1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TLS low level connection and record layer 6 7package runner 8 9import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/ecdsa" 13 "crypto/subtle" 14 "crypto/x509" 15 "encoding/binary" 16 "errors" 17 "fmt" 18 "io" 19 "net" 20 "sync" 21 "time" 22) 23 24// A Conn represents a secured connection. 25// It implements the net.Conn interface. 26type Conn struct { 27 // constant 28 conn net.Conn 29 isDTLS bool 30 isClient bool 31 32 // constant after handshake; protected by handshakeMutex 33 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 34 handshakeErr error // error resulting from handshake 35 wireVersion uint16 // TLS wire version 36 vers uint16 // TLS version 37 haveVers bool // version has been negotiated 38 config *Config // configuration passed to constructor 39 handshakeComplete bool 40 skipEarlyData bool // On a server, indicates that the client is sending early data that must be skipped over. 41 didResume bool // whether this connection was a session resumption 42 extendedMasterSecret bool // whether this session used an extended master secret 43 cipherSuite *cipherSuite 44 ocspResponse []byte // stapled OCSP response 45 sctList []byte // signed certificate timestamp list 46 peerCertificates []*x509.Certificate 47 // verifiedChains contains the certificate chains that we built, as 48 // opposed to the ones presented by the server. 49 verifiedChains [][]*x509.Certificate 50 // serverName contains the server name indicated by the client, if any. 51 serverName string 52 // firstFinished contains the first Finished hash sent during the 53 // handshake. This is the "tls-unique" channel binding value. 54 firstFinished [12]byte 55 // peerSignatureAlgorithm contains the signature algorithm that was used 56 // by the peer in the handshake, or zero if not applicable. 57 peerSignatureAlgorithm signatureAlgorithm 58 // curveID contains the curve that was used in the handshake, or zero if 59 // not applicable. 60 curveID CurveID 61 // quicTransportParams contains the QUIC transport params received 62 // by the peer using codepoint 57. 63 quicTransportParams []byte 64 // quicTransportParams contains the QUIC transport params received 65 // by the peer using legacy codepoint 0xffa5. 66 quicTransportParamsLegacy []byte 67 68 clientRandom, serverRandom [32]byte 69 earlyExporterSecret []byte 70 exporterSecret []byte 71 resumptionSecret []byte 72 73 clientProtocol string 74 clientProtocolFallback bool 75 usedALPN bool 76 77 localApplicationSettings, peerApplicationSettings []byte 78 hasApplicationSettings bool 79 80 // verify_data values for the renegotiation extension. 81 clientVerify []byte 82 serverVerify []byte 83 84 channelID *ecdsa.PublicKey 85 86 srtpProtectionProfile uint16 87 88 clientVersion uint16 89 90 // input/output 91 in, out halfConn // in.Mutex < out.Mutex 92 rawInput *block // raw input, right off the wire 93 input *block // application record waiting to be read 94 hand bytes.Buffer // handshake record waiting to be read 95 96 // pendingFlight, if PackHandshakeFlight is enabled, is the buffer of 97 // handshake data to be split into records at the end of the flight. 98 pendingFlight bytes.Buffer 99 100 // DTLS state 101 sendHandshakeSeq uint16 102 recvHandshakeSeq uint16 103 handMsg []byte // pending assembled handshake message 104 handMsgLen int // handshake message length, not including the header 105 pendingFragments [][]byte // pending outgoing handshake fragments. 106 pendingPacket []byte // pending outgoing packet. 107 108 keyUpdateSeen bool 109 keyUpdateRequested bool 110 seenOneByteRecord bool 111 112 expectTLS13ChangeCipherSpec bool 113 114 // seenHandshakePackEnd is whether the most recent handshake record was 115 // not full for ExpectPackedEncryptedHandshake. If true, no more 116 // handshake data may be received until the next flight or epoch change. 117 seenHandshakePackEnd bool 118 119 // echAccepted indicates whether ECH was accepted for this connection. 120 echAccepted bool 121 122 tmp [16]byte 123} 124 125func (c *Conn) init() { 126 c.in.isDTLS = c.isDTLS 127 c.out.isDTLS = c.isDTLS 128 c.in.config = c.config 129 c.out.config = c.config 130 131 c.out.updateOutSeq() 132} 133 134// Access to net.Conn methods. 135// Cannot just embed net.Conn because that would 136// export the struct field too. 137 138// LocalAddr returns the local network address. 139func (c *Conn) LocalAddr() net.Addr { 140 return c.conn.LocalAddr() 141} 142 143// RemoteAddr returns the remote network address. 144func (c *Conn) RemoteAddr() net.Addr { 145 return c.conn.RemoteAddr() 146} 147 148// SetDeadline sets the read and write deadlines associated with the connection. 149// A zero value for t means Read and Write will not time out. 150// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 151func (c *Conn) SetDeadline(t time.Time) error { 152 return c.conn.SetDeadline(t) 153} 154 155// SetReadDeadline sets the read deadline on the underlying connection. 156// A zero value for t means Read will not time out. 157func (c *Conn) SetReadDeadline(t time.Time) error { 158 return c.conn.SetReadDeadline(t) 159} 160 161// SetWriteDeadline sets the write deadline on the underlying conneciton. 162// A zero value for t means Write will not time out. 163// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 164func (c *Conn) SetWriteDeadline(t time.Time) error { 165 return c.conn.SetWriteDeadline(t) 166} 167 168// A halfConn represents one direction of the record layer 169// connection, either sending or receiving. 170type halfConn struct { 171 sync.Mutex 172 173 err error // first permanent error 174 version uint16 // protocol version 175 wireVersion uint16 // wire version 176 isDTLS bool 177 cipher interface{} // cipher algorithm 178 mac macFunction 179 seq [8]byte // 64-bit sequence number 180 outSeq [8]byte // Mapped sequence number 181 bfree *block // list of free blocks 182 183 nextCipher interface{} // next encryption state 184 nextMac macFunction // next MAC algorithm 185 nextSeq [6]byte // next epoch's starting sequence number in DTLS 186 187 // used to save allocating a new buffer for each MAC. 188 inDigestBuf, outDigestBuf []byte 189 190 trafficSecret []byte 191 192 config *Config 193} 194 195func (hc *halfConn) setErrorLocked(err error) error { 196 hc.err = err 197 return err 198} 199 200func (hc *halfConn) error() error { 201 // This should be locked, but I've removed it for the renegotiation 202 // tests since we don't concurrently read and write the same tls.Conn 203 // in any case during testing. 204 err := hc.err 205 return err 206} 207 208// prepareCipherSpec sets the encryption and MAC states 209// that a subsequent changeCipherSpec will use. 210func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 211 hc.wireVersion = version 212 protocolVersion, ok := wireToVersion(version, hc.isDTLS) 213 if !ok { 214 panic("TLS: unknown version") 215 } 216 hc.version = protocolVersion 217 hc.nextCipher = cipher 218 hc.nextMac = mac 219} 220 221// changeCipherSpec changes the encryption and MAC states 222// to the ones previously passed to prepareCipherSpec. 223func (hc *halfConn) changeCipherSpec(config *Config) error { 224 if hc.nextCipher == nil { 225 return alertInternalError 226 } 227 hc.cipher = hc.nextCipher 228 hc.mac = hc.nextMac 229 hc.nextCipher = nil 230 hc.nextMac = nil 231 hc.config = config 232 hc.incEpoch() 233 234 if config.Bugs.NullAllCiphers { 235 hc.cipher = nullCipher{} 236 hc.mac = nil 237 } 238 return nil 239} 240 241// useTrafficSecret sets the current cipher state for TLS 1.3. 242func (hc *halfConn) useTrafficSecret(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) { 243 hc.wireVersion = version 244 protocolVersion, ok := wireToVersion(version, hc.isDTLS) 245 if !ok { 246 panic("TLS: unknown version") 247 } 248 hc.version = protocolVersion 249 hc.cipher = deriveTrafficAEAD(version, suite, secret, side) 250 if hc.config.Bugs.NullAllCiphers { 251 hc.cipher = nullCipher{} 252 } 253 hc.trafficSecret = secret 254 hc.incEpoch() 255} 256 257// resetCipher changes the cipher state back to no encryption to be able 258// to send an unencrypted ClientHello in response to HelloRetryRequest 259// after 0-RTT data was rejected. 