad, ok := asgn.value.(*badExpr); ok {
560			return []starlarkNode{&exprNode{xBad}}
561		}
562		inferred_type := asgn.value.typ()
563		if inferred_type != starlarkTypeUnknown {
564			lhs.setValueType(inferred_type)
565		}
566	}
567	if lhs.valueType() == starlarkTypeList {
568		xConcat, xBad := ctx.buildConcatExpr(a)
569		if xBad != nil {
570			return []starlarkNode{&exprNode{expr: xBad}}
571		}
572		switch len(xConcat.items) {
573		case 0:
574			asgn.value = &listExpr{}
575		case 1:
576			asgn.value = xConcat.items[0]
577		default:
578			asgn.value = xConcat
579		}
580	} else {
581		asgn.value = ctx.parseMakeString(a, a.Value)
582		if xBad, ok := asgn.value.(*badExpr); ok {
583			return []starlarkNode{&exprNode{expr: xBad}}
584		}
585	}
586
587	if asgn.lhs.valueType() == starlarkTypeString &&
588		asgn.value.typ() != starlarkTypeUnknown &&
589		asgn.value.typ() != starlarkTypeString {
590		asgn.value = &toStringExpr{expr: asgn.value}
591	}
592
593	switch a.Type {
594	case "=", ":=":
595		asgn.flavor = asgnSet
596	case "+=":
597		asgn.flavor = asgnAppend
598	case "?=":
599		asgn.flavor = asgnMaybeSet
600	default:
601		panic(fmt.Errorf("unexpected assignment type %s", a.Type))
602	}
603
604	return []starlarkNode{asgn}
605}
606
607func (ctx *parseContext) handleSoongNsAssignment(name string, asgn *mkparser.Assignment) []starlarkNode {
608	val := ctx.parseMakeString(asgn, asgn.Value)
609	if xBad, ok := val.(*badExpr); ok {
610		return []starlarkNode{&exprNode{expr: xBad}}
611	}
612
613	// Unfortunately, Soong namespaces can be set up by directly setting corresponding Make
614	// variables instead of via add_soong_config_namespace + add_soong_config_var_value.
615	// Try to divine the call from the assignment as follows:
616	if name == "NAMESPACES" {
617		// Upon seeng
618		//      SOONG_CONFIG_NAMESPACES += foo
619		//    remember that there is a namespace `foo` and act as we saw
620		//      $(call add_soong_config_namespace,foo)
621		s, ok := maybeString(val)
622		if !ok {
623			return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_NAMESPACES assignment, please use add_soong_config_namespace instead")}
624		}
625		result := make([]starlarkNode, 0)
626		for _, ns := range strings.Fields(s) {
627			ctx.addSoongNamespace(ns)
628			result = append(result, &exprNode{&callExpr{
629				name:       baseName + ".soong_config_namespace",
630				args:       []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{ns}},
631				returnType: starlarkTypeVoid,
632			}})
633		}
634		return result
635	} else {
636		// Upon seeing
637		//      SOONG_CONFIG_x_y = v
638		// find a namespace called `x` and act as if we encountered
639		//      $(call soong_config_set,x,y,v)
640		// or check that `x_y` is a namespace, and then add the RHS of this assignment as variables in
641		// it.
642		// Emit an error in the ambiguous situation (namespaces `foo_bar` with a variable `baz`
643		// and `foo` with a variable `bar_baz`.
644		namespaceName := ""
645		if ctx.hasSoongNamespace(name) {
646			namespaceName = name
647		}
648		var varName string
649		for pos, ch := range name {
650			if !(ch == '_' && ctx.hasSoongNamespace(name[0:pos])) {
651				continue
652			}
653			if namespaceName != "" {
654				return []starlarkNode{ctx.newBadNode(asgn, "ambiguous soong namespace (may be either `%s` or  `%s`)", namespaceName, name[0:pos])}
655			}
656			namespaceName = name[0:pos]
657			varName = name[pos+1:]
658		}
659		if namespaceName == "" {
660			return []starlarkNode{ctx.newBadNode(asgn, "cannot figure out Soong namespace, please use add_soong_config_var_value macro instead")}
661		}
662		if varName == "" {
663			// Remember variables in this namespace
664			s, ok := maybeString(val)
665			if !ok {
666				return []starlarkNode{ctx.newBadNode(asgn, "cannot handle variables in SOONG_CONFIG_ assignment, please use add_soong_config_var_value instead")}
667			}
668			ctx.updateSoongNamespace(asgn.Type != "+=", namespaceName, strings.Fields(s))
669			return []starlarkNode{}
670		}
671
672		// Finally, handle assignment to a namespace variable
673		if !ctx.hasNamespaceVar(namespaceName, varName) {
674			return []starlarkNode{ctx.newBadNode(asgn, "no %s variable in %s namespace, please use add_soong_config_var_value instead", varName, namespaceName)}
675		}
676		fname := baseName + "." + soongConfigAssign
677		if asgn.Type == "+=" {
678			fname = baseName + "." + soongConfigAppend
679		}
680		return []starlarkNode{&exprNode{&callExpr{
681			name:       fname,
682			args:       []starlarkExpr{&globalsExpr{}, &stringLiteralExpr{namespaceName}, &stringLiteralExpr{varName}, val},
683			returnType: starlarkTypeVoid,
684		}}}
685	}
686}
687
688func (ctx *parseContext) buildConcatExpr(a *mkparser.Assignment) (*concatExpr, *badExpr) {
689	xConcat := &concatExpr{}
690	var xItemList *listExpr
691	addToItemList := func(x ...starlarkExpr) {
692		if xItemList == nil {
693			xItemList = &listExpr{[]starlarkExpr{}}
694		}
695		xItemList.items = append(xItemList.items, x...)
696	}
697	finishItemList := func() {
698		if xItemList != nil {
699			xConcat.items = append(xConcat.items, xItemList)
700			xItemList = nil
701		}
702	}
703
704	items := a.Value.Words()
705	for _, item := range items {
706		// A function call in RHS is supposed to return a list, all other item
707		// expressions return individual elements.
708		switch x := ctx.parseMakeString(a, item).(type) {
709		case *badExpr:
710			return nil, x
711		case *stringLiteralExpr:
712			addToItemList(maybeConvertToStringList(x).(*listExpr).items...)
713		default:
714			switch x.typ() {
715			case starlarkTypeList:
716				finishItemList()
717				xConcat.items = append(xConcat.items, x)
718			case starlarkTypeString:
719				finishItemList()
720				xConcat.items = append(xConcat.items, &callExpr{
721					object:     x,
722					name:       "split",
723					args:       nil,
724					returnType: starlarkTypeList,
725				})
726			default:
727				addToItemList(x)
728			}
729		}
730	}
731	if xItemList != nil {
732		xConcat.items = append(xConcat.items, xItemList)
733	}
734	return xConcat, nil
735}
736
737func (ctx *parseContext) newDependentModule(path string, optional bool) *moduleInfo {
738	modulePath := ctx.loadedModulePath(path)
739	if mi, ok := ctx.dependentModules[modulePath]; ok {
740		mi.optional = mi.optional && optional
741		return mi
742	}
743	moduleName := moduleNameForFile(path)
744	moduleLocalName := "_" + moduleName
745	n, found := ctx.moduleNameCount[moduleName]
746	if found {
747		moduleLocalName += fmt.Sprintf("%d", n)
748	}
749	ctx.moduleNameCount[moduleName] = n + 1
750	_, err := fs.Stat(ctx.script.sourceFS, path)
751	mi := &moduleInfo{
752		path:            modulePath,
753		originalPath:    path,
754		moduleLocalName: moduleLocalName,
755		optional:        optional,
756		missing:         err != nil,
757	}
758	ctx.dependentModules[modulePath] = mi
759	ctx.script.inherited = append(ctx.script.inherited, mi)
760	return mi
761}
762
763func (ctx *parseContext) handleSubConfig(
764	v mkparser.Node, pathExpr starlarkExpr, loadAlways bool, processModule func(inheritedModule) starlarkNode) []starlarkNode {
765
766	// Allow seeing $(sort $(wildcard realPathExpr)) or $(wildcard realPathExpr)
767	// because those are functionally the same as not having the sort/wildcard calls.
