1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #define LOG_TAG "resolv"
30
31 #include "resolv_cache.h"
32
33 #include <resolv.h>
34 #include <stdarg.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <time.h>
38 #include <algorithm>
39 #include <mutex>
40 #include <set>
41 #include <string>
42 #include <unordered_map>
43 #include <vector>
44
45 #include <arpa/inet.h>
46 #include <arpa/nameser.h>
47 #include <errno.h>
48 #include <linux/if.h>
49 #include <net/if.h>
50 #include <netdb.h>
51
52 #include <aidl/android/net/IDnsResolver.h>
53 #include <android-base/logging.h>
54 #include <android-base/parseint.h>
55 #include <android-base/strings.h>
56 #include <android-base/thread_annotations.h>
57 #include <android/multinetwork.h> // ResNsendFlags
58
59 #include <server_configurable_flags/get_flags.h>
60
61 #include "DnsStats.h"
62 #include "Experiments.h"
63 #include "res_comp.h"
64 #include "res_debug.h"
65 #include "resolv_private.h"
66 #include "util.h"
67
68 using aidl::android::net::IDnsResolver;
69 using aidl::android::net::ResolverOptionsParcel;
70 using android::net::DnsQueryEvent;
71 using android::net::DnsStats;
72 using android::net::Experiments;
73 using android::net::PROTO_DOH;
74 using android::net::PROTO_DOT;
75 using android::net::PROTO_MDNS;
76 using android::net::PROTO_TCP;
77 using android::net::PROTO_UDP;
78 using android::net::Protocol;
79 using android::netdutils::DumpWriter;
80 using android::netdutils::IPSockAddr;
81 using std::span;
82
83 /* This code implements a small and *simple* DNS resolver cache.
84 *
85 * It is only used to cache DNS answers for a time defined by the smallest TTL
86 * among the answer records in order to reduce DNS traffic. It is not supposed
87 * to be a full DNS cache, since we plan to implement that in the future in a
88 * dedicated process running on the system.
89 *
90 * Note that its design is kept simple very intentionally, i.e.:
91 *
92 * - it takes raw DNS query packet data as input, and returns raw DNS
93 * answer packet data as output
94 *
95 * (this means that two similar queries that encode the DNS name
96 * differently will be treated distinctly).
97 *
98 * the smallest TTL value among the answer records are used as the time
99 * to keep an answer in the cache.
100 *
101 * this is bad, but we absolutely want to avoid parsing the answer packets
102 * (and should be solved by the later full DNS cache process).
103 *
104 * - the implementation is just a (query-data) => (answer-data) hash table
105 * with a trivial least-recently-used expiration policy.
106 *
107 * Doing this keeps the code simple and avoids to deal with a lot of things
108 * that a full DNS cache is expected to do.
109 *
110 * The API is also very simple:
111 *
112 * - the client calls resolv_cache_lookup() before performing a query
113 *
114 * If the function returns RESOLV_CACHE_FOUND, a copy of the answer data
115 * has been copied into the client-provided answer buffer.
116 *
117 * If the function returns RESOLV_CACHE_NOTFOUND, the client should perform
118 * a request normally, *then* call resolv_cache_add() to add the received
119 * answer to the cache.
120 *
121 * If the function returns RESOLV_CACHE_UNSUPPORTED, the client should
122 * perform a request normally, and *not* call resolv_cache_add()
123 *
124 * Note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
125 * is too short to accomodate the cached result.
126 */
127
128 /* Default number of entries kept in the cache. This value has been
129 * determined by browsing through various sites and counting the number
130 * of corresponding requests. Keep in mind that our framework is currently
131 * performing two requests per name lookup (one for IPv4, the other for IPv6)
132 *
133 * www.google.com 4
134 * www.ysearch.com 6
135 * www.amazon.com 8
136 * www.nytimes.com 22
137 * www.espn.com 28
138 * www.msn.com 28
139 * www.lemonde.fr 35
140 *
141 * (determined in 2009-2-17 from Paris, France, results may vary depending
142 * on location)
143 *
144 * most high-level websites use lots of media/ad servers with different names
145 * but these are generally reused when browsing through the site.
146 *
147 * As such, a value of 64 should be relatively comfortable at the moment.
148 *
149 * ******************************************
150 * * NOTE - this has changed.