260func (hc *halfConn) resetCipher() { 261 hc.cipher = nil 262 hc.incEpoch() 263} 264 265// incSeq increments the sequence number. 266func (hc *halfConn) incSeq(isOutgoing bool) { 267 limit := 0 268 increment := uint64(1) 269 if hc.isDTLS { 270 // Increment up to the epoch in DTLS. 271 limit = 2 272 } 273 for i := 7; i >= limit; i-- { 274 increment += uint64(hc.seq[i]) 275 hc.seq[i] = byte(increment) 276 increment >>= 8 277 } 278 279 // Not allowed to let sequence number wrap. 280 // Instead, must renegotiate before it does. 281 // Not likely enough to bother. 282 if increment != 0 { 283 panic("TLS: sequence number wraparound") 284 } 285 286 hc.updateOutSeq() 287} 288 289// incNextSeq increments the starting sequence number for the next epoch. 290func (hc *halfConn) incNextSeq() { 291 for i := len(hc.nextSeq) - 1; i >= 0; i-- { 292 hc.nextSeq[i]++ 293 if hc.nextSeq[i] != 0 { 294 return 295 } 296 } 297 panic("TLS: sequence number wraparound") 298} 299 300// incEpoch resets the sequence number. In DTLS, it also increments the epoch 301// half of the sequence number. 302func (hc *halfConn) incEpoch() { 303 if hc.isDTLS { 304 for i := 1; i >= 0; i-- { 305 hc.seq[i]++ 306 if hc.seq[i] != 0 { 307 break 308 } 309 if i == 0 { 310 panic("TLS: epoch number wraparound") 311 } 312 } 313 copy(hc.seq[2:], hc.nextSeq[:]) 314 for i := range hc.nextSeq { 315 hc.nextSeq[i] = 0 316 } 317 } else { 318 for i := range hc.seq { 319 hc.seq[i] = 0 320 } 321 } 322 323 hc.updateOutSeq() 324} 325 326func (hc *halfConn) updateOutSeq() { 327 if hc.config.Bugs.SequenceNumberMapping != nil { 328 seqU64 := binary.BigEndian.Uint64(hc.seq[:]) 329 seqU64 = hc.config.Bugs.SequenceNumberMapping(seqU64) 330 binary.BigEndian.PutUint64(hc.outSeq[:], seqU64) 331 332 // The DTLS epoch cannot be changed. 333 copy(hc.outSeq[:2], hc.seq[:2]) 334 return 335 } 336 337 copy(hc.outSeq[:], hc.seq[:]) 338} 339 340func (hc *halfConn) recordHeaderLen() int { 341 if hc.isDTLS { 342 return dtlsRecordHeaderLen 343 } 344 return tlsRecordHeaderLen 345} 346 347// removePadding returns an unpadded slice, in constant time, which is a prefix 348// of the input. It also returns a byte which is equal to 255 if the padding 349// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 350func removePadding(payload []byte) ([]byte, byte) { 351 if len(payload) < 1 { 352 return payload, 0 353 } 354 355 paddingLen := payload[len(payload)-1] 356 t := uint(len(payload)-1) - uint(paddingLen) 357 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 358 good := byte(int32(^t) >> 31) 359 360 toCheck := 255 // the maximum possible padding length 361 // The length of the padded data is public, so we can use an if here 362 if toCheck+1 > len(payload) { 363 toCheck = len(payload) - 1 364 } 365 366 for i := 0; i < toCheck; i++ { 367 t := uint(paddingLen) - uint(i) 368 // if i <= paddingLen then the MSB of t is zero 369 mask := byte(int32(^t) >> 31) 370 b := payload[len(payload)-1-i] 371 good &^= mask&paddingLen ^ mask&b 372 } 373 374 // We AND together the bits of good and replicate the result across 375 // all the bits. 376 good &= good << 4 377 good &= good << 2 378 good &= good << 1 379 good = uint8(int8(good) >> 7) 380 381 toRemove := good&paddingLen + 1 382 return payload[:len(payload)-int(toRemove)], good 383} 384 385func roundUp(a, b int) int { 386 return a + (b-a%b)%b 387} 388 389// cbcMode is an interface for block ciphers using cipher block chaining. 390type cbcMode interface { 391 cipher.BlockMode 392 SetIV([]byte) 393} 394 395// decrypt checks and strips the mac and decrypts the data in b. Returns a 396// success boolean, the number of bytes to skip from the start of the record in 397// order to get the application payload, the encrypted record type (or 0 398// if there is none), and an optional alert value. 399func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, contentType recordType, alertValue alert) { 400 recordHeaderLen := hc.recordHeaderLen() 401 402 // pull out payload 403 payload := b.data[recordHeaderLen:] 404 405 macSize := 0 406 if hc.mac != nil { 407 macSize = hc.mac.Size() 408 } 409 410 paddingGood := byte(255) 411 explicitIVLen := 0 412 413 seq := hc.seq[:] 414 if hc.isDTLS { 415 // DTLS sequence numbers are explicit. 416 seq = b.data[3:11] 417 } 418 419 // decrypt 420 if hc.cipher != nil { 421 switch c := hc.cipher.(type) { 422 case cipher.Stream: 423 c.XORKeyStream(payload, payload) 424 case *tlsAead: 425 nonce := seq 426 if c.explicitNonce { 427 explicitIVLen = 8 428 if len(payload) < explicitIVLen { 429 return false, 0, 0, alertBadRecordMAC 430 } 431 nonce = payload[:8] 432 payload = payload[8:] 433 } 434 435 var additionalData []byte 436 if hc.version < VersionTLS13 { 437 additionalData = make([]byte, 13) 438 copy(additionalData, seq) 439 copy(additionalData[8:], b.data[:3]) 440 n := len(payload) - c.Overhead() 441 additionalData[11] = byte(n >> 8) 442 additionalData[12] = byte(n) 443 } else { 444 additionalData = b.data[:recordHeaderLen] 445 } 446 var err error 447 payload, err = c.Open(payload[:0], nonce, payload, additionalData) 448 if err != nil { 449 return false, 0, 0, alertBadRecordMAC 450 } 451 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 452 case cbcMode: 453 blockSize := c.BlockSize() 454 if hc.version >= VersionTLS11 || hc.isDTLS { 455 explicitIVLen = blockSize 456 } 457 458 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 459 return false, 0, 0, alertBadRecordMAC 460 } 461 462 if explicitIVLen > 0 { 463 c.SetIV(payload[:explicitIVLen]) 464 payload = payload[explicitIVLen:] 465 } 466 c.CryptBlocks(payload, payload) 467 payload, paddingGood = removePadding(payload) 468 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 469 470 // note that we still have a timing side-channel in the 471 // MAC check, below. An attacker can align the record 472 // so that a correct padding will cause one less hash 473 // block to be calculated. Then they can iteratively 474 // decrypt a record by breaking each byte. See 475 // "Password Interception in a SSL/TLS Channel", Brice 476 // Canvel et al. 477 // 478 // However, our behavior matches OpenSSL, so we leak 479 // only as much as they do. 480 case nullCipher: 481 break 482 default: 483 panic("unknown cipher type") 484 } 485 486 if hc.version >= VersionTLS13 { 487 i := len(payload) 488 for i > 0 && payload[i-1] == 0 { 489 i-- 490 } 491 payload = payload[:i] 492 if len(payload) == 0 { 493 return false, 0, 0, alertUnexpectedMessage 494 } 495 contentType = recordType(payload[len(payload)-1]) 496 payload = payload[:len(payload)-1] 497 b.resize(recordHeaderLen + len(payload)) 498 } 499 } 500 501 // check, strip mac 502 if hc.mac != nil { 503 if len(payload) < macSize { 504 return false, 0, 0, alertBadRecordMAC 505 } 506 507 // strip mac off payload, b.data 508 n := len(payload) - macSize 509 b.data[recordHeaderLen-2] = byte(n >> 8) 510 b.data[recordHeaderLen-1] = byte(n) 511 b.resize(recordHeaderLen + explicitIVLen + n) 512 remoteMAC := payload[n:] 513 localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n]) 514 515 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 516 return false, 0, 0, alertBadRecordMAC 517 } 518 hc.inDigestBuf = localMAC 519 } 520 hc.incSeq(false) 521 522 return true, recordHeaderLen + explicitIVLen, contentType, 0 523} 524 525// padToBlockSize calculates the needed padding block, if any, for a payload. 526// On exit, prefix aliases payload and extends to the end of the last full 527// block of payload. finalBlock is a fresh slice which contains the contents of 528// any suffix of payload as well as the needed padding to make finalBlock a 529// full block. 