768	if ce, ok := pathExpr.(*callExpr); ok && ce.name == "rblf.mksort" && len(ce.args) == 1 {
769		if ce2, ok2 := ce.args[0].(*callExpr); ok2 && ce2.name == "rblf.expand_wildcard" && len(ce2.args) == 1 {
770			pathExpr = ce2.args[0]
771		}
772	} else if ce2, ok2 := pathExpr.(*callExpr); ok2 && ce2.name == "rblf.expand_wildcard" && len(ce2.args) == 1 {
773		pathExpr = ce2.args[0]
774	}
775
776	// In a simple case, the name of a module to inherit/include is known statically.
777	if path, ok := maybeString(pathExpr); ok {
778		// Note that even if this directive loads a module unconditionally, a module may be
779		// absent without causing any harm if this directive is inside an if/else block.
780		moduleShouldExist := loadAlways && ctx.ifNestLevel == 0
781		if strings.Contains(path, "*") {
782			if paths, err := fs.Glob(ctx.script.sourceFS, path); err == nil {
783				sort.Strings(paths)
784				result := make([]starlarkNode, 0)
785				for _, p := range paths {
786					mi := ctx.newDependentModule(p, !moduleShouldExist)
787					result = append(result, processModule(inheritedStaticModule{mi, loadAlways}))
788				}
789				return result
790			} else {
791				return []starlarkNode{ctx.newBadNode(v, "cannot glob wildcard argument")}
792			}
793		} else {
794			mi := ctx.newDependentModule(path, !moduleShouldExist)
795			return []starlarkNode{processModule(inheritedStaticModule{mi, loadAlways})}
796		}
797	}
798
799	// If module path references variables (e.g., $(v1)/foo/$(v2)/device-config.mk), find all the paths in the
800	// source tree that may be a match and the corresponding variable values. For instance, if the source tree
801	// contains vendor1/foo/abc/dev.mk and vendor2/foo/def/dev.mk, the first one will be inherited when
802	// (v1, v2) == ('vendor1', 'abc'), and the second one when (v1, v2) == ('vendor2', 'def').
803	// We then emit the code that loads all of them, e.g.:
804	//    load("//vendor1/foo/abc:dev.rbc", _dev1_init="init")
805	//    load("//vendor2/foo/def/dev.rbc", _dev2_init="init")
806	// And then inherit it as follows:
807	//    _e = {
808	//       "vendor1/foo/abc/dev.mk": ("vendor1/foo/abc/dev", _dev1_init),
809	//       "vendor2/foo/def/dev.mk": ("vendor2/foo/def/dev", _dev_init2) }.get("%s/foo/%s/dev.mk" % (v1, v2))
810	//    if _e:
811	//       rblf.inherit(handle, _e[0], _e[1])
812	//
813	var matchingPaths []string
814	varPath, ok := pathExpr.(*interpolateExpr)
815	if !ok {
816		return []starlarkNode{ctx.newBadNode(v, "inherit-product/include argument is too complex")}
817	}
818
819	pathPattern := []string{varPath.chunks[0]}
820	for _, chunk := range varPath.chunks[1:] {
821		if chunk != "" {
822			pathPattern = append(pathPattern, chunk)
823		}
824	}
825	if pathPattern[0] == "" && len(ctx.includeTops) > 0 {
826		// If pattern starts from the top. restrict it to the directories where
827		// we know inherit-product uses dynamically calculated path.
828		for _, p := range ctx.includeTops {
829			pathPattern[0] = p
830			matchingPaths = append(matchingPaths, ctx.findMatchingPaths(pathPattern)...)
831		}
832	} else {
833		matchingPaths = ctx.findMatchingPaths(pathPattern)
834	}
835	// Safeguard against $(call inherit-product,$(PRODUCT_PATH))
836	const maxMatchingFiles = 150
837	if len(matchingPaths) > maxMatchingFiles {
838		return []starlarkNode{ctx.newBadNode(v, "there are >%d files matching the pattern, please rewrite it", maxMatchingFiles)}
839	}
840
841	needsWarning := pathPattern[0] == "" && len(ctx.includeTops) == 0
842	res := inheritedDynamicModule{*varPath, []*moduleInfo{}, loadAlways, ctx.errorLocation(v), needsWarning}
843	for _, p := range matchingPaths {
844		// A product configuration files discovered dynamically may attempt to inherit
845		// from another one which does not exist in this source tree. Prevent load errors
846		// by always loading the dynamic files as optional.
847		res.candidateModules = append(res.candidateModules, ctx.newDependentModule(p, true))
848	}
849	return []starlarkNode{processModule(res)}
850}
851
852func (ctx *parseContext) findMatchingPaths(pattern []string) []string {
853	files := ctx.script.makefileFinder.Find(".")
854	if len(pattern) == 0 {
855		return files
856	}
857
858	// Create regular expression from the pattern
859	s_regexp := "^" + regexp.QuoteMeta(pattern[0])
860	for _, s := range pattern[1:] {
861		s_regexp += ".*" + regexp.QuoteMeta(s)
862	}
863	s_regexp += "$"
864	rex := regexp.MustCompile(s_regexp)
865
866	// Now match
867	var res []string
868	for _, p := range files {
869		if rex.MatchString(p) {
870			res = append(res, p)
871		}
872	}
873	return res
874}
875
876type inheritProductCallParser struct {
877	loadAlways bool
878}
879
880func (p *inheritProductCallParser) parse(ctx *parseContext, v mkparser.Node, args *mkparser.MakeString) []starlarkNode {
881	args.TrimLeftSpaces()
882	args.TrimRightSpaces()
883	pathExpr := ctx.parseMakeString(v, args)
884	if _, ok := pathExpr.(*badExpr); ok {
885		return []starlarkNode{ctx.newBadNode(v, "Unable to parse argument to inherit")}
886	}
887	return ctx.handleSubConfig(v, pathExpr, p.loadAlways, func(im inheritedModule) starlarkNode {
888		return &inheritNode{im, p.loadAlways}
889	})
890}
891
892func (ctx *parseContext) handleInclude(v mkparser.Node, pathExpr starlarkExpr, loadAlways bool) []starlarkNode {
893	return ctx.handleSubConfig(v, pathExpr, loadAlways, func(im inheritedModule) starlarkNode {
894		return &includeNode{im, loadAlways}
895	})
896}
897
898func (ctx *parseContext) handleVariable(v *mkparser.Variable) []starlarkNode {
899	// Handle:
900	//   $(call inherit-product,...)
901	//   $(call inherit-product-if-exists,...)
902	//   $(info xxx)
903	//   $(warning xxx)
904	//   $(error xxx)
905	//   $(call other-custom-functions,...)