151 * * 1) we've added IPv6 support so each dns query results in 2 responses
152 * * 2) we've made this a system-wide cache, so the cost is less (it's not
153 * * duplicated in each process) and the need is greater (more processes
154 * * making different requests).
155 * * Upping by 2x for IPv6
156 * * Upping by another 5x for the centralized nature
157 * *****************************************
158 */
159 const int CONFIG_MAX_ENTRIES = 64 * 2 * 5;
160 constexpr int DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY = -1;
161
_time_now(void)162 static time_t _time_now(void) {
163 struct timeval tv;
164
165 gettimeofday(&tv, NULL);
166 return tv.tv_sec;
167 }
168
169 /* reminder: the general format of a DNS packet is the following:
170 *
171 * HEADER (12 bytes)
172 * QUESTION (variable)
173 * ANSWER (variable)
174 * AUTHORITY (variable)
175 * ADDITIONNAL (variable)
176 *
177 * the HEADER is made of:
178 *
179 * ID : 16 : 16-bit unique query identification field
180 *
181 * QR : 1 : set to 0 for queries, and 1 for responses
182 * Opcode : 4 : set to 0 for queries
183 * AA : 1 : set to 0 for queries
184 * TC : 1 : truncation flag, will be set to 0 in queries
185 * RD : 1 : recursion desired
186 *
187 * RA : 1 : recursion available (0 in queries)
188 * Z : 3 : three reserved zero bits
189 * RCODE : 4 : response code (always 0=NOERROR in queries)
190 *
191 * QDCount: 16 : question count
192 * ANCount: 16 : Answer count (0 in queries)
193 * NSCount: 16: Authority Record count (0 in queries)
194 * ARCount: 16: Additionnal Record count (0 in queries)
195 *
196 * the QUESTION is made of QDCount Question Record (QRs)
197 * the ANSWER is made of ANCount RRs
198 * the AUTHORITY is made of NSCount RRs
199 * the ADDITIONNAL is made of ARCount RRs
200 *
201 * Each Question Record (QR) is made of:
202 *
203 * QNAME : variable : Query DNS NAME
204 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
205 * CLASS : 16 : class of query (IN=1)
206 *
207 * Each Resource Record (RR) is made of:
208 *
209 * NAME : variable : DNS NAME
210 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
211 * CLASS : 16 : class of query (IN=1)
212 * TTL : 32 : seconds to cache this RR (0=none)
213 * RDLENGTH: 16 : size of RDDATA in bytes
214 * RDDATA : variable : RR data (depends on TYPE)
215 *
216 * Each QNAME contains a domain name encoded as a sequence of 'labels'
217 * terminated by a zero. Each label has the following format:
218 *
219 * LEN : 8 : lenght of label (MUST be < 64)
220 * NAME : 8*LEN : label length (must exclude dots)
221 *
222 * A value of 0 in the encoding is interpreted as the 'root' domain and
223 * terminates the encoding. So 'www.android.com' will be encoded as:
224 *
225 * <3>www<7>android<3>com<0>
226 *
227 * Where <n> represents the byte with value 'n'
228 *
229 * Each NAME reflects the QNAME of the question, but has a slightly more
230 * complex encoding in order to provide message compression. This is achieved
231 * by using a 2-byte pointer, with format:
232 *
233 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
234 * OFFSET : 14 : offset to another part of the DNS packet
235 *
236 * The offset is relative to the start of the DNS packet and must point
237 * A pointer terminates the encoding.
238 *
239 * The NAME can be encoded in one of the following formats:
240 *
241 * - a sequence of simple labels terminated by 0 (like QNAMEs)
242 * - a single pointer
243 * - a sequence of simple labels terminated by a pointer
244 *
245 * A pointer shall always point to either a pointer of a sequence of
246 * labels (which can themselves be terminated by either a 0 or a pointer)
247 *
248 * The expanded length of a given domain name should not exceed 255 bytes.
249 *
250 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
251 * records, only QNAMEs.