530func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) { 531 overrun := len(payload) % blockSize 532 prefix = payload[:len(payload)-overrun] 533 534 paddingLen := blockSize - overrun 535 finalSize := blockSize 536 if config.Bugs.MaxPadding { 537 for paddingLen+blockSize <= 256 { 538 paddingLen += blockSize 539 } 540 finalSize = 256 541 } 542 finalBlock = make([]byte, finalSize) 543 for i := range finalBlock { 544 finalBlock[i] = byte(paddingLen - 1) 545 } 546 if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 { 547 finalBlock[overrun] ^= 0xff 548 } 549 copy(finalBlock, payload[len(payload)-overrun:]) 550 return 551} 552 553// encrypt encrypts and macs the data in b. 554func (hc *halfConn) encrypt(b *block, explicitIVLen int, typ recordType) (bool, alert) { 555 recordHeaderLen := hc.recordHeaderLen() 556 557 // mac 558 if hc.mac != nil { 559 mac := hc.mac.MAC(hc.outDigestBuf, hc.outSeq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) 560 561 n := len(b.data) 562 b.resize(n + len(mac)) 563 copy(b.data[n:], mac) 564 hc.outDigestBuf = mac 565 } 566 567 payload := b.data[recordHeaderLen:] 568 569 // encrypt 570 if hc.cipher != nil { 571 // Add TLS 1.3 padding. 572 if hc.version >= VersionTLS13 { 573 paddingLen := hc.config.Bugs.RecordPadding 574 if hc.config.Bugs.OmitRecordContents { 575 b.resize(recordHeaderLen + paddingLen) 576 } else { 577 b.resize(len(b.data) + 1 + paddingLen) 578 b.data[len(b.data)-paddingLen-1] = byte(typ) 579 } 580 for i := 0; i < paddingLen; i++ { 581 b.data[len(b.data)-paddingLen+i] = 0 582 } 583 } 584 585 switch c := hc.cipher.(type) { 586 case cipher.Stream: 587 c.XORKeyStream(payload, payload) 588 case *tlsAead: 589 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 590 b.resize(len(b.data) + c.Overhead()) 591 nonce := hc.outSeq[:] 592 if c.explicitNonce { 593 nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 594 } 595 payload := b.data[recordHeaderLen+explicitIVLen:] 596 payload = payload[:payloadLen] 597 598 var additionalData []byte 599 if hc.version < VersionTLS13 { 600 additionalData = make([]byte, 13) 601 copy(additionalData, hc.outSeq[:]) 602 copy(additionalData[8:], b.data[:3]) 603 additionalData[11] = byte(payloadLen >> 8) 604 additionalData[12] = byte(payloadLen) 605 } else { 606 additionalData = make([]byte, 5) 607 copy(additionalData, b.data[:3]) 608 n := len(b.data) - recordHeaderLen 609 additionalData[3] = byte(n >> 8) 610 additionalData[4] = byte(n) 611 } 612 613 c.Seal(payload[:0], nonce, payload, additionalData) 614 case cbcMode: 615 blockSize := c.BlockSize() 616 if explicitIVLen > 0 { 617 c.SetIV(payload[:explicitIVLen]) 618 payload = payload[explicitIVLen:] 619 } 620 prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config) 621 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 622 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 623 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 624 case nullCipher: 625 break 626 default: 627 panic("unknown cipher type") 628 } 629 } 630 631 // update length to include MAC and any block padding needed. 632 n := len(b.data) - recordHeaderLen 633 b.data[recordHeaderLen-2] = byte(n >> 8) 634 b.data[recordHeaderLen-1] = byte(n) 635 hc.incSeq(true) 636 637 return true, 0 638} 639 640// A block is a simple data buffer. 641type block struct { 642 data []byte 643 off int // index for Read 644 link *block 645} 646 647// resize resizes block to be n bytes, growing if necessary. 648func (b *block) resize(n int) { 649 if n > cap(b.data) { 650 b.reserve(n) 651 } 652 b.data = b.data[0:n] 653} 654 655// reserve makes sure that block contains a capacity of at least n bytes. 656func (b *block) reserve(n int) { 657 if cap(b.data) >= n { 658 return 659 } 660 m := cap(b.data) 661 if m == 0 { 662 m = 1024 663 } 664 for m < n { 665 m *= 2 666 } 667 data := make([]byte, len(b.data), m) 668 copy(data, b.data) 669 b.data = data 670} 671 672// readFromUntil reads from r into b until b contains at least n bytes 673// or else returns an error. 674func (b *block) readFromUntil(r io.Reader, n int) error { 675 // quick case 676 if len(b.data) >= n { 677 return nil 678 } 679 680 // read until have enough. 681 b.reserve(n) 682 for { 683 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 684 b.data = b.data[0 : len(b.data)+m] 685 if len(b.data) >= n { 686 // TODO(bradfitz,agl): slightly suspicious 687 // that we're throwing away r.Read's err here. 688 break 689 } 690 if err != nil { 691 return err 692 } 693 } 694 return nil 695} 696 697func (b *block) Read(p []byte) (n int, err error) { 698 n = copy(p, b.data[b.off:]) 699 b.off += n 700 return 701} 702 703// newBlock allocates a new block, from hc's free list if possible. 704func (hc *halfConn) newBlock() *block { 705 b := hc.bfree 706 if b == nil { 707 return new(block) 708 } 709 hc.bfree = b.link 710 b.link = nil 711 b.resize(0) 712 return b 713} 714 715// freeBlock returns a block to hc's free list. 716// The protocol is such that each side only has a block or two on 717// its free list at a time, so there's no need to worry about 718// trimming the list, etc. 719func (hc *halfConn) freeBlock(b *block) { 720 b.link = hc.bfree 721 hc.bfree = b 722} 723 724// splitBlock splits a block after the first n bytes, 725// returning a block with those n bytes and a 726// block with the remainder. the latter may be nil. 727func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 728 if len(b.data) <= n { 729 return b, nil 730 } 731 bb := hc.newBlock() 732 bb.resize(len(b.data) - n) 733 copy(bb.data, b.data[n:]) 734 b.data = b.data[0:n] 735 return b, bb 736} 737 738func (c *Conn) useInTrafficSecret(level encryptionLevel, version uint16, suite *cipherSuite, secret []byte) error { 739 if c.hand.Len() != 0 { 740 return c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change")) 741 } 742 side := serverWrite 743 if !c.isClient { 744 side = clientWrite 745 } 746 if c.config.Bugs.MockQUICTransport != nil { 747 c.config.Bugs.MockQUICTransport.readLevel = level 748 c.config.Bugs.MockQUICTransport.readSecret = secret 749 c.config.Bugs.MockQUICTransport.readCipherSuite = suite.id 750 } 751 c.in.useTrafficSecret(version, suite, secret, side) 752 c.seenHandshakePackEnd = false 753 return nil 754} 755 756func (c *Conn) useOutTrafficSecret(level encryptionLevel, version uint16, suite *cipherSuite, secret []byte) { 757 side := serverWrite 758 if c.isClient { 759 side = clientWrite 760 } 761 if c.config.Bugs.MockQUICTransport != nil { 762 c.config.Bugs.MockQUICTransport.writeLevel = level 763 c.config.Bugs.MockQUICTransport.writeSecret = secret 764 c.config.Bugs.MockQUICTransport.writeCipherSuite = suite.id 765 } 766 c.out.useTrafficSecret(version, suite, secret, side) 767} 768 769func (c *Conn) setSkipEarlyData() { 770 if c.config.Bugs.MockQUICTransport != nil { 771 c.config.Bugs.MockQUICTransport.skipEarlyData = true 772 } else { 773 c.skipEarlyData = true 774 } 775} 776 777func (c *Conn) shouldSkipEarlyData() bool { 778 if c.config.Bugs.MockQUICTransport != nil { 779 return c.config.Bugs.MockQUICTransport.skipEarlyData 780 } 781 return c.skipEarlyData 782} 783 784func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) { 785RestartReadRecord: 786 if c.isDTLS { 787 return c.dtlsDoReadRecord(want) 788 } 789 790 recordHeaderLen := c.in.recordHeaderLen() 791 792 if c.rawInput == nil { 793 c.rawInput = c.in.newBlock() 794 } 795 b := c.rawInput 796 797 // Read header, payload. 798 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 799 // RFC suggests that EOF without an alertCloseNotify is 800 // an error, but popular web sites seem to do this, 801 // so we can't make it an error, outside of tests. 802 if err == io.EOF && c.config.Bugs.ExpectCloseNotify { 803 err = io.ErrUnexpectedEOF 804 } 805 if e, ok := err.