906
907	if name, args, ok := ctx.maybeParseFunctionCall(v, v.Name); ok {
908		if kf, ok := knownNodeFunctions[name]; ok {
909			return kf.parse(ctx, v, args)
910		}
911	}
912
913	return []starlarkNode{&exprNode{expr: ctx.parseReference(v, v.Name)}}
914}
915
916func (ctx *parseContext) maybeHandleDefine(directive *mkparser.Directive) starlarkNode {
917	macro_name := strings.Fields(directive.Args.Strings[0])[0]
918	// Ignore the macros that we handle
919	_, ignored := ignoredDefines[macro_name]
920	_, known := knownFunctions[macro_name]
921	if !ignored && !known {
922		return ctx.newBadNode(directive, "define is not supported: %s", macro_name)
923	}
924	return nil
925}
926
927func (ctx *parseContext) handleIfBlock(ifDirective *mkparser.Directive) starlarkNode {
928	ssSwitch := &switchNode{
929		ssCases: []*switchCase{ctx.processBranch(ifDirective)},
930	}
931	for ctx.hasNodes() && ctx.fatalError == nil {
932		node := ctx.getNode()
933		switch x := node.(type) {
934		case *mkparser.Directive:
935			switch x.Name {
936			case "else", "elifdef", "elifndef", "elifeq", "elifneq":
937				ssSwitch.ssCases = append(ssSwitch.ssCases, ctx.processBranch(x))
938			case "endif":
939				return ssSwitch
940			default:
941				return ctx.newBadNode(node, "unexpected directive %s", x.Name)
942			}
943		default:
944			return ctx.newBadNode(ifDirective, "unexpected statement")
945		}
946	}
947	if ctx.fatalError == nil {
948		ctx.fatalError = fmt.Errorf("no matching endif for %s", ifDirective.Dump())
949	}
950	return ctx.newBadNode(ifDirective, "no matching endif for %s", ifDirective.Dump())
951}
952
953// processBranch processes a single branch (if/elseif/else) until the next directive
954// on the same level.
955func (ctx *parseContext) processBranch(check *mkparser.Directive) *switchCase {
956	block := &switchCase{gate: ctx.parseCondition(check)}
957	defer func() {
958		ctx.ifNestLevel--
959	}()
960	ctx.ifNestLevel++
961
962	for ctx.hasNodes() {
963		node := ctx.getNode()
964		if d, ok := node.(*mkparser.Directive); ok {
965			switch d.Name {
966			case "else", "elifdef", "elifndef", "elifeq", "elifneq", "endif":
967				ctx.backNode()
968				return block
969			}
970		}
971		block.nodes = append(block.nodes, ctx.handleSimpleStatement(node)...)
972	}
973	ctx.fatalError = fmt.Errorf("no matching endif for %s", check.Dump())
974	return block
975}
976
977func (ctx *parseContext) parseCondition(check *mkparser.Directive) starlarkNode {
978	switch check.Name {
979	case "ifdef", "ifndef", "elifdef", "elifndef":
980		if !check.Args.Const() {
981			return ctx.newBadNode(check, "ifdef variable ref too complex: %s", check.Args.Dump())
982		}
983		v := NewVariableRefExpr(ctx.addVariable(check.Args.Strings[0]))
984		if strings.HasSuffix(check.Name, "ndef") {
985			v = &notExpr{v}
986		}
987		return &ifNode{
988			isElif: strings.HasPrefix(check.Name, "elif"),
989			expr:   v,
990		}
991	case "ifeq", "ifneq", "elifeq", "elifneq":
992		return &ifNode{
993			isElif: strings.HasPrefix(check.Name, "elif"),
994			expr:   ctx.parseCompare(check),
995		}
996	case "else":
997		return &elseNode{}
998	default:
999		panic(fmt.Errorf("%s: unknown directive: %s", ctx.script.mkFile, check.Dump()))
1000	}
1001}
1002
1003func (ctx *parseContext) newBadExpr(node mkparser.Node, text string, args ...interface{}) starlarkExpr {
1004	if ctx.errorLogger != nil {
1005		ctx.errorLogger.NewError(ctx.errorLocation(node), node, text, args...)
1006	}
1007	ctx.script.hasErrors = true
1008	return &badExpr{errorLocation: ctx.errorLocation(node), message: fmt.Sprintf(text, args...)}
1009}
1010
1011// records that the given node failed to be converted and includes an explanatory message
1012func (ctx *parseContext) newBadNode(failedNode mkparser.Node, message string, args ...interface{}) starlarkNode {
1013	return &exprNode{ctx.newBadExpr(failedNode, message, args...)}
1014}
1015
1016func (ctx *parseContext) parseCompare(cond *mkparser.Directive) starlarkExpr {
1017	// Strip outer parentheses
1018	mkArg := cloneMakeString(cond.Args)
1019	mkArg.Strings[0] = strings.TrimLeft(mkArg.Strings[0], "( ")
1020	n := len(mkArg.Strings)
1021	mkArg.Strings[n-1] = strings.TrimRight(mkArg.Strings[n-1], ") ")
1022	args := mkArg.Split(",")
1023	// TODO(asmundak): handle the case where the arguments are in quotes and space-separated
1024	if len(args) != 2 {
1025		return ctx.newBadExpr(cond, "ifeq/ifneq len(args) != 2 %s", cond.Dump())
1026	}
1027	args[0].TrimRightSpaces()
1028	args[1].TrimLeftSpaces()
1029
1030	isEq := !strings.HasSuffix(cond.Name, "neq")
1031	xLeft := ctx.parseMakeString(cond, args[0])
1032	xRight := ctx.parseMakeString(cond, args[1])
1033	if bad, ok := xLeft.(*badExpr); ok {
1034		return bad
1035	}
1036	if bad, ok := xRight.(*badExpr); ok {
1037		return bad
1038	}
1039
1040	if expr, ok := ctx.parseCompareSpecialCases(cond, xLeft, xRight); ok {
1041		return expr
1042	}
1043
1044	var stringOperand string
1045	var otherOperand starlarkExpr
1046	if s, ok := maybeString(xLeft); ok {
1047		stringOperand = s
1048		otherOperand = xRight
1049	} else if s, ok := maybeString(xRight); ok {
1050		stringOperand = s
1051		otherOperand = xLeft
1052	}
1053
1054	// If we've identified one of the operands as being a string literal, check
1055	// for some special cases we can do to simplify the resulting expression.
1056	if otherOperand != nil {
1057		if stringOperand == "" {
1058			if isEq {
1059				return negateExpr(otherOperand)
1060			} else {
1061				return otherOperand
1062			}
1063		}
1064		if stringOperand == "true" && otherOperand.typ() == starlarkTypeBool {
1065			if !isEq {
1066				return negateExpr(otherOperand)
1067			} else {
1068				return otherOperand
1069			}
1070		}
1071		if intOperand, err := strconv.Atoi(strings.TrimSpace(stringOperand)); err == nil && otherOperand.typ() == starlarkTypeInt {
1072			return &eqExpr{
1073				left:  otherOperand,
1074				right: &intLiteralExpr{literal: intOperand},
1075				isEq:  isEq,
1076			}
1077		}
1078	}
1079
1080	return &eqExpr{left: xLeft, right: xRight, isEq: isEq}
1081}
1082
1083// Given an if statement's directive and the left/right starlarkExprs,
1084// check if the starlarkExprs are one of a few hardcoded special cases
1085// that can be converted to a simpler equality expression than simply comparing
1086// the two.
1087func (ctx *parseContext) parseCompareSpecialCases(directive *mkparser.Directive, left starlarkExpr,
1088	right starlarkExpr) (starlarkExpr, bool) {
1089	isEq := !strings.HasSuffix(directive.Name, "neq")
1090
1091	// All the special cases require a call on one side and a
1092	// string literal/variable on the other. Turn the left/right variables into
1093	// call/value variables, and return false if that's not possible.