252 */
253
254 #define DNS_HEADER_SIZE 12
255
256 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
257 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
258 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
259 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
260 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
261
262 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
263
264 struct DnsPacket {
265 const uint8_t* base;
266 const uint8_t* end;
267 const uint8_t* cursor;
268 };
269
res_tolower(uint8_t c)270 static uint8_t res_tolower(uint8_t c) {
271 return (c >= 'A' && c <= 'Z') ? (c | 0x20) : c;
272 }
273
res_memcasecmp(const unsigned char * s1,const unsigned char * s2,size_t len)274 static int res_memcasecmp(const unsigned char *s1, const unsigned char *s2, size_t len) {
275 for (size_t i = 0; i < len; i++) {
276 int ch1 = *s1++;
277 int ch2 = *s2++;
278 int d = res_tolower(ch1) - res_tolower(ch2);
279 if (d != 0) {
280 return d;
281 }
282 }
283 return 0;
284 }
285
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)286 static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
287 packet->base = buff;
288 packet->end = buff + bufflen;
289 packet->cursor = buff;
290 }
291
_dnsPacket_rewind(DnsPacket * packet)292 static void _dnsPacket_rewind(DnsPacket* packet) {
293 packet->cursor = packet->base;
294 }
295
_dnsPacket_skip(DnsPacket * packet,int count)296 static void _dnsPacket_skip(DnsPacket* packet, int count) {
297 const uint8_t* p = packet->cursor + count;
298
299 if (p > packet->end) p = packet->end;
300
301 packet->cursor = p;
302 }
303
_dnsPacket_readInt16(DnsPacket * packet)304 static int _dnsPacket_readInt16(DnsPacket* packet) {
305 const uint8_t* p = packet->cursor;
306
307 if (p + 2 > packet->end) return -1;
308
309 packet->cursor = p + 2;
310 return (p[0] << 8) | p[1];
311 }
312
313 /** QUERY CHECKING **/
314
315 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
316 * the cursor is only advanced in the case of success
317 */
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)318 static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
319 const uint8_t* p = packet->cursor;
320
321 if (p + numBytes > packet->end) return 0;
322
323 if (memcmp(p, bytes, numBytes) != 0) return 0;
324
325 packet->cursor = p + numBytes;
326 return 1;
327 }
328
329 /* parse and skip a given QNAME stored in a query packet,
330 * from the current cursor position. returns 1 on success,
331 * or 0 for malformed data.
332 */
_dnsPacket_checkQName(DnsPacket * packet)333 static int _dnsPacket_checkQName(DnsPacket* packet) {
334 const uint8_t* p = packet->cursor;
335 const uint8_t* end = packet->end;
336
337 for (;;) {
338 int c;
339
340 if (p >= end) break;
341
342 c = *p++;
343
344 if (c == 0) {
345 packet->cursor = p;
346 return 1;
347 }
348
349 /* we don't expect label compression in QNAMEs */
350 if (c >= 64) break;
351
352 p += c;
353 /* we rely on the bound check at the start
354 * of the loop here */
355 }
356 /* malformed data */
357 LOG(INFO) << __func__ << ": malformed QNAME";
358 return 0;
359 }
360
361 /* parse and skip a given QR stored in a packet.
362 * returns 1 on success, and 0 on failure
363 */
_dnsPacket_checkQR(DnsPacket * packet)364 static int _dnsPacket_checkQR(DnsPacket* packet) {
365 if (!_dnsPacket_checkQName(packet)) return 0;
366
367 /* TYPE must be one of the things we support */
368 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
369 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
370 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
371 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
372 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
373 LOG(INFO) << __func__ << ": unsupported TYPE";
374 return 0;
375 }
376 /* CLASS must be IN */
377 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
378 LOG(INFO) << __func__ << ": unsupported CLASS";
379 return 0;
380 }
381
382 return 1;
383 }
384
385 /* check the header of a DNS Query packet, return 1 if it is one
386 * type of query we can cache, or 0 otherwise
387 */
_dnsPacket_checkQuery(DnsPacket * packet)388 static int _dnsPacket_checkQuery(DnsPacket* packet) {
389 const uint8_t* p = packet->base;
390 int qdCount, anCount, dnCount, arCount;
391
392 if (p + DNS_HEADER_SIZE > packet->end) {
393 LOG(INFO) << __func__ << ": query packet too small";
394 return 0;
395 }
396
397 /* QR must be set to 0, opcode must be 0 and AA must be 0 */
398 /* RA, Z, and RCODE must be 0 */
399 if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
400 LOG(INFO) << __func__ << ": query packet flags unsupported";
401 return 0;
402 }
403
404 /* Note that we ignore the TC, RD, CD, and AD bits here for the
405 * following reasons:
406 *
407 * - there is no point for a query packet sent to a server
408 * to have the TC bit set, but the implementation might
409 * set the bit in the query buffer for its own needs
410 * between a resolv_cache_lookup and a resolv_cache_add.