(net.Error); !ok || !e.Temporary() { 806 c.in.setErrorLocked(err) 807 } 808 return 0, nil, err 809 } 810 811 typ := recordType(b.data[0]) 812 813 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 814 // start with a uint16 length where the MSB is set and the first record 815 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 816 // an SSLv2 client. 817 if want == recordTypeHandshake && typ == 0x80 { 818 c.sendAlert(alertProtocolVersion) 819 return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received")) 820 } 821 822 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 823 n := int(b.data[3])<<8 | int(b.data[4]) 824 825 // Alerts sent near version negotiation do not have a well-defined 826 // record-layer version prior to TLS 1.3. (In TLS 1.3, the record-layer 827 // version is irrelevant.) 828 if typ != recordTypeAlert { 829 var expect uint16 830 if c.haveVers { 831 expect = c.vers 832 if c.vers >= VersionTLS13 { 833 expect = VersionTLS12 834 } 835 } else { 836 expect = c.config.Bugs.ExpectInitialRecordVersion 837 } 838 if expect != 0 && vers != expect { 839 c.sendAlert(alertProtocolVersion) 840 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect)) 841 } 842 } 843 if n > maxCiphertext { 844 c.sendAlert(alertRecordOverflow) 845 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n)) 846 } 847 if !c.haveVers { 848 // First message, be extra suspicious: 849 // this might not be a TLS client. 850 // Bail out before reading a full 'body', if possible. 851 // The current max version is 3.1. 852 // If the version is >= 16.0, it's probably not real. 853 // Similarly, a clientHello message encodes in 854 // well under a kilobyte. If the length is >= 12 kB, 855 // it's probably not real. 856 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 { 857 c.sendAlert(alertUnexpectedMessage) 858 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake")) 859 } 860 } 861 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 862 if err == io.EOF { 863 err = io.ErrUnexpectedEOF 864 } 865 if e, ok := err.(net.Error); !ok || !e.Temporary() { 866 c.in.setErrorLocked(err) 867 } 868 return 0, nil, err 869 } 870 871 // Process message. 872 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 873 ok, off, encTyp, alertValue := c.in.decrypt(b) 874 875 // Handle skipping over early data. 876 if !ok && c.skipEarlyData { 877 goto RestartReadRecord 878 } 879 880 // If the server is expecting a second ClientHello (in response to 881 // a HelloRetryRequest) and the client sends early data, there 882 // won't be a decryption failure but it still needs to be skipped. 883 if c.in.cipher == nil && typ == recordTypeApplicationData && c.skipEarlyData { 884 goto RestartReadRecord 885 } 886 887 if !ok { 888 return 0, nil, c.in.setErrorLocked(c.sendAlert(alertValue)) 889 } 890 b.off = off 891 c.skipEarlyData = false 892 893 if c.vers >= VersionTLS13 && c.in.cipher != nil { 894 if typ != recordTypeApplicationData { 895 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: outer record type is not application data")) 896 } 897 typ = encTyp 898 } 899 900 length := len(b.data[b.off:]) 901 if c.config.Bugs.ExpectRecordSplitting && typ == recordTypeApplicationData && length != 1 && !c.seenOneByteRecord { 902 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: application data records were not split")) 903 } 904 905 c.seenOneByteRecord = typ == recordTypeApplicationData && length == 1 906 return typ, b, nil 907} 908 909func (c *Conn) readTLS13ChangeCipherSpec() error { 910 if c.config.Bugs.MockQUICTransport != nil { 911 return nil 912 } 913 if !c.expectTLS13ChangeCipherSpec { 914 panic("c.expectTLS13ChangeCipherSpec not set") 915 } 916 917 // Read the ChangeCipherSpec. 918 if c.rawInput == nil { 919 c.rawInput = c.in.newBlock() 920 } 921 b := c.rawInput 922 if err := b.readFromUntil(c.conn, 1); err != nil { 923 return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err)) 924 } 925 if recordType(b.data[0]) == recordTypeAlert { 926 // If the client is sending an alert, allow the ChangeCipherSpec 927 // to be skipped. It may be rejecting a sufficiently malformed 928 // ServerHello that it can't parse out the version. 929 c.expectTLS13ChangeCipherSpec = false 930 return nil 931 } 932 if err := b.readFromUntil(c.conn, 6); err != nil { 933 return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err)) 934 } 935 936 // Check they match that we expect. 937 expected := [6]byte{byte(recordTypeChangeCipherSpec), 3, 1, 0, 1, 1} 938 if c.vers >= VersionTLS13 { 939 expected[2] = 3 940 } 941 if !bytes.Equal(b.data[:6], expected[:]) { 942 return c.in.setErrorLocked(fmt.Errorf("tls: error invalid TLS 1.3 ChangeCipherSpec: %x", b.data[:6])) 943 } 944 945 // Discard the data. 946 b, c.rawInput = c.in.splitBlock(b, 6) 947 c.in.freeBlock(b) 948 949 c.expectTLS13ChangeCipherSpec = false 950 return nil 951} 952 953// readRecord reads the next TLS record from the connection 954// and updates the record layer state. 955// c.in.Mutex <= L; c.input == nil. 956func (c *Conn) readRecord(want recordType) error { 957 // Caller must be in sync with connection: 958 // handshake data if handshake not yet completed, 959 // else application data. 960 switch want { 961 default: 962 c.sendAlert(alertInternalError) 963 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 964 case recordTypeChangeCipherSpec: 965 if c.handshakeComplete { 966 c.sendAlert(alertInternalError) 967 return c.in.setErrorLocked(errors.New("tls: ChangeCipherSpec requested after handshake complete")) 968 } 969 case recordTypeApplicationData, recordTypeAlert, recordTypeHandshake: 970 break 971 } 972 973 if c.expectTLS13ChangeCipherSpec { 974 if err := c.readTLS13ChangeCipherSpec(); err != nil { 975 return err 976 } 977 } 978 979Again: 980 doReadRecord := c.doReadRecord 981 if c.config.Bugs.MockQUICTransport != nil { 982 doReadRecord = c.config.Bugs.MockQUICTransport.readRecord 983 } 984 typ, b, err := doReadRecord(want) 985 if err != nil { 986 return err 987 } 988 data := b.data[b.off:] 989 max := maxPlaintext 990 if c.config.Bugs.MaxReceivePlaintext != 0 { 991 max = c.config.Bugs.MaxReceivePlaintext 992 } 993 if len(data) > max { 994 err := c.sendAlert(alertRecordOverflow) 995 c.in.freeBlock(b) 996 return c.in.setErrorLocked(err) 997 } 998 999 if typ != recordTypeHandshake { 1000 c.seenHandshakePackEnd = false 1001 } else if c.seenHandshakePackEnd { 1002 c.in.freeBlock(b) 1003 return c.in.setErrorLocked(errors.New("tls: peer violated ExpectPackedEncryptedHandshake")) 1004 } 1005 1006 switch typ { 1007 default: 1008 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1009 1010 case recordTypeAlert: 1011 if len(data) != 2 { 1012 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1013 break 1014 } 1015 if alert(data[1]) == alertCloseNotify { 1016 c.in.setErrorLocked(io.EOF) 1017 break 1018 } 1019 switch data[0] { 1020 case alertLevelWarning: 1021 // drop on the floor 1022 c.in.freeBlock(b) 1023 goto Again 1024 case alertLevelError: 1025 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 1026 default: 1027 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1028 } 1029 1030 case recordTypeChangeCipherSpec: 1031 if typ != want || len(data) != 1 || data[0] != 1 { 1032 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1033 break 1034 } 1035 if c.hand.Len() != 0 { 1036 c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change")) 1037 break 1038 } 1039 if err := c.in.changeCipherSpec(c.config); err != nil { 1040 c.in.setErrorLocked(c.sendAlert(err.(alert))) 1041 } 1042 1043 case recordTypeApplicationData: 1044 if typ != want { 1045 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1046 break 1047 } 1048 c.input = b 1049 b = nil 1050 1051 case recordTypeHandshake: 1052 // Allow handshake data while reading application data to 1053 // trigger post-handshake messages. 1054 // TODO(rsc): Should at least pick off connection close. 