1094	var value starlarkExpr = nil
1095	call, ok := left.(*callExpr)
1096	if ok {
1097		switch right.(type) {
1098		case *stringLiteralExpr, *variableRefExpr:
1099			value = right
1100		}
1101	} else {
1102		call, _ = right.(*callExpr)
1103		switch left.(type) {
1104		case *stringLiteralExpr, *variableRefExpr:
1105			value = left
1106		}
1107	}
1108
1109	if call == nil || value == nil {
1110		return nil, false
1111	}
1112
1113	switch call.name {
1114	case baseName + ".filter":
1115		return ctx.parseCompareFilterFuncResult(directive, call, value, isEq)
1116	case baseName + ".expand_wildcard":
1117		return ctx.parseCompareWildcardFuncResult(directive, call, value, !isEq), true
1118	case baseName + ".findstring":
1119		return ctx.parseCheckFindstringFuncResult(directive, call, value, !isEq), true
1120	case baseName + ".strip":
1121		return ctx.parseCompareStripFuncResult(directive, call, value, !isEq), true
1122	}
1123	return nil, false
1124}
1125
1126func (ctx *parseContext) parseCompareFilterFuncResult(cond *mkparser.Directive,
1127	filterFuncCall *callExpr, xValue starlarkExpr, negate bool) (starlarkExpr, bool) {
1128	// We handle:
1129	// *  ifeq/ifneq (,$(filter v1 v2 ..., EXPR) becomes if EXPR not in/in ["v1", "v2", ...]
1130	// *  ifeq/ifneq (,$(filter EXPR, v1 v2 ...) becomes if EXPR not in/in ["v1", "v2", ...]
1131	if x, ok := xValue.(*stringLiteralExpr); !ok || x.literal != "" {
1132		return nil, false
1133	}
1134	xPattern := filterFuncCall.args[0]
1135	xText := filterFuncCall.args[1]
1136	var xInList *stringLiteralExpr
1137	var expr starlarkExpr
1138	var ok bool
1139	if xInList, ok = xPattern.(*stringLiteralExpr); ok && !strings.ContainsRune(xInList.literal, '%') && xText.typ() == starlarkTypeList {
1140		expr = xText
1141	} else if xInList, ok = xText.(*stringLiteralExpr); ok {
1142		expr = xPattern
1143	} else {
1144		return nil, false
1145	}
1146	slExpr := newStringListExpr(strings.Fields(xInList.literal))
1147	// Generate simpler code for the common cases:
1148	if expr.typ() == starlarkTypeList {
1149		if len(slExpr.items) == 1 {
1150			// Checking that a string belongs to list
1151			return &inExpr{isNot: negate, list: expr, expr: slExpr.items[0]}, true
1152		} else {
1153			return nil, false
1154		}
1155	} else if len(slExpr.items) == 1 {
1156		return &eqExpr{left: expr, right: slExpr.items[0], isEq: !negate}, true
1157	} else {
1158		return &inExpr{isNot: negate, list: newStringListExpr(strings.Fields(xInList.literal)), expr: expr}, true
1159	}
1160}
1161
1162func (ctx *parseContext) parseCompareWildcardFuncResult(directive *mkparser.Directive,
1163	xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
1164	if !isEmptyString(xValue) {
1165		return ctx.newBadExpr(directive, "wildcard result can be compared only to empty: %s", xValue)
1166	}
1167	callFunc := baseName + ".file_wildcard_exists"
1168	if s, ok := xCall.args[0].(*stringLiteralExpr); ok && !strings.ContainsAny(s.literal, "*?{[") {
1169		callFunc = baseName + ".file_exists"
1170	}
1171	var cc starlarkExpr = &callExpr{name: callFunc, args: xCall.args, returnType: starlarkTypeBool}
1172	if !negate {
1173		cc = &notExpr{cc}
1174	}
1175	return cc
1176}
1177
1178func (ctx *parseContext) parseCheckFindstringFuncResult(directive *mkparser.Directive,
1179	xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
1180	if isEmptyString(xValue) {
1181		return &eqExpr{
1182			left: &callExpr{
1183				object:     xCall.args[1],
1184				name:       "find",
1185				args:       []starlarkExpr{xCall.args[0]},
1186				returnType: starlarkTypeInt,
1187			},
1188			right: &intLiteralExpr{-1},
1189			isEq:  !negate,
1190		}
1191	} else if s, ok := maybeString(xValue); ok {
1192		if s2, ok := maybeString(xCall.args[0]); ok && s == s2 {
1193			return &eqExpr{
1194				left: &callExpr{
1195					object:     xCall.args[1],
1196					name:       "find",
1197					args:       []starlarkExpr{xCall.args[0]},
1198					returnType: starlarkTypeInt,
1199				},
1200				right: &intLiteralExpr{-1},
1201				isEq:  negate,
1202			}
1203		}
1204	}
1205	return ctx.newBadExpr(directive, "$(findstring) can only be compared to nothing or its first argument")
1206}
1207
1208func (ctx *parseContext) parseCompareStripFuncResult(directive *mkparser.Directive,
1209	xCall *callExpr, xValue starlarkExpr, negate bool) starlarkExpr {
1210	if _, ok := xValue.(*stringLiteralExpr); !ok {
1211		return ctx.newBadExpr(directive, "strip result can be compared only to string: %s", xValue)
1212	}
1213	return &eqExpr{
1214		left: &callExpr{
1215			name:       "strip",
1216			args:       xCall.args,
1217			returnType: starlarkTypeString,
1218		},
1219		right: xValue, isEq: !negate}
1220}
1221
1222func (ctx *parseContext) maybeParseFunctionCall(node mkparser.Node, ref *mkparser.MakeString) (name string, args *mkparser.MakeString, ok bool) {
1223	ref.TrimLeftSpaces()
1224	ref.TrimRightSpaces()
1225
1226	words := ref.SplitN(" ", 2)
1227	if !words[0].Const() {
1228		return "", nil, false
1229	}
1230
1231	name = words[0].Dump()
1232	args = mkparser.SimpleMakeString("", words[0].Pos())
1233	if len(words) >= 2 {
1234		args = words[1]
1235	}
1236	args.TrimLeftSpaces()
1237	if name == "call" {
1238		words = args.SplitN(",", 2)
1239		if words[0].Empty() || !words[0].Const() {
1240			return "", nil, false
1241		}
1242		name = words[0].Dump()
1243		if len(words) < 2 {
1244			args = mkparser.SimpleMakeString("", words[0].Pos())
1245		} else {
1246			args = words[1]
1247		}
1248	}
1249	ok = true
1250	return
1251}
1252
1253// parses $(...), returning an expression
1254func (ctx *parseContext) parseReference(node mkparser.Node, ref *mkparser.MakeString) starlarkExpr {
1255	ref.TrimLeftSpaces()
1256	ref.TrimRightSpaces()
1257	refDump := ref.Dump()
1258
1259	// Handle only the case where the first (or only) word is constant
1260	words := ref.SplitN(" ", 2)
1261	if !words[0].Const() {
1262		return ctx.newBadExpr(node, "reference is too complex: %s", refDump)
1263	}
1264
1265	// If it is a single word, it can be a simple variable
1266	// reference or a function call
1267	if len(words) == 1 && !isMakeControlFunc(refDump) && refDump != "shell" && refDump != "eval" {
1268		if strings.HasPrefix(refDump, soongNsPrefix) {
1269			// TODO (asmundak): if we find many, maybe handle them.
1270			return ctx.newBadExpr(node, "SOONG_CONFIG_ variables cannot be referenced, use soong_config_get instead: %s", refDump)
1271		}
1272		// Handle substitution references: https://www.gnu.org/software/make/manual/html_node/Substitution-Refs.html
1273		if strings.Contains(refDump, ":") {
1274			parts := strings.SplitN(refDump, ":", 2)
1275			substParts := strings.SplitN(parts[1], "=", 2)
1276			if len(substParts) < 2 || strings.Count(substParts[0], "%") > 1 {
1277				return ctx.newBadExpr(node, "Invalid substitution reference")
1278			}
1279			if !strings.Contains(substParts[0], "%") {
1280				if strings.Contains(substParts[1], "%") {
1281					return ctx.newBadExpr(node, "A substitution reference must have a %% in the \"before\" part of the substitution if it has one in the \"after\" part.")