411 * We should not freak out if this is the case.
412 *
413 * - we consider that the result from a query might depend on
414 * the RD, AD, and CD bits, so these bits
415 * should be used to differentiate cached result.
416 *
417 * this implies that these bits are checked when hashing or
418 * comparing query packets, but not TC
419 */
420
421 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
422 qdCount = (p[4] << 8) | p[5];
423 anCount = (p[6] << 8) | p[7];
424 dnCount = (p[8] << 8) | p[9];
425 arCount = (p[10] << 8) | p[11];
426
427 if (anCount != 0 || dnCount != 0 || arCount > 1) {
428 LOG(INFO) << __func__ << ": query packet contains non-query records";
429 return 0;
430 }
431
432 if (qdCount == 0) {
433 LOG(INFO) << __func__ << ": query packet doesn't contain query record";
434 return 0;
435 }
436
437 /* Check QDCOUNT QRs */
438 packet->cursor = p + DNS_HEADER_SIZE;
439
440 for (; qdCount > 0; qdCount--)
441 if (!_dnsPacket_checkQR(packet)) return 0;
442
443 return 1;
444 }
445
446 /** QUERY HASHING SUPPORT
447 **
448 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
449 ** BEEN SUCCESFULLY CHECKED.
450 **/
451
452 /* use 32-bit FNV hash function */
453 #define FNV_MULT 16777619U
454 #define FNV_BASIS 2166136261U
455
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)456 static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
457 const uint8_t* p = packet->cursor;
458 const uint8_t* end = packet->end;
459
460 while (numBytes > 0 && p < end) {
461 hash = hash * FNV_MULT ^ *p++;
462 numBytes--;
463 }
464 packet->cursor = p;
465 return hash;
466 }
467
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)468 static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
469 const uint8_t* p = packet->cursor;
470 const uint8_t* end = packet->end;
471
472 for (;;) {
473 if (p >= end) { /* should not happen */
474 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
475 break;
476 }
477
478 int c = *p++;
479
480 if (c == 0) break;
481
482 if (c >= 64) {
483 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
484 break;
485 }
486 if (p + c >= end) {
487 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
488 break;
489 }
490
491 while (c > 0) {
492 uint8_t ch = *p++;
493 ch = res_tolower(ch);
494 hash = hash * FNV_MULT ^ ch;
495 c--;
496 }
497 }
498 packet->cursor = p;
499 return hash;
500 }
501
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)502 static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
503 hash = _dnsPacket_hashQName(packet, hash);
504 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
505 return hash;
506 }
507
_dnsPacket_hashRR(DnsPacket * packet,unsigned hash)508 static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
509 int rdlength;
510 hash = _dnsPacket_hashQR(packet, hash);
511 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
512 rdlength = _dnsPacket_readInt16(packet);
513 hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
514 return hash;
515 }
516
_dnsPacket_hashQuery(DnsPacket * packet)517 static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
518 unsigned hash = FNV_BASIS;
519 int count, arcount;
520 _dnsPacket_rewind(packet);
521
522 /* ignore the ID */
523 _dnsPacket_skip(packet, 2);
524
525 /* we ignore the TC bit for reasons explained in
526 * _dnsPacket_checkQuery().
527 *
528 * however we hash the RD bit to differentiate
529 * between answers for recursive and non-recursive
530 * queries.
531 */
532 hash = hash * FNV_MULT ^ (packet->base[2] & 1);
533
534 /* mark the first header byte as processed */
535 _dnsPacket_skip(packet, 1);
536
537 /* process the second header byte */
538 hash = _dnsPacket_hashBytes(packet, 1, hash);
539
540 /* read QDCOUNT */
541 count = _dnsPacket_readInt16(packet);
542
543 /* assume: ANcount and NScount are 0 */
544 _dnsPacket_skip(packet, 4);
545
546 /* read ARCOUNT */
547 arcount = _dnsPacket_readInt16(packet);
548
549 /* hash QDCOUNT QRs */
550 for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
551
552 /* hash ARCOUNT RRs */
553 for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
554
555 return hash;
556 }
557
558 /** QUERY COMPARISON
559 **
560 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
561 ** BEEN SUCCESSFULLY CHECKED.