1055 if typ != want && want != recordTypeApplicationData { 1056 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 1057 } 1058 c.hand.Write(data) 1059 if pack := c.config.Bugs.ExpectPackedEncryptedHandshake; pack > 0 && len(data) < pack && c.out.cipher != nil { 1060 c.seenHandshakePackEnd = true 1061 } 1062 } 1063 1064 if b != nil { 1065 c.in.freeBlock(b) 1066 } 1067 return c.in.err 1068} 1069 1070// sendAlert sends a TLS alert message. 1071// c.out.Mutex <= L. 1072func (c *Conn) sendAlertLocked(level byte, err alert) error { 1073 c.tmp[0] = level 1074 c.tmp[1] = byte(err) 1075 if c.config.Bugs.FragmentAlert { 1076 c.writeRecord(recordTypeAlert, c.tmp[0:1]) 1077 c.writeRecord(recordTypeAlert, c.tmp[1:2]) 1078 } else if c.config.Bugs.DoubleAlert { 1079 copy(c.tmp[2:4], c.tmp[0:2]) 1080 c.writeRecord(recordTypeAlert, c.tmp[0:4]) 1081 } else { 1082 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 1083 } 1084 // Error alerts are fatal to the connection. 1085 if level == alertLevelError { 1086 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 1087 } 1088 return nil 1089} 1090 1091// sendAlert sends a TLS alert message. 1092// L < c.out.Mutex. 1093func (c *Conn) sendAlert(err alert) error { 1094 level := byte(alertLevelError) 1095 if err == alertNoRenegotiation || err == alertCloseNotify { 1096 level = alertLevelWarning 1097 } 1098 return c.SendAlert(level, err) 1099} 1100 1101func (c *Conn) SendAlert(level byte, err alert) error { 1102 c.out.Lock() 1103 defer c.out.Unlock() 1104 return c.sendAlertLocked(level, err) 1105} 1106 1107// writeV2Record writes a record for a V2ClientHello. 1108func (c *Conn) writeV2Record(data []byte) (n int, err error) { 1109 record := make([]byte, 2+len(data)) 1110 record[0] = uint8(len(data)>>8) | 0x80 1111 record[1] = uint8(len(data)) 1112 copy(record[2:], data) 1113 return c.conn.Write(record) 1114} 1115 1116// writeRecord writes a TLS record with the given type and payload 1117// to the connection and updates the record layer state. 1118// c.out.Mutex <= L. 1119func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) { 1120 c.seenHandshakePackEnd = false 1121 if typ == recordTypeHandshake { 1122 msgType := data[0] 1123 if c.config.Bugs.SendWrongMessageType != 0 && msgType == c.config.Bugs.SendWrongMessageType { 1124 msgType += 42 1125 } 1126 if msgType != data[0] { 1127 data = append([]byte{msgType}, data[1:]...) 1128 } 1129 1130 if c.config.Bugs.SendTrailingMessageData != 0 && msgType == c.config.Bugs.SendTrailingMessageData { 1131 // Add a 0 to the body. 1132 newData := make([]byte, len(data)+1) 1133 copy(newData, data) 1134 1135 // Fix the header. 1136 newLen := len(newData) - 4 1137 newData[1] = byte(newLen >> 16) 1138 newData[2] = byte(newLen >> 8) 1139 newData[3] = byte(newLen) 1140 1141 data = newData 1142 } 1143 1144 if c.config.Bugs.TrailingDataWithFinished && msgType == typeFinished { 1145 // Add a 0 to the record. Note unused bytes in |data| may be owned by the 1146 // caller, so we force a new allocation. 1147 data = append(data[:len(data):len(data)], 0) 1148 } 1149 } 1150 1151 if c.isDTLS { 1152 return c.dtlsWriteRecord(typ, data) 1153 } 1154 if c.config.Bugs.MockQUICTransport != nil { 1155 return c.config.Bugs.MockQUICTransport.writeRecord(typ, data) 1156 } 1157 1158 if typ == recordTypeHandshake { 1159 if c.config.Bugs.SendHelloRequestBeforeEveryHandshakeMessage { 1160 newData := make([]byte, 0, 4+len(data)) 1161 newData = append(newData, typeHelloRequest, 0, 0, 0) 1162 newData = append(newData, data...) 1163 data = newData 1164 } 1165 1166 if c.config.Bugs.PackHandshakeFlight { 1167 c.pendingFlight.Write(data) 1168 return len(data), nil 1169 } 1170 } 1171 1172 // Flush buffered data before writing anything. 1173 if err := c.flushHandshake(); err != nil { 1174 return 0, err 1175 } 1176 1177 if typ == recordTypeApplicationData && c.config.Bugs.SendPostHandshakeChangeCipherSpec { 1178 if _, err := c.doWriteRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil { 1179 return 0, err 1180 } 1181 } 1182 1183 return c.doWriteRecord(typ, data) 1184} 1185 1186func (c *Conn) doWriteRecord(typ recordType, data []byte) (n int, err error) { 1187 recordHeaderLen := c.out.recordHeaderLen() 1188 b := c.out.newBlock() 1189 first := true 1190 isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello 1191 for len(data) > 0 || first { 1192 m := len(data) 1193 if m > maxPlaintext && !c.config.Bugs.SendLargeRecords { 1194 m = maxPlaintext 1195 } 1196 if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength { 1197 m = c.config.Bugs.MaxHandshakeRecordLength 1198 // By default, do not fragment the client_version or 1199 // server_version, which are located in the first 6 1200 // bytes. 1201 if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 { 1202 m = 6 1203 } 1204 } 1205 explicitIVLen := 0 1206 explicitIVIsSeq := false 1207 first = false 1208 1209 var cbc cbcMode 1210 if c.out.version >= VersionTLS11 { 1211 var ok bool 1212 if cbc, ok = c.out.cipher.(cbcMode); ok { 1213 explicitIVLen = cbc.BlockSize() 1214 } 1215 } 1216 if explicitIVLen == 0 { 1217 if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce { 1218 explicitIVLen = 8 1219 // The AES-GCM construction in TLS has an 1220 // explicit nonce so that the nonce can be 1221 // random. However, the nonce is only 8 bytes 1222 // which is too small for a secure, random 1223 // nonce. Therefore we use the sequence number 1224 // as the nonce. 1225 explicitIVIsSeq = true 1226 } 1227 } 1228 b.resize(recordHeaderLen + explicitIVLen + m) 1229 b.data[0] = byte(typ) 1230 if c.vers >= VersionTLS13 && c.out.cipher != nil { 1231 b.data[0] = byte(recordTypeApplicationData) 1232 if outerType := c.config.Bugs.OuterRecordType; outerType != 0 { 1233 b.data[0] = byte(outerType) 1234 } 1235 } 1236 vers := c.vers 1237 if vers == 0 { 1238 // Some TLS servers fail if the record version is 1239 // greater than TLS 1.0 for the initial ClientHello. 1240 // 1241 // TLS 1.3 fixes the version number in the record 1242 // layer to {3, 1}. 1243 vers = VersionTLS10 1244 } 1245 if c.vers >= VersionTLS13 || c.out.version >= VersionTLS13 { 1246 vers = VersionTLS12 1247 } 1248 1249 if c.config.Bugs.SendRecordVersion != 0 { 1250 vers = c.config.Bugs.SendRecordVersion 1251 } 1252 if c.vers == 0 && c.config.Bugs.SendInitialRecordVersion != 0 { 1253 vers = c.config.Bugs.SendInitialRecordVersion 1254 } 1255 b.data[1] = byte(vers >> 8) 1256 b.data[2] = byte(vers) 1257 b.data[3] = byte(m >> 8) 1258 b.data[4] = byte(m) 1259 if explicitIVLen > 0 { 1260 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 1261 if explicitIVIsSeq { 1262 copy(explicitIV, c.out.seq[:]) 1263 } else { 1264 if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil { 1265 break 1266 } 1267 } 1268 } 1269 copy(b.data[recordHeaderLen+explicitIVLen:], data) 1270 c.out.encrypt(b, explicitIVLen, typ) 1271 _, err = c.conn.Write(b.data) 1272 if err != nil { 1273 break 1274 } 1275 n += m 1276 data = data[m:] 1277 } 1278 c.out.freeBlock(b) 1279 1280 if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 { 1281 err = c.out.changeCipherSpec(c.config) 1282 if err != nil { 1283 return n, c.sendAlertLocked(alertLevelError, err.(alert)) 1284 } 1285 } 1286 return 1287} 1288 1289func (c *Conn) flushHandshake() error { 1290 if c.isDTLS { 1291 return c.dtlsFlushHandshake() 1292 } 1293 1294 for c.pendingFlight.Len() > 0 { 1295 var buf [maxPlaintext]byte 1296 n, _ := c.pendingFlight.Read(buf[:]) 1297 if _, err := c.doWriteRecord(recordTypeHandshake, buf[:n]); err != nil { 1298 return err 1299 } 1300 } 1301 1302 c.pendingFlight.Reset() 1303 return nil 1304} 1305 1306func (c *Conn) doReadHandshake() ([]byte, error) { 1307 if c.isDTLS { 1308 return c.dtlsDoReadHandshake() 1309 } 1310 1311 for c.hand.Len() < 4 { 1312 if err := c.in.err; err != nil { 1313 return nil, err 1314 } 1315 if err := c.readRecord(recordTypeHandshake); err != nil { 1316 return nil, err 1317 } 1318 } 1319 1320 data := c.hand.Bytes() 1321 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 1322 if n > maxHandshake { 1323 return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError)) 1324 } 1325 for c.hand.Len() < 4+n { 1326 if err := c.in.err; err != nil { 1327 return nil, err 1328 } 1329 if err := c.readRecord(recordTypeHandshake); err != nil { 1330 return nil, err 1331 } 1332 } 1333 return c.hand.Next(4 + n), nil 1334} 1335 1336// readHandshake reads the next handshake message from 1337// the record layer. 