1282				}
1283				substParts[0] = "%" + substParts[0]
1284				substParts[1] = "%" + substParts[1]
1285			}
1286			v := ctx.addVariable(parts[0])
1287			if v == nil {
1288				return ctx.newBadExpr(node, "unknown variable %s", refDump)
1289			}
1290			return &callExpr{
1291				name:       baseName + ".mkpatsubst",
1292				returnType: starlarkTypeString,
1293				args: []starlarkExpr{
1294					&stringLiteralExpr{literal: substParts[0]},
1295					&stringLiteralExpr{literal: substParts[1]},
1296					NewVariableRefExpr(v),
1297				},
1298			}
1299		}
1300		if v := ctx.addVariable(refDump); v != nil {
1301			return NewVariableRefExpr(v)
1302		}
1303		return ctx.newBadExpr(node, "unknown variable %s", refDump)
1304	}
1305
1306	if name, args, ok := ctx.maybeParseFunctionCall(node, ref); ok {
1307		if kf, found := knownFunctions[name]; found {
1308			return kf.parse(ctx, node, args)
1309		} else {
1310			return ctx.newBadExpr(node, "cannot handle invoking %s", name)
1311		}
1312	} else {
1313		return ctx.newBadExpr(node, "cannot handle %s", refDump)
1314	}
1315}
1316
1317type simpleCallParser struct {
1318	name       string
1319	returnType starlarkType
1320	addGlobals bool
1321	addHandle  bool
1322}
1323
1324func (p *simpleCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1325	expr := &callExpr{name: p.name, returnType: p.returnType}
1326	if p.addGlobals {
1327		expr.args = append(expr.args, &globalsExpr{})
1328	}
1329	if p.addHandle {
1330		expr.args = append(expr.args, &identifierExpr{name: "handle"})
1331	}
1332	for _, arg := range args.Split(",") {
1333		arg.TrimLeftSpaces()
1334		arg.TrimRightSpaces()
1335		x := ctx.parseMakeString(node, arg)
1336		if xBad, ok := x.(*badExpr); ok {
1337			return xBad
1338		}
1339		expr.args = append(expr.args, x)
1340	}
1341	return expr
1342}
1343
1344type makeControlFuncParser struct {
1345	name string
1346}
1347
1348func (p *makeControlFuncParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1349	// Make control functions need special treatment as everything
1350	// after the name is a single text argument
1351	x := ctx.parseMakeString(node, args)
1352	if xBad, ok := x.(*badExpr); ok {
1353		return xBad
1354	}
1355	return &callExpr{
1356		name: p.name,
1357		args: []starlarkExpr{
1358			&stringLiteralExpr{ctx.script.mkFile},
1359			x,
1360		},
1361		returnType: starlarkTypeUnknown,
1362	}
1363}
1364
1365type shellCallParser struct{}
1366
1367func (p *shellCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1368	// Shell functions need special treatment as everything
1369	// after the name is a single text argument
1370	x := ctx.parseMakeString(node, args)
1371	if xBad, ok := x.(*badExpr); ok {
1372		return xBad
1373	}
1374	return &callExpr{
1375		name:       baseName + ".shell",
1376		args:       []starlarkExpr{x},
1377		returnType: starlarkTypeUnknown,
1378	}
1379}
1380
1381type myDirCallParser struct{}
1382
1383func (p *myDirCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1384	if !args.Empty() {
1385		return ctx.newBadExpr(node, "my-dir function cannot have any arguments passed to it.")
1386	}
1387	return &stringLiteralExpr{literal: filepath.Dir(ctx.script.mkFile)}
1388}
1389
1390type isProductInListCallParser struct{}
1391
1392func (p *isProductInListCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1393	if args.Empty() {
1394		return ctx.newBadExpr(node, "is-product-in-list requires an argument")
1395	}
1396	return &inExpr{
1397		expr:  NewVariableRefExpr(ctx.addVariable("TARGET_PRODUCT")),
1398		list:  maybeConvertToStringList(ctx.parseMakeString(node, args)),
1399		isNot: false,
1400	}
1401}
1402
1403type isVendorBoardPlatformCallParser struct{}
1404
1405func (p *isVendorBoardPlatformCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1406	if args.Empty() || !identifierFullMatchRegex.MatchString(args.Dump()) {
1407		return ctx.newBadExpr(node, "cannot handle non-constant argument to is-vendor-board-platform")
1408	}
1409	return &inExpr{
1410		expr:  NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM")),
1411		list:  NewVariableRefExpr(ctx.addVariable(args.Dump() + "_BOARD_PLATFORMS")),
1412		isNot: false,
1413	}
1414}
1415
1416type isVendorBoardQcomCallParser struct{}
1417
1418func (p *isVendorBoardQcomCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1419	if !args.Empty() {
1420		return ctx.newBadExpr(node, "is-vendor-board-qcom does not accept any arguments")
1421	}
1422	return &inExpr{
1423		expr:  NewVariableRefExpr(ctx.addVariable("TARGET_BOARD_PLATFORM")),
1424		list:  NewVariableRefExpr(ctx.addVariable("QCOM_BOARD_PLATFORMS")),
1425		isNot: false,
1426	}
1427}
1428
1429type substCallParser struct {
1430	fname string
1431}
1432
1433func (p *substCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1434	words := args.Split(",")
1435	if len(words) != 3 {
1436		return ctx.newBadExpr(node, "%s function should have 3 arguments", p.fname)
1437	}
1438	from := ctx.parseMakeString(node, words[0])
1439	if xBad, ok := from.(*badExpr); ok {
1440		return xBad
1441	}
1442	to := ctx.parseMakeString(node, words[1])
1443	if xBad, ok := to.(*badExpr); ok {
1444		return xBad
1445	}
1446	words[2].TrimLeftSpaces()
1447	words[2].TrimRightSpaces()
1448	obj := ctx.parseMakeString(node, words[2])
1449	typ := obj.typ()
1450	if typ == starlarkTypeString && p.fname == "subst" {
1451		// Optimization: if it's $(subst from, to, string), emit string.replace(from, to)
1452		return &callExpr{
1453			object:     obj,
1454			name:       "replace",
1455			args:       []starlarkExpr{from, to},
1456			returnType: typ,
1457		}
1458	}
1459	return &callExpr{
1460		name:       baseName + ".mk" + p.fname,
1461		args:       []starlarkExpr{from, to, obj},
1462		returnType: obj.typ(),
1463	}
1464}
1465
1466type ifCallParser struct{}
1467
1468func (p *ifCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1469	words := args.Split(",")
1470	if len(words) != 2 && len(words) != 3 {
1471		return ctx.newBadExpr(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words)))
1472	}
1473	condition := ctx.parseMakeString(node, words[0])
1474	ifTrue := ctx.parseMakeString(node, words[1])
1475	var ifFalse starlarkExpr
1476	if len(words) == 3 {
1477		ifFalse = ctx.parseMakeString(node, words[2])
1478	} else {
1479		switch ifTrue.typ() {
1480		case starlarkTypeList:
1481			ifFalse = &listExpr{items: []starlarkExpr{}}
1482		case starlarkTypeInt:
1483			ifFalse = &intLiteralExpr{literal: 0}
1484		case starlarkTypeBool:
1485			ifFalse = &boolLiteralExpr{literal: false}
1486		default:
1487			ifFalse = &stringLiteralExpr{literal: ""}
1488		}
1489	}
1490	return &ifExpr{
1491		condition,
1492		ifTrue,
1493		ifFalse,
1494	}
1495}
1496
1497type ifCallNodeParser struct{}
1498
1499func (p *ifCallNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode {
1500	words := args.Split(",")
1501	if len(words) != 2 && len(words) != 3 {
1502		return []starlarkNode{ctx.newBadNode(node, "if function should have 2 or 3 arguments, found "+strconv.Itoa(len(words)))}
1503	}
1504
1505	ifn := &ifNode{expr: ctx.parseMakeString(node, words[0])}
1506	cases := []*switchCase{
1507		{
1508			gate:  ifn,
1509			nodes: ctx.parseNodeMakeString(node, words[1]),
1510		},
1511	}
1512	if len(words) == 3 {
1513		cases = append(cases, &switchCase{
1514			gate:  &elseNode{},
1515			nodes: ctx.parseNodeMakeString(node, words[2]),
1516		})
1517	}
1518	if len(cases) == 2 {
1519		if len(cases[1].nodes) == 0 {
1520			// Remove else branch if it has no contents
1521			cases = cases[:1]
1522		} else if len(cases[0].nodes) == 0 {
1523			// If the if branch has no contents but the else does,
1524			// move them to the if and negate its condition
1525			ifn.expr = negateExpr(ifn.expr)
1526			cases[0].nodes = cases[1].nodes
1527			cases = cases[:1]
1528		}
1529	}
1530
1531	return []starlarkNode{&switchNode{ssCases: cases}}
1532}
1533
1534type foreachCallParser struct{}
1535
1536func (p *foreachCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1537	words := args.Split(",")
1538	if len(words) != 3 {
1539		return ctx.newBadExpr(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words)))
1540	}
1541	if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) {
1542		return ctx.newBadExpr(node, "first argument to foreach function must be a simple string identifier")
1543	}
1544	loopVarName := words[0].Strings[0]
1545	list := ctx.parseMakeString(node, words[1])
1546	action := ctx.parseMakeString(node, words[2]).transform(func(expr starlarkExpr) starlarkExpr {
1547		if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName {
1548			return &identifierExpr{loopVarName}
1549		}
1550		return nil
1551	})
1552
1553	if list.typ() != starlarkTypeList {
1554		list = &callExpr{
1555			name:       baseName + ".words",
1556			returnType: starlarkTypeList,
1557			args:       []starlarkExpr{list},
1558		}
1559	}
1560
1561	return &foreachExpr{
1562		varName: loopVarName,
1563		list:    list,
1564		action:  action,
1565	}
1566}
1567
1568func transformNode(node starlarkNode, transformer func(expr starlarkExpr) starlarkExpr) {
1569	switch a := node.(type) {
1570	case *ifNode:
1571		a.expr = a.expr.transform(transformer)
1572	case *switchCase:
1573		transformNode(a.gate, transformer)
1574		for _, n := range a.nodes {
1575			transformNode(n, transformer)
1576		}
1577	case *switchNode:
1578		for _, n := range a.ssCases {
1579			transformNode(n, transformer)
1580		}
1581	case *exprNode:
1582		a.expr = a.expr.transform(transformer)
1583	case *assignmentNode:
1584		a.value = a.value.transform(transformer)
1585	case *foreachNode:
1586		a.list = a.list.transform(transformer)
1587		for _, n := range a.actions {
1588			transformNode(n, transformer)
1589		}
1590	}
1591}
1592
1593type foreachCallNodeParser struct{}
1594
1595func (p *foreachCallNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode {
1596	words := args.Split(",")
1597	if len(words) != 3 {
1598		return []starlarkNode{ctx.newBadNode(node, "foreach function should have 3 arguments, found "+strconv.Itoa(len(words)))}
1599	}
1600	if !words[0].Const() || words[0].Empty() || !identifierFullMatchRegex.MatchString(words[0].Strings[0]) {
1601		return []starlarkNode{ctx.newBadNode(node, "first argument to foreach function must be a simple string identifier")}
1602	}
1603
1604	loopVarName := words[0].Strings[0]
1605
1606	list := ctx.parseMakeString(node, words[1])
1607	if list.typ() != starlarkTypeList {
1608		list = &callExpr{
1609			name:       baseName + ".words",
1610			returnType: starlarkTypeList,
1611			args:       []starlarkExpr{list},
1612		}
1613	}
1614
1615	actions := ctx.parseNodeMakeString(node, words[2])
1616	// TODO(colefaust): Replace transforming code with something more elegant
1617	for _, action := range actions {
1618		transformNode(action, func(expr starlarkExpr) starlarkExpr {
1619			if varRefExpr, ok := expr.(*variableRefExpr); ok && varRefExpr.ref.name() == loopVarName {
1620				return &identifierExpr{loopVarName}
1621			}
1622			return nil
1623		})
1624	}
1625
1626	return []starlarkNode{&foreachNode{
1627		varName: loopVarName,
1628		list:    list,
1629		actions: actions,
1630	}}
1631}
1632
1633type wordCallParser struct{}
1634
1635func (p *wordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1636	words := args.Split(",")
1637	if len(words) != 2 {
1638		return ctx.newBadExpr(node, "word function should have 2 arguments")
1639	}
1640	var index uint64 = 0
1641	if words[0].Const() {
1642		index, _ = strconv.ParseUint(strings.TrimSpace(words[0].Strings[0]), 10, 64)
1643	}
1644	if index < 1 {
1645		return ctx.newBadExpr(node, "word index should be constant positive integer")
1646	}
1647	words[1].TrimLeftSpaces()
1648	words[1].TrimRightSpaces()
1649	array := ctx.parseMakeString(node, words[1])
1650	if xBad, ok := array.(*badExpr); ok {
1651		return xBad
1652	}
1653	if array.typ() != starlarkTypeList {
1654		array = &callExpr{object: array, name: "split", returnType: starlarkTypeList}
1655	}
1656	return &indexExpr{array, &intLiteralExpr{int(index - 1)}}
1657}
1658
1659type firstOrLastwordCallParser struct {
1660	isLastWord bool
1661}
1662
1663func (p *firstOrLastwordCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1664	arg := ctx.parseMakeString(node, args)
1665	if bad, ok := arg.(*badExpr); ok {
1666		return bad
1667	}
1668	index := &intLiteralExpr{0}
1669	if p.isLastWord {
1670		if v, ok := arg.(*variableRefExpr); ok && v.ref.name() == "MAKEFILE_LIST" {
1671			return &stringLiteralExpr{ctx.script.mkFile}
1672		}
1673		index.literal = -1
1674	}
1675	if arg.typ() == starlarkTypeList {
1676		return &indexExpr{arg, index}
1677	}
1678	return &indexExpr{&callExpr{object: arg, name: "split", returnType: starlarkTypeList}, index}
1679}
1680
1681func parseIntegerArguments(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString, expectedArgs int) ([]starlarkExpr, error) {
1682	parsedArgs := make([]starlarkExpr, 0)
1683	for _, arg := range args.Split(",") {
1684		expr := ctx.parseMakeString(node, arg)
1685		if expr.typ() == starlarkTypeList {
1686			return nil, fmt.Errorf("argument to math argument has type list, which cannot be converted to int")
1687		}
1688		if s, ok := maybeString(expr); ok {
1689			intVal, err := strconv.Atoi(strings.TrimSpace(s))
1690			if err != nil {
1691				return nil, err
1692			}
1693			expr = &intLiteralExpr{literal: intVal}
1694		} else if expr.typ() != starlarkTypeInt {
1695			expr = &callExpr{
1696				name:       "int",
1697				args:       []starlarkExpr{expr},
1698				returnType: starlarkTypeInt,