562 **/
563
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)564 static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
565 const uint8_t* p1 = pack1->cursor;
566 const uint8_t* end1 = pack1->end;
567 const uint8_t* p2 = pack2->cursor;
568 const uint8_t* end2 = pack2->end;
569
570 for (;;) {
571 if (p1 >= end1 || p2 >= end2) {
572 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
573 break;
574 }
575 int c1 = *p1++;
576 int c2 = *p2++;
577 if (c1 != c2) break;
578
579 if (c1 == 0) {
580 pack1->cursor = p1;
581 pack2->cursor = p2;
582 return 1;
583 }
584 if (c1 >= 64) {
585 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
586 break;
587 }
588 if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
589 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
590 break;
591 }
592 if (res_memcasecmp(p1, p2, c1) != 0) break;
593 p1 += c1;
594 p2 += c1;
595 /* we rely on the bound checks at the start of the loop */
596 }
597 /* not the same, or one is malformed */
598 LOG(INFO) << __func__ << ": different DN";
599 return 0;
600 }
601
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)602 static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
603 const uint8_t* p1 = pack1->cursor;
604 const uint8_t* p2 = pack2->cursor;
605
606 if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
607
608 if (memcmp(p1, p2, numBytes) != 0) return 0;
609
610 pack1->cursor += numBytes;
611 pack2->cursor += numBytes;
612 return 1;
613 }
614
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)615 static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
616 /* compare domain name encoding + TYPE + CLASS */
617 if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
618 !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
619 return 0;
620
621 return 1;
622 }
623
_dnsPacket_isEqualRR(DnsPacket * pack1,DnsPacket * pack2)624 static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
625 int rdlength1, rdlength2;
626 /* compare query + TTL */
627 if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
628
629 /* compare RDATA */
630 rdlength1 = _dnsPacket_readInt16(pack1);
631 rdlength2 = _dnsPacket_readInt16(pack2);
632 if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
633
634 return 1;
635 }
636
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)637 static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
638 int count1, count2, arcount1, arcount2;
639
640 /* compare the headers, ignore most fields */
641 _dnsPacket_rewind(pack1);
642 _dnsPacket_rewind(pack2);
643
644 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
645 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
646 LOG(INFO) << __func__ << ": different RD";
647 return 0;
648 }
649
650 if (pack1->base[3] != pack2->base[3]) {
651 LOG(INFO) << __func__ << ": different CD or AD";
652 return 0;
653 }
654
655 /* mark ID and header bytes as compared */
656 _dnsPacket_skip(pack1, 4);
657 _dnsPacket_skip(pack2, 4);
658
659 /* compare QDCOUNT */
660 count1 = _dnsPacket_readInt16(pack1);
661 count2 = _dnsPacket_readInt16(pack2);
662 if (count1 != count2 || count1 < 0) {
663 LOG(INFO) << __func__ << ": different QDCOUNT";
664 return 0;
665 }
666
667 /* assume: ANcount and NScount are 0 */
668 _dnsPacket_skip(pack1, 4);
669 _dnsPacket_skip(pack2, 4);
670
671 /* compare ARCOUNT */
672 arcount1 = _dnsPacket_readInt16(pack1);
673 arcount2 = _dnsPacket_readInt16(pack2);
674 if (arcount1 != arcount2 || arcount1 < 0) {
675 LOG(INFO) << __func__ << ": different ARCOUNT";
676 return 0;
677 }
678
679 /* compare the QDCOUNT QRs */
680 for (; count1 > 0; count1--) {
681 if (!_dnsPacket_isEqualQR(pack1, pack2)) {
682 LOG(INFO) << __func__ << ": different QR";
683 return 0;
684 }
685 }
686
687 /* compare the ARCOUNT RRs */
688 for (; arcount1 > 0; arcount1--) {
689 if (!_dnsPacket_isEqualRR(pack1, pack2)) {
690 LOG(INFO) << __func__ << ": different additional RR";
691 return 0;
692 }
693 }
694 return 1;
695 }
696
697 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
698 * structure though they are conceptually part of the hash table.