1338// c.in.Mutex < L; c.out.Mutex < L. 1339func (c *Conn) readHandshake() (interface{}, error) { 1340 data, err := c.doReadHandshake() 1341 if err != nil { 1342 return nil, err 1343 } 1344 1345 var m handshakeMessage 1346 switch data[0] { 1347 case typeHelloRequest: 1348 m = new(helloRequestMsg) 1349 case typeClientHello: 1350 m = &clientHelloMsg{ 1351 isDTLS: c.isDTLS, 1352 } 1353 case typeServerHello: 1354 m = &serverHelloMsg{ 1355 isDTLS: c.isDTLS, 1356 } 1357 case typeNewSessionTicket: 1358 m = &newSessionTicketMsg{ 1359 vers: c.wireVersion, 1360 isDTLS: c.isDTLS, 1361 } 1362 case typeEncryptedExtensions: 1363 if c.isClient { 1364 m = new(encryptedExtensionsMsg) 1365 } else { 1366 m = new(clientEncryptedExtensionsMsg) 1367 } 1368 case typeCertificate: 1369 m = &certificateMsg{ 1370 hasRequestContext: c.vers >= VersionTLS13, 1371 } 1372 case typeCompressedCertificate: 1373 m = new(compressedCertificateMsg) 1374 case typeCertificateRequest: 1375 m = &certificateRequestMsg{ 1376 vers: c.wireVersion, 1377 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1378 hasRequestContext: c.vers >= VersionTLS13, 1379 } 1380 case typeCertificateStatus: 1381 m = new(certificateStatusMsg) 1382 case typeServerKeyExchange: 1383 m = new(serverKeyExchangeMsg) 1384 case typeServerHelloDone: 1385 m = new(serverHelloDoneMsg) 1386 case typeClientKeyExchange: 1387 m = new(clientKeyExchangeMsg) 1388 case typeCertificateVerify: 1389 m = &certificateVerifyMsg{ 1390 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1391 } 1392 case typeNextProtocol: 1393 m = new(nextProtoMsg) 1394 case typeFinished: 1395 m = new(finishedMsg) 1396 case typeHelloVerifyRequest: 1397 m = new(helloVerifyRequestMsg) 1398 case typeChannelID: 1399 m = new(channelIDMsg) 1400 case typeKeyUpdate: 1401 m = new(keyUpdateMsg) 1402 case typeEndOfEarlyData: 1403 m = new(endOfEarlyDataMsg) 1404 default: 1405 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1406 } 1407 1408 // The handshake message unmarshallers 1409 // expect to be able to keep references to data, 1410 // so pass in a fresh copy that won't be overwritten. 1411 data = append([]byte(nil), data...) 1412 1413 if data[0] == typeServerHello && len(data) >= 38 { 1414 vers := uint16(data[4])<<8 | uint16(data[5]) 1415 if vers == VersionTLS12 && bytes.Equal(data[6:38], tls13HelloRetryRequest) { 1416 m = new(helloRetryRequestMsg) 1417 } 1418 } 1419 1420 if !m.unmarshal(data) { 1421 return nil, c.in.setErrorLocked(c.sendAlert(alertDecodeError)) 1422 } 1423 return m, nil 1424} 1425 1426// skipPacket processes all the DTLS records in packet. It updates 1427// sequence number expectations but otherwise ignores them. 1428func (c *Conn) skipPacket(packet []byte) error { 1429 for len(packet) > 0 { 1430 if len(packet) < 13 { 1431 return errors.New("tls: bad packet") 1432 } 1433 // Dropped packets are completely ignored save to update 1434 // expected sequence numbers for this and the next epoch. (We 1435 // don't assert on the contents of the packets both for 1436 // simplicity and because a previous test with one shorter 1437 // timeout schedule would have done so.) 1438 epoch := packet[3:5] 1439 seq := packet[5:11] 1440 length := uint16(packet[11])<<8 | uint16(packet[12]) 1441 if bytes.Equal(c.in.seq[:2], epoch) { 1442 if bytes.Compare(seq, c.in.seq[2:]) < 0 { 1443 return errors.New("tls: sequence mismatch") 1444 } 1445 copy(c.in.seq[2:], seq) 1446 c.in.incSeq(false) 1447 } else { 1448 if bytes.Compare(seq, c.in.nextSeq[:]) < 0 { 1449 return errors.New("tls: sequence mismatch") 1450 } 1451 copy(c.in.nextSeq[:], seq) 1452 c.in.incNextSeq() 1453 } 1454 if len(packet) < 13+int(length) { 1455 return errors.New("tls: bad packet") 1456 } 1457 packet = packet[13+length:] 1458 } 1459 return nil 1460} 1461 1462// simulatePacketLoss simulates the loss of a handshake leg from the 1463// peer based on the schedule in c.config.Bugs. If resendFunc is 1464// non-nil, it is called after each simulated timeout to retransmit 1465// handshake messages from the local end. This is used in cases where 1466// the peer retransmits on a stale Finished rather than a timeout. 1467func (c *Conn) simulatePacketLoss(resendFunc func()) error { 1468 if len(c.config.Bugs.TimeoutSchedule) == 0 { 1469 return nil 1470 } 1471 if !c.isDTLS { 1472 return errors.New("tls: TimeoutSchedule may only be set in DTLS") 1473 } 1474 if c.config.Bugs.PacketAdaptor == nil { 1475 return errors.New("tls: TimeoutSchedule set without PacketAdapter") 1476 } 1477 for _, timeout := range c.config.Bugs.TimeoutSchedule { 1478 // Simulate a timeout. 1479 packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout) 1480 if err != nil { 1481 return err 1482 } 1483 for _, packet := range packets { 1484 if err := c.skipPacket(packet); err != nil { 1485 return err 1486 } 1487 } 1488 if resendFunc != nil { 1489 resendFunc() 1490 } 1491 } 1492 return nil 1493} 1494 1495func (c *Conn) SendHalfHelloRequest() error { 1496 if err := c.Handshake(); err != nil { 1497 return err 1498 } 1499 1500 c.out.Lock() 1501 defer c.out.Unlock() 1502 1503 if _, err := c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0}); err != nil { 1504 return err 1505 } 1506 return c.flushHandshake() 1507} 1508 1509// Write writes data to the connection. 1510func (c *Conn) Write(b []byte) (int, error) { 1511 if err := c.Handshake(); err != nil { 1512 return 0, err 1513 } 1514 1515 c.out.Lock() 1516 defer c.out.Unlock() 1517 1518 if err := c.out.err; err != nil { 1519 return 0, err 1520 } 1521 1522 if !c.handshakeComplete { 1523 return 0, alertInternalError 1524 } 1525 1526 if c.keyUpdateRequested { 1527 if err := c.sendKeyUpdateLocked(keyUpdateNotRequested); err != nil { 1528 return 0, err 1529 } 1530 c.keyUpdateRequested = false 1531 } 1532 1533 if c.config.Bugs.SendSpuriousAlert != 0 { 1534 c.sendAlertLocked(alertLevelError, c.config.Bugs.SendSpuriousAlert) 1535 } 1536 1537 if c.config.Bugs.SendHelloRequestBeforeEveryAppDataRecord { 1538 c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0, 0, 0}) 1539 c.flushHandshake() 1540 } 1541 1542 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 1543 // attack when using block mode ciphers due to predictable IVs. 1544 // This can be prevented by splitting each Application Data 1545 // record into two records, effectively randomizing the IV. 1546 // 1547 // http://www.openssl.org/~bodo/tls-cbc.txt 1548 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1549 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 1550 1551 var m int 1552 if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS { 1553 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1554 n, err := c.writeRecord(recordTypeApplicationData, b[:1]) 1555 if err != nil { 1556 return n, c.out.setErrorLocked(err) 1557 } 1558 m, b = 1, b[1:] 1559 } 1560 } 1561 1562 n, err := c.writeRecord(recordTypeApplicationData, b) 1563 return n + m, c.out.setErrorLocked(err) 1564} 1565 1566func (c *Conn) processTLS13NewSessionTicket(newSessionTicket *newSessionTicketMsg, cipherSuite *cipherSuite) error { 1567 if c.config.Bugs.ExpectGREASE && !newSessionTicket.hasGREASEExtension { 1568 return errors.New("tls: no GREASE ticket extension found") 1569 } 1570 1571 if c.config.Bugs.ExpectTicketEarlyData && newSessionTicket.maxEarlyDataSize == 0 { 1572 return errors.New("tls: no early_data ticket extension found") 1573 } 1574 1575 if c.config.Bugs.ExpectNoNewSessionTicket { 1576 return errors.New("tls: received unexpected NewSessionTicket") 1577 } 1578 1579 if c.config.ClientSessionCache == nil || newSessionTicket.ticketLifetime == 0 { 1580 return nil 1581 } 1582 1583 