1699			}
1700		}
1701		parsedArgs = append(parsedArgs, expr)
1702	}
1703	if len(parsedArgs) != expectedArgs {
1704		return nil, fmt.Errorf("function should have %d arguments", expectedArgs)
1705	}
1706	return parsedArgs, nil
1707}
1708
1709type mathComparisonCallParser struct {
1710	op string
1711}
1712
1713func (p *mathComparisonCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1714	parsedArgs, err := parseIntegerArguments(ctx, node, args, 2)
1715	if err != nil {
1716		return ctx.newBadExpr(node, err.Error())
1717	}
1718	return &binaryOpExpr{
1719		left:       parsedArgs[0],
1720		right:      parsedArgs[1],
1721		op:         p.op,
1722		returnType: starlarkTypeBool,
1723	}
1724}
1725
1726type mathMaxOrMinCallParser struct {
1727	function string
1728}
1729
1730func (p *mathMaxOrMinCallParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) starlarkExpr {
1731	parsedArgs, err := parseIntegerArguments(ctx, node, args, 2)
1732	if err != nil {
1733		return ctx.newBadExpr(node, err.Error())
1734	}
1735	return &callExpr{
1736		object:     nil,
1737		name:       p.function,
1738		args:       parsedArgs,
1739		returnType: starlarkTypeInt,
1740	}
1741}
1742
1743type evalNodeParser struct{}
1744
1745func (p *evalNodeParser) parse(ctx *parseContext, node mkparser.Node, args *mkparser.MakeString) []starlarkNode {
1746	parser := mkparser.NewParser("Eval expression", strings.NewReader(args.Dump()))
1747	nodes, errs := parser.Parse()
1748	if errs != nil {
1749		return []starlarkNode{ctx.newBadNode(node, "Unable to parse eval statement")}
1750	}
1751
1752	if len(nodes) == 0 {
1753		return []starlarkNode{}
1754	} else if len(nodes) == 1 {
1755		switch n := nodes[0].(type) {
1756		case *mkparser.Assignment:
1757			if n.Name.Const() {
1758				return ctx.handleAssignment(n)
1759			}
1760		case *mkparser.Comment:
1761			return []starlarkNode{&commentNode{strings.TrimSpace("#" + n.Comment)}}
1762		}
1763	}
1764
1765	return []starlarkNode{ctx.newBadNode(node, "Eval expression too complex; only assignments and comments are supported")}
1766}
1767
1768func (ctx *parseContext) parseMakeString(node mkparser.Node, mk *mkparser.MakeString) starlarkExpr {
1769	if mk.Const() {
1770		return &stringLiteralExpr{mk.Dump()}
1771	}
1772	if mkRef, ok := mk.SingleVariable(); ok {
1773		return ctx.parseReference(node, mkRef)
1774	}
1775	// If we reached here, it's neither string literal nor a simple variable,
1776	// we need a full-blown interpolation node that will generate
1777	// "a%b%c" % (X, Y) for a$(X)b$(Y)c
1778	parts := make([]starlarkExpr, len(mk.Variables)+len(mk.Strings))
1779	for i := 0; i < len(parts); i++ {
1780		if i%2 == 0 {
1781			parts[i] = &stringLiteralExpr{literal: mk.Strings[i/2]}
1782		} else {
1783			parts[i] = ctx.parseReference(node, mk.Variables[i/2].Name)
1784			if x, ok := parts[i].(*badExpr); ok {
1785				return x
1786			}
1787		}
1788	}
1789	return NewInterpolateExpr(parts)
1790}
1791
1792func (ctx *parseContext) parseNodeMakeString(node mkparser.Node, mk *mkparser.MakeString) []starlarkNode {
1793	// Discard any constant values in the make string, as they would be top level
1794	// string literals and do nothing.
1795	result := make([]starlarkNode, 0, len(mk.Variables))
1796	for i := range mk.Variables {
1797		result = append(result, ctx.handleVariable(&mk.Variables[i])...)
1798	}
1799	return result
1800}
1801
1802// Handles the statements whose treatment is the same in all contexts: comment,
1803// assignment, variable (which is a macro call in reality) and all constructs that
1804// do not handle in any context ('define directive and any unrecognized stuff).
1805func (ctx *parseContext) handleSimpleStatement(node mkparser.Node) []starlarkNode {
1806	var result []starlarkNode
1807	switch x := node.(type) {
1808	case *mkparser.Comment:
1809		if n, handled := ctx.maybeHandleAnnotation(x); handled && n != nil {
1810			result = []starlarkNode{n}
1811		} else if !handled {
1812			result = []starlarkNode{&commentNode{strings.TrimSpace("#" + x.Comment)}}
1813		}
1814	case *mkparser.Assignment:
1815		result = ctx.handleAssignment(x)
1816	case *mkparser.Variable:
1817		result = ctx.handleVariable(x)
1818	case *mkparser.Directive:
1819		switch x.Name {
1820		case "define":
1821			if res := ctx.maybeHandleDefine(x); res != nil {
1822				result = []starlarkNode{res}
1823			}
1824		case "include", "-include":
1825			result = ctx.handleInclude(node, ctx.parseMakeString(node, x.Args), x.Name[0] != '-')
1826		case "ifeq", "ifneq", "ifdef", "ifndef":
1827			result = []starlarkNode{ctx.handleIfBlock(x)}
1828		default:
1829			result = []starlarkNode{ctx.newBadNode(x, "unexpected directive %s", x.Name)}
1830		}
1831	default:
1832		result = []starlarkNode{ctx.newBadNode(x, "unsupported line %s", strings.ReplaceAll(x.Dump(), "\n", "\n#"))}
1833	}
1834
1835	// Clear the includeTops after each non-comment statement
1836	// so that include annotations placed on certain statements don't apply
1837	// globally for the rest of the makefile was well.
1838	if _, wasComment := node.(*mkparser.Comment); !wasComment {
1839		ctx.atTopOfMakefile = false
1840		ctx.includeTops = []string{}
1841	}
1842
1843	if result == nil {
1844		result = []starlarkNode{}
1845	}
1846
1847	return result
1848}
1849
1850// The types allowed in a type_hint
1851var typeHintMap = map[string]starlarkType{
1852	"string": starlarkTypeString,
1853	"list":   starlarkTypeList,
1854}
1855
1856// Processes annotation. An annotation is a comment that starts with #RBC# and provides
1857// a conversion hint -- say, where to look for the dynamically calculated inherit/include
1858// paths. Returns true if the comment was a successfully-handled annotation.
1859func (ctx *parseContext) maybeHandleAnnotation(cnode *mkparser.Comment) (starlarkNode, bool) {
1860	maybeTrim := func(s, prefix string) (string, bool) {
1861		if strings.HasPrefix(s, prefix) {
1862			return strings.TrimSpace(strings.TrimPrefix(s, prefix)), true
1863		}
1864		return s, false
1865	}
1866	annotation, ok := maybeTrim(cnode.Comment, annotationCommentPrefix)
1867	if !ok {
1868		return nil, false
1869	}
1870	if p, ok := maybeTrim(annotation, "include_top"); ok {
1871		// Don't allow duplicate include tops, because then we will generate
1872		// invalid starlark code. (duplicate keys in the _entry dictionary)
1873		for _, top := range ctx.includeTops {
1874			if top == p {
1875				return nil, true
1876			}
1877		}
1878		ctx.includeTops = append(ctx.includeTops, p)
1879		return nil, true
1880	} else if p, ok := maybeTrim(annotation, "type_hint"); ok {
1881		// Type hints must come at the beginning the file, to avoid confusion
1882		// if a type hint was specified later and thus only takes effect for half
1883		// of the file.