699 *
700 * similarly, mru_next and mru_prev are part of the global MRU list
701 */
702 struct Entry {
703 unsigned int hash; /* hash value */
704 struct Entry* hlink; /* next in collision chain */
705 struct Entry* mru_prev;
706 struct Entry* mru_next;
707
708 const uint8_t* query;
709 int querylen;
710 const uint8_t* answer;
711 int answerlen;
712 time_t expires; /* time_t when the entry isn't valid any more */
713 int id; /* for debugging purpose */
714 };
715
716 /*
717 * Find the TTL for a negative DNS result. This is defined as the minimum
718 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
719 *
720 * Return 0 if not found.
721 */
answer_getNegativeTTL(ns_msg handle)722 static uint32_t answer_getNegativeTTL(ns_msg handle) {
723 int n, nscount;
724 uint32_t result = 0;
725 ns_rr rr;
726
727 nscount = ns_msg_count(handle, ns_s_ns);
728 for (n = 0; n < nscount; n++) {
729 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
730 const uint8_t* rdata = ns_rr_rdata(rr); // find the data
731 const uint8_t* edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
732 int len;
733 uint32_t ttl, rec_result = rr.ttl;
734
735 // find the MINIMUM-TTL field from the blob of binary data for this record
736 // skip the server name
737 len = dn_skipname(rdata, edata);
738 if (len == -1) continue; // error skipping
739 rdata += len;
740
741 // skip the admin name
742 len = dn_skipname(rdata, edata);
743 if (len == -1) continue; // error skipping
744 rdata += len;
745
746 if (edata - rdata != 5 * NS_INT32SZ) continue;
747 // skip: serial number + refresh interval + retry interval + expiry
748 rdata += NS_INT32SZ * 4;
749 // finally read the MINIMUM TTL
750 ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata));
751 if (ttl < rec_result) {
752 rec_result = ttl;
753 }
754 // Now that the record is read successfully, apply the new min TTL
755 if (n == 0 || rec_result < result) {
756 result = rec_result;
757 }
758 }
759 }
760 return result;
761 }
762
763 /*
764 * Parse the answer records and find the appropriate
765 * smallest TTL among the records. This might be from
766 * the answer records if found or from the SOA record
767 * if it's a negative result.
768 *
769 * The returned TTL is the number of seconds to
770 * keep the answer in the cache.
771 *
772 * In case of parse error zero (0) is returned which
773 * indicates that the answer shall not be cached.
774 */
answer_getTTL(span<const uint8_t> answer)775 static uint32_t answer_getTTL(span<const uint8_t> answer) {
776 ns_msg handle;
777 int ancount, n;
778 uint32_t result, ttl;
779 ns_rr rr;
780
781 result = 0;
782 if (ns_initparse(answer.data(), answer.size(), &handle) >= 0) {
783 // get number of answer records
784 ancount = ns_msg_count(handle, ns_s_an);
785
786 if (ancount == 0) {
787 // a response with no answers? Cache this negative result.
788 result = answer_getNegativeTTL(handle);
789 } else {
790 for (n = 0; n < ancount; n++) {
791 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
792 ttl = rr.ttl;
793 if (n == 0 || ttl < result) {
794 result = ttl;
795 }
796 } else {
797 PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n;
798 }
799 }
800 }
801 } else {
802 PLOG(INFO) << __func__ << ": ns_initparse failed";
803 }
804
805 LOG(INFO) << __func__ << ": TTL = " << result;
806 return result;
807 }
808
entry_free(Entry * e)809 static void entry_free(Entry* e) {
810 /* everything is allocated in a single memory block */
811 if (e) {
812 free(e);
813 }
814 }
815
entry_mru_remove(Entry * e)816 static void entry_mru_remove(Entry* e) {
817 e->mru_prev->mru_next = e->mru_next;
818 e->mru_next->mru_prev = e->mru_prev;
819 }
820
entry_mru_add(Entry * e,Entry * list)821 static void entry_mru_add(Entry* e, Entry* list) {
822 Entry* first = list->mru_next;
823
824 e->mru_next = first;
825 e->mru_prev = list;
826
827 list->mru_next = e;
828 first->mru_prev = e;
829 }
830
831 /* compute the hash of a given entry, this is a hash of most