session := &ClientSessionState{ 1584 sessionTicket: newSessionTicket.ticket, 1585 vers: c.vers, 1586 wireVersion: c.wireVersion, 1587 cipherSuite: cipherSuite, 1588 secret: deriveSessionPSK(cipherSuite, c.wireVersion, c.resumptionSecret, newSessionTicket.ticketNonce), 1589 serverCertificates: c.peerCertificates, 1590 sctList: c.sctList, 1591 ocspResponse: c.ocspResponse, 1592 ticketCreationTime: c.config.time(), 1593 ticketExpiration: c.config.time().Add(time.Duration(newSessionTicket.ticketLifetime) * time.Second), 1594 ticketAgeAdd: newSessionTicket.ticketAgeAdd, 1595 maxEarlyDataSize: newSessionTicket.maxEarlyDataSize, 1596 earlyALPN: c.clientProtocol, 1597 hasApplicationSettings: c.hasApplicationSettings, 1598 localApplicationSettings: c.localApplicationSettings, 1599 peerApplicationSettings: c.peerApplicationSettings, 1600 } 1601 1602 cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config) 1603 _, ok := c.config.ClientSessionCache.Get(cacheKey) 1604 if !ok || !c.config.Bugs.UseFirstSessionTicket { 1605 c.config.ClientSessionCache.Put(cacheKey, session) 1606 } 1607 return nil 1608} 1609 1610func (c *Conn) handlePostHandshakeMessage() error { 1611 msg, err := c.readHandshake() 1612 if err != nil { 1613 return err 1614 } 1615 1616 if c.vers < VersionTLS13 { 1617 if !c.isClient { 1618 c.sendAlert(alertUnexpectedMessage) 1619 return errors.New("tls: unexpected post-handshake message") 1620 } 1621 1622 _, ok := msg.(*helloRequestMsg) 1623 if !ok { 1624 c.sendAlert(alertUnexpectedMessage) 1625 return alertUnexpectedMessage 1626 } 1627 1628 c.handshakeComplete = false 1629 return c.Handshake() 1630 } 1631 1632 if c.isClient { 1633 if newSessionTicket, ok := msg.(*newSessionTicketMsg); ok { 1634 return c.processTLS13NewSessionTicket(newSessionTicket, c.cipherSuite) 1635 } 1636 } 1637 1638 if keyUpdate, ok := msg.(*keyUpdateMsg); ok { 1639 c.keyUpdateSeen = true 1640 1641 if c.config.Bugs.RejectUnsolicitedKeyUpdate { 1642 return errors.New("tls: unexpected KeyUpdate message") 1643 } 1644 if err := c.useInTrafficSecret(encryptionApplication, c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret)); err != nil { 1645 return err 1646 } 1647 if keyUpdate.keyUpdateRequest == keyUpdateRequested { 1648 c.keyUpdateRequested = true 1649 } 1650 return nil 1651 } 1652 1653 c.sendAlert(alertUnexpectedMessage) 1654 return errors.New("tls: unexpected post-handshake message") 1655} 1656 1657// Reads a KeyUpdate acknowledgment from the peer. There may not be any 1658// application data records before the message. 1659func (c *Conn) ReadKeyUpdateACK() error { 1660 c.in.Lock() 1661 defer c.in.Unlock() 1662 1663 msg, err := c.readHandshake() 1664 if err != nil { 1665 return err 1666 } 1667 1668 keyUpdate, ok := msg.(*keyUpdateMsg) 1669 if !ok { 1670 c.sendAlert(alertUnexpectedMessage) 1671 return fmt.Errorf("tls: unexpected message (%T) when reading KeyUpdate", msg) 1672 } 1673 1674 if keyUpdate.keyUpdateRequest != keyUpdateNotRequested { 1675 return errors.New("tls: received invalid KeyUpdate message") 1676 } 1677 1678 return c.useInTrafficSecret(encryptionApplication, c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret)) 1679} 1680 1681func (c *Conn) Renegotiate() error { 1682 if !c.isClient { 1683 helloReq := new(helloRequestMsg).marshal() 1684 if c.config.Bugs.BadHelloRequest != nil { 1685 helloReq = c.config.Bugs.BadHelloRequest 1686 } 1687 c.writeRecord(recordTypeHandshake, helloReq) 1688 c.flushHandshake() 1689 } 1690 1691 c.handshakeComplete = false 1692 return c.Handshake() 1693} 1694 1695// Read can be made to time out and return a net.Error with Timeout() == true 1696// after a fixed time limit; see SetDeadline and SetReadDeadline. 1697func (c *Conn) Read(b []byte) (n int, err error) { 1698 if err = c.Handshake(); err != nil { 1699 return 1700 } 1701 1702 c.in.Lock() 1703 defer c.in.Unlock() 1704 1705 // Some OpenSSL servers send empty records in order to randomize the 1706 // CBC IV. So this loop ignores a limited number of empty records. 1707 const maxConsecutiveEmptyRecords = 100 1708 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 1709 for c.input == nil && c.in.err == nil { 1710 if err := c.readRecord(recordTypeApplicationData); err != nil { 1711 // Soft error, like EAGAIN 1712 return 0, err 1713 } 1714 for c.hand.Len() > 0 { 1715 // We received handshake bytes, indicating a 1716 // post-handshake message. 1717 if err := c.handlePostHandshakeMessage(); err != nil { 1718 return 0, err 1719 } 1720 } 1721 } 1722 if err := c.in.err; err != nil { 1723 return 0, err 1724 } 1725 1726 n, err = c.input.Read(b) 1727 if c.input.off >= len(c.input.data) || c.isDTLS { 1728 c.in.freeBlock(c.input) 1729 c.input = nil 1730 } 1731 1732 // If a close-notify alert is waiting, read it so that 1733 // we can return (n, EOF) instead of (n, nil), to signal 1734 // to the HTTP response reading goroutine that the 1735 // connection is now closed. This eliminates a race 1736 // where the HTTP response reading goroutine would 1737 // otherwise not observe the EOF until its next read, 1738 // by which time a client goroutine might have already 1739 // tried to reuse the HTTP connection for a new 1740 // request. 1741 // See https://codereview.appspot.com/76400046 1742 // and http://golang.org/issue/3514 1743 if ri := c.rawInput; ri != nil && 1744 n != 0 && err == nil && 1745 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 1746 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 1747 err = recErr // will be io.EOF on closeNotify 1748 } 1749 } 1750 1751 if n != 0 || err != nil { 1752 return n, err 1753 } 1754 } 1755 1756 return 0, io.ErrNoProgress 1757} 1758 1759// Close closes the connection. 1760func (c *Conn) Close() error { 1761 var alertErr error 1762 1763 c.handshakeMutex.Lock() 1764 defer c.handshakeMutex.Unlock() 1765 if c.handshakeComplete && !c.config.Bugs.NoCloseNotify { 1766 alert := alertCloseNotify 1767 if c.config.Bugs.SendAlertOnShutdown != 0 { 1768 alert = c.config.Bugs.SendAlertOnShutdown 1769 } 1770 alertErr = c.sendAlert(alert) 1771 // Clear local alerts when sending alerts so we continue to wait 1772 // for the peer rather than closing the socket early. 1773 if opErr, ok := alertErr.(*net.OpError); ok && opErr.Op == "local error" { 1774 alertErr = nil 1775 } 1776 } 1777 1778 // Consume a close_notify from the peer if one hasn't been received 1779 // already. This avoids the peer from failing |SSL_shutdown| due to a 1780 // write failing. 1781 if c.handshakeComplete && alertErr == nil && c.config.Bugs.ExpectCloseNotify { 1782 for c.in.error() == nil { 1783 c.readRecord(recordTypeAlert) 1784 } 1785 if c.in.error() != io.EOF { 1786 alertErr = c.in.error() 1787 } 1788 } 1789 1790 if err := c.conn.Close(); err != nil { 1791 return err 1792 } 1793 return alertErr 1794} 1795 1796// Handshake runs the client or server handshake 1797// protocol if it has not yet been run. 1798// Most uses of this package need not call Handshake 1799// explicitly: the first Read or Write will call it automatically. 1800func (c *Conn) Handshake() error { 1801 c.handshakeMutex.Lock() 1802 defer c.handshakeMutex.Unlock() 1803 if err := c.handshakeErr; err != nil { 1804 return err 1805 } 1806 if c.handshakeComplete { 1807 return nil 1808 } 1809 1810 if c.isDTLS && c.config.Bugs.SendSplitAlert { 1811 c.conn.Write([]byte{ 1812 byte(recordTypeAlert), // type 1813 0xfe, 0xff, // version 1814 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence 1815 0x0, 0x2, // length 1816 }) 1817 c.conn.Write([]byte{alertLevelError, byte(alertInternalError)}) 1818 } 1819 if data := c.config.Bugs.AppDataBeforeHandshake; data != nil { 1820 c.writeRecord(recordTypeApplicationData, data) 1821 } 1822 if c.isClient { 1823 c.handshakeErr = c.clientHandshake() 1824 } else { 1825 c.handshakeErr = c.serverHandshake() 1826 } 1827 if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType { 1828 c.writeRecord(recordType(42), []byte("invalid record")) 1829 } 1830 return c.handshakeErr 1831} 1832 1833// ConnectionState returns basic TLS details about the connection. 