1884		if !ctx.atTopOfMakefile {
1885			return ctx.newBadNode(cnode, "type_hint annotations must come before the first Makefile statement"), true
1886		}
1887
1888		parts := strings.Fields(p)
1889		if len(parts) <= 1 {
1890			return ctx.newBadNode(cnode, "Invalid type_hint annotation: %s. Must be a variable type followed by a list of variables of that type", p), true
1891		}
1892
1893		var varType starlarkType
1894		if varType, ok = typeHintMap[parts[0]]; !ok {
1895			varType = starlarkTypeUnknown
1896		}
1897		if varType == starlarkTypeUnknown {
1898			return ctx.newBadNode(cnode, "Invalid type_hint annotation. Only list/string types are accepted, found %s", parts[0]), true
1899		}
1900
1901		for _, name := range parts[1:] {
1902			// Don't allow duplicate type hints
1903			if _, ok := ctx.typeHints[name]; ok {
1904				return ctx.newBadNode(cnode, "Duplicate type hint for variable %s", name), true
1905			}
1906			ctx.typeHints[name] = varType
1907		}
1908		return nil, true
1909	}
1910	return ctx.newBadNode(cnode, "unsupported annotation %s", cnode.Comment), true
1911}
1912
1913func (ctx *parseContext) loadedModulePath(path string) string {
1914	// During the transition to Roboleaf some of the product configuration files
1915	// will be converted and checked in while the others will be generated on the fly
1916	// and run. The runner  (rbcrun application) accommodates this by allowing three
1917	// different ways to specify the loaded file location:
1918	//  1) load(":<file>",...) loads <file> from the same directory
1919	//  2) load("//path/relative/to/source/root:<file>", ...) loads <file> source tree
1920	//  3) load("/absolute/path/to/<file> absolute path
1921	// If the file being generated and the file it wants to load are in the same directory,
1922	// generate option 1.
1923	// Otherwise, if output directory is not specified, generate 2)
1924	// Finally, if output directory has been specified and the file being generated and
1925	// the file it wants to load from are in the different directories, generate 2) or 3):
1926	//  * if the file being loaded exists in the source tree, generate 2)
1927	//  * otherwise, generate 3)
1928	// Finally, figure out the loaded module path and name and create a node for it
1929	loadedModuleDir := filepath.Dir(path)
1930	base := filepath.Base(path)
1931	loadedModuleName := strings.TrimSuffix(base, filepath.Ext(base)) + ctx.outputSuffix
1932	if loadedModuleDir == filepath.Dir(ctx.script.mkFile) {
1933		return ":" + loadedModuleName
1934	}
1935	if ctx.outputDir == "" {
1936		return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
1937	}
1938	if _, err := os.Stat(filepath.Join(loadedModuleDir, loadedModuleName)); err == nil {
1939		return fmt.Sprintf("//%s:%s", loadedModuleDir, loadedModuleName)
1940	}
1941	return filepath.Join(ctx.outputDir, loadedModuleDir, loadedModuleName)
1942}
1943
1944func (ctx *parseContext) addSoongNamespace(ns string) {
1945	if _, ok := ctx.soongNamespaces[ns]; ok {
1946		return
1947	}
1948	ctx.soongNamespaces[ns] = make(map[string]bool)
1949}
1950
1951func (ctx *parseContext) hasSoongNamespace(name string) bool {
1952	_, ok := ctx.soongNamespaces[name]
1953	return ok
1954}
1955
1956func (ctx *parseContext) updateSoongNamespace(replace bool, namespaceName string, varNames []string) {
1957	ctx.addSoongNamespace(namespaceName)
1958	vars := ctx.soongNamespaces[namespaceName]
1959	if replace {
1960		vars = make(map[string]bool)
1961		ctx.soongNamespaces[namespaceName] = vars
1962	}
1963	for _, v := range varNames {
1964		vars[v] = true
1965	}
1966}
1967
1968func (ctx *parseContext) hasNamespaceVar(namespaceName string, varName string) bool {
1969	vars, ok := ctx.soongNamespaces[namespaceName]
1970	if ok {
1971		_, ok = vars[varName]
1972	}
1973	return ok
1974}
1975
1976func (ctx *parseContext) errorLocation(node mkparser.Node) ErrorLocation {
1977	return ErrorLocation{ctx.script.mkFile, ctx.script.nodeLocator(node.Pos())}
1978}
1979
1980func (ss *StarlarkScript) String() string {
1981	return NewGenerateContext(ss).emit()
1982}
1983
1984func (ss *StarlarkScript) SubConfigFiles() []string {
1985
1986	var subs []string
1987	for _, src := range ss.inherited {
1988		subs = append(subs, src.originalPath)
1989	}
1990	return subs
1991}
1992
1993func (ss *StarlarkScript) HasErrors() bool {
1994	return ss.hasErrors
1995}
1996
1997// Convert reads and parses a makefile. If successful, parsed tree
1998// is returned and then can be passed to String() to get the generated
1999// Starlark file.
2000func Convert(req Request) (*StarlarkScript, error) {
2001	reader := req.Reader
2002	if reader == nil {
2003		mkContents, err := ioutil.ReadFile(req.MkFile)
2004		if err != nil {
2005			return nil, err
2006		}
2007		reader = bytes.NewBuffer(mkContents)
2008	}
2009	parser := mkparser.NewParser(req.MkFile, reader)
2010	nodes, errs := parser.Parse()
2011	if len(errs) > 0 {
2012		for _, e := range errs {
2013			fmt.Fprintln(os.Stderr, "ERROR:", e)
2014		}
2015		return nil, fmt.Errorf("bad makefile %s", req.MkFile)
2016	}
2017	starScript := &StarlarkScript{
2018		moduleName:     moduleNameForFile(req.MkFile),
2019		mkFile:         req.MkFile,
2020		traceCalls:     req.TraceCalls,
2021		sourceFS:       req.SourceFS,
2022		makefileFinder: req.MakefileFinder,
2023		nodeLocator:    func(pos mkparser.Pos) int { return parser.Unpack(pos).Line },
2024		nodes:          make([]starlarkNode, 0),
2025	}
2026	ctx := newParseContext(starScript, nodes)
2027	ctx.outputSuffix = req.OutputSuffix
2028	ctx.outputDir = req.OutputDir
2029	ctx.errorLogger = req.ErrorLogger
2030	if len(req.TracedVariables) > 0 {
2031		ctx.tracedVariables = make(map[string]bool)
2032		for _, v := range req.TracedVariables {
2033			ctx.tracedVariables[v] = true
2034		}
2035	}
2036	for ctx.hasNodes() && ctx.fatalError == nil {
2037		starScript.nodes = append(starScript.nodes, ctx.handleSimpleStatement(ctx.getNode())...)
2038	}
2039	if ctx.fatalError != nil {
2040		return nil, ctx.fatalError
2041	}
2042	return starScript, nil
2043}
2044
2045func Launcher(mainModuleUri, inputVariablesUri, mainModuleName string) string {
2046	var buf bytes.Buffer
2047	fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
2048	fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri)
2049	fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri)
2050	fmt.Fprintf(&buf, "%s(%s(%q, init, input_variables_init))\n", cfnPrintVars, cfnMain, mainModuleName)
2051	return buf.String()
2052}
2053
2054func BoardLauncher(mainModuleUri string, inputVariablesUri string) string {
2055	var buf bytes.Buffer
2056	fmt.Fprintf(&buf, "load(%q, %q)\n", baseUri, baseName)
2057	fmt.Fprintf(&buf, "load(%q, \"init\")\n", mainModuleUri)
2058	fmt.Fprintf(&buf, "load(%q, input_variables_init = \"init\")\n", inputVariablesUri)
2059	fmt.Fprintf(&buf, "%s(%s(init, input_variables_init))\n", cfnPrintVars, cfnBoardMain)
2060	return buf.String()
2061}
2062
2063func MakePath2ModuleName(mkPath string) string {
2064	return strings.TrimSuffix(mkPath, filepath.Ext(mkPath))
2065}
2066