1834func (c *Conn) ConnectionState() ConnectionState { 1835 c.handshakeMutex.Lock() 1836 defer c.handshakeMutex.Unlock() 1837 1838 var state ConnectionState 1839 state.HandshakeComplete = c.handshakeComplete 1840 if c.handshakeComplete { 1841 state.Version = c.vers 1842 state.NegotiatedProtocol = c.clientProtocol 1843 state.DidResume = c.didResume 1844 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1845 state.NegotiatedProtocolFromALPN = c.usedALPN 1846 state.CipherSuite = c.cipherSuite.id 1847 state.PeerCertificates = c.peerCertificates 1848 state.VerifiedChains = c.verifiedChains 1849 state.OCSPResponse = c.ocspResponse 1850 state.ServerName = c.serverName 1851 state.ChannelID = c.channelID 1852 state.SRTPProtectionProfile = c.srtpProtectionProfile 1853 state.TLSUnique = c.firstFinished[:] 1854 state.SCTList = c.sctList 1855 state.PeerSignatureAlgorithm = c.peerSignatureAlgorithm 1856 state.CurveID = c.curveID 1857 state.QUICTransportParams = c.quicTransportParams 1858 state.QUICTransportParamsLegacy = c.quicTransportParamsLegacy 1859 state.HasApplicationSettings = c.hasApplicationSettings 1860 state.PeerApplicationSettings = c.peerApplicationSettings 1861 state.ECHAccepted = c.echAccepted 1862 } 1863 1864 return state 1865} 1866 1867// VerifyHostname checks that the peer certificate chain is valid for 1868// connecting to host. If so, it returns nil; if not, it returns an error 1869// describing the problem. 1870func (c *Conn) VerifyHostname(host string) error { 1871 c.handshakeMutex.Lock() 1872 defer c.handshakeMutex.Unlock() 1873 if !c.isClient { 1874 return errors.New("tls: VerifyHostname called on TLS server connection") 1875 } 1876 if !c.handshakeComplete { 1877 return errors.New("tls: handshake has not yet been performed") 1878 } 1879 return c.peerCertificates[0].VerifyHostname(host) 1880} 1881 1882func (c *Conn) exportKeyingMaterialTLS13(length int, secret, label, context []byte) []byte { 1883 hash := c.cipherSuite.hash() 1884 exporterKeyingLabel := []byte("exporter") 1885 contextHash := hash.New() 1886 contextHash.Write(context) 1887 exporterContext := hash.New().Sum(nil) 1888 derivedSecret := hkdfExpandLabel(c.cipherSuite.hash(), secret, label, exporterContext, hash.Size()) 1889 return hkdfExpandLabel(c.cipherSuite.hash(), derivedSecret, exporterKeyingLabel, contextHash.Sum(nil), length) 1890} 1891 1892// ExportKeyingMaterial exports keying material from the current connection 1893// state, as per RFC 5705. 1894func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) { 1895 c.handshakeMutex.Lock() 1896 defer c.handshakeMutex.Unlock() 1897 if !c.handshakeComplete { 1898 return nil, errors.New("tls: handshake has not yet been performed") 1899 } 1900 1901 if c.vers >= VersionTLS13 { 1902 return c.exportKeyingMaterialTLS13(length, c.exporterSecret, label, context), nil 1903 } 1904 1905 seedLen := len(c.clientRandom) + len(c.serverRandom) 1906 if useContext { 1907 seedLen += 2 + len(context) 1908 } 1909 seed := make([]byte, 0, seedLen) 1910 seed = append(seed, c.clientRandom[:]...) 1911 seed = append(seed, c.serverRandom[:]...) 1912 if useContext { 1913 seed = append(seed, byte(len(context)>>8), byte(len(context))) 1914 seed = append(seed, context...) 1915 } 1916 result := make([]byte, length) 1917 prfForVersion(c.vers, c.cipherSuite)(result, c.exporterSecret, label, seed) 1918 return result, nil 1919} 1920 1921func (c *Conn) ExportEarlyKeyingMaterial(length int, label, context []byte) ([]byte, error) { 1922 if c.vers < VersionTLS13 { 1923 return nil, errors.New("tls: early exporters not defined before TLS 1.3") 1924 } 1925 1926 if c.earlyExporterSecret == nil { 1927 return nil, errors.New("tls: no early exporter secret") 1928 } 1929 1930 return c.exportKeyingMaterialTLS13(length, c.earlyExporterSecret, label, context), nil 1931} 1932 1933// noRenegotiationInfo returns true if the renegotiation info extension 1934// should be supported in the current handshake. 1935func (c *Conn) noRenegotiationInfo() bool { 1936 if c.config.Bugs.NoRenegotiationInfo { 1937 return true 1938 } 1939 if c.cipherSuite == nil && c.config.Bugs.NoRenegotiationInfoInInitial { 1940 return true 1941 } 1942 if c.cipherSuite != nil && c.config.Bugs.NoRenegotiationInfoAfterInitial { 1943 return true 1944 } 1945 return false 1946} 1947 1948func (c *Conn) SendNewSessionTicket(nonce []byte) error { 1949 if c.isClient || c.vers < VersionTLS13 { 1950 return errors.New("tls: cannot send post-handshake NewSessionTicket") 1951 } 1952 1953 var peerCertificatesRaw [][]byte 1954 for _, cert := range c.peerCertificates { 1955 peerCertificatesRaw = append(peerCertificatesRaw, cert.Raw) 1956 } 1957 1958 addBuffer := make([]byte, 4) 1959 _, err := io.ReadFull(c.config.rand(), addBuffer) 1960 if err != nil { 1961 c.sendAlert(alertInternalError) 1962 return errors.New("tls: short read from Rand: " + err.Error()) 1963 } 1964 ticketAgeAdd := uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]) 1965 1966 // TODO(davidben): Allow configuring these values. 1967 m := &newSessionTicketMsg{ 1968 vers: c.wireVersion, 1969 isDTLS: c.isDTLS, 1970 ticketLifetime: uint32(24 * time.Hour / time.Second), 1971 duplicateEarlyDataExtension: c.config.Bugs.DuplicateTicketEarlyData, 1972 customExtension: c.config.Bugs.CustomTicketExtension, 1973 ticketAgeAdd: ticketAgeAdd, 1974 ticketNonce: nonce, 1975 maxEarlyDataSize: c.config.MaxEarlyDataSize, 1976 } 1977 if c.config.Bugs.MockQUICTransport != nil && m.maxEarlyDataSize > 0 { 1978 m.maxEarlyDataSize = 0xffffffff 1979 } 1980 1981 if c.config.Bugs.SendTicketLifetime != 0 { 1982 m.ticketLifetime = uint32(c.config.Bugs.SendTicketLifetime / time.Second) 1983 } 1984 1985 state := sessionState{ 1986 vers: c.vers, 1987 cipherSuite: c.cipherSuite.id, 1988 secret: deriveSessionPSK(c.cipherSuite, c.wireVersion, c.resumptionSecret, nonce), 1989 certificates: peerCertificatesRaw, 1990 ticketCreationTime: c.config.time(), 1991 ticketExpiration: c.config.time().Add(time.Duration(m.ticketLifetime) * time.Second), 1992 ticketAgeAdd: uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]), 1993 earlyALPN: []byte(c.clientProtocol), 1994 hasApplicationSettings: c.hasApplicationSettings, 1995 localApplicationSettings: c.localApplicationSettings, 1996 peerApplicationSettings: c.peerApplicationSettings, 1997 } 1998 1999 if !c.config.Bugs.SendEmptySessionTicket { 2000 var err error 2001 m.ticket, err = c.encryptTicket(&state) 2002 if err != nil { 2003 return err 2004 } 2005 } 2006 c.out.Lock() 2007 defer c.out.Unlock() 2008 _, err = c.writeRecord(recordTypeHandshake, m.marshal()) 2009 return err 2010} 2011 2012func (c *Conn) SendKeyUpdate(keyUpdateRequest byte) error { 2013 c.out.Lock() 2014 defer c.out.Unlock() 2015 return c.sendKeyUpdateLocked(keyUpdateRequest) 2016} 2017 2018func (c *Conn) sendKeyUpdateLocked(keyUpdateRequest byte) error { 2019 if c.vers < VersionTLS13 { 2020 return errors.New("tls: attempted to send KeyUpdate before TLS 1.3") 2021 } 2022 2023 m := keyUpdateMsg{ 2024 keyUpdateRequest: keyUpdateRequest, 2025 } 2026 if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil { 2027 return err 2028 } 2029 if err := c.flushHandshake(); err != nil { 2030 return err 2031 } 2032 c.useOutTrafficSecret(encryptionApplication, c.out.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.out.trafficSecret)) 2033 return nil 2034} 2035 2036func (c *Conn) sendFakeEarlyData(len int) error { 2037 // Assemble a fake early data record. This does not use writeRecord 2038 // because the record layer may be using different keys at this point. 2039 payload := make([]byte, 5+len) 2040 payload[0] = byte(recordTypeApplicationData) 2041 payload[1] = 3 2042 payload[2] = 3 2043 payload[3] = byte(len >> 8) 2044 payload[4] = byte(len) 2045 _, err := c.conn.Write(payload) 2046 return err 2047} 2048