832 * data in the query (key) */
entry_hash(const Entry * e)833 static unsigned entry_hash(const Entry* e) {
834 DnsPacket pack[1];
835
836 _dnsPacket_init(pack, e->query, e->querylen);
837 return _dnsPacket_hashQuery(pack);
838 }
839
840 /* initialize an Entry as a search key, this also checks the input query packet
841 * returns 1 on success, or 0 in case of unsupported/malformed data */
entry_init_key(Entry * e,span<const uint8_t> query)842 static int entry_init_key(Entry* e, span<const uint8_t> query) {
843 DnsPacket pack[1];
844
845 memset(e, 0, sizeof(*e));
846
847 e->query = query.data();
848 e->querylen = query.size();
849 e->hash = entry_hash(e);
850
851 _dnsPacket_init(pack, e->query, e->querylen);
852
853 return _dnsPacket_checkQuery(pack);
854 }
855
856 /* allocate a new entry as a cache node */
entry_alloc(const Entry * init,span<const uint8_t> answer)857 static Entry* entry_alloc(const Entry* init, span<const uint8_t> answer) {
858 Entry* e;
859 int size;
860
861 size = sizeof(*e) + init->querylen + answer.size();
862 e = (Entry*) calloc(size, 1);
863 if (e == NULL) return e;
864
865 e->hash = init->hash;
866 e->query = (const uint8_t*) (e + 1);
867 e->querylen = init->querylen;
868
869 memcpy((char*) e->query, init->query, e->querylen);
870
871 e->answer = e->query + e->querylen;
872 e->answerlen = answer.size();
873
874 memcpy((char*)e->answer, answer.data(), e->answerlen);
875
876 return e;
877 }
878
entry_equals(const Entry * e1,const Entry * e2)879 static int entry_equals(const Entry* e1, const Entry* e2) {
880 DnsPacket pack1[1], pack2[1];
881
882 if (e1->querylen != e2->querylen) {
883 return 0;
884 }
885 _dnsPacket_init(pack1, e1->query, e1->querylen);
886 _dnsPacket_init(pack2, e2->query, e2->querylen);
887
888 return _dnsPacket_isEqualQuery(pack1, pack2);
889 }
890
891 /* We use a simple hash table with external collision lists
892 * for simplicity, the hash-table fields 'hash' and 'hlink' are
893 * inlined in the Entry structure.
894 */
895
896 /* Maximum time for a thread to wait for an pending request */
897 constexpr int PENDING_REQUEST_TIMEOUT = 20;
898
899 // lock protecting everything in NetConfig.
900 static std::mutex cache_mutex;
901 static std::condition_variable cv;
902
903 namespace {
904
905 // Map format: ReturnCode:rate_denom
906 // if the ReturnCode is not associated with any rate_denom, use default
907 // Sampling rate varies by return code; events to log are chosen randomly, with a
908 // probability proportional to the sampling rate.
909 constexpr const char DEFAULT_SUBSAMPLING_MAP[] = "default:8 0:400 2:110 7:110";
910 constexpr const char DEFAULT_MDNS_SUBSAMPLING_MAP[] = "default:1";
911
resolv_get_dns_event_subsampling_map(bool isMdns)912 std::unordered_map<int, uint32_t> resolv_get_dns_event_subsampling_map(bool isMdns) {
913 using android::base::ParseInt;
914 using android::base::ParseUint;
915 using android::base::Split;
916 using server_configurable_flags::GetServerConfigurableFlag;
917 std::unordered_map<int, uint32_t> sampling_rate_map{};
918 const char* flag = isMdns ? "mdns_event_subsample_map" : "dns_event_subsample_map";
919 const char* defaultMap = isMdns ? DEFAULT_MDNS_SUBSAMPLING_MAP : DEFAULT_SUBSAMPLING_MAP;
920 const std::vector<std::string> subsampling_vector =
921 Split(GetServerConfigurableFlag("netd_native", flag, defaultMap), " ");
922
923 for (const auto& pair : subsampling_vector) {
924 std::vector<std::string> rate_denom = Split(pair, ":");
925 int return_code;
926 uint32_t denom;
927 if (rate_denom.size() != 2) {
928 LOG(ERROR) << __func__ << ": invalid subsampling_pair = " << pair;
929 continue;
930 }
931 if (rate_denom[0] == "default") {
932 return_code = DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY;
933 } else if (!ParseInt(rate_denom[0], &return_code)) {
934 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
935 continue;
936 }
937 if (!ParseUint(rate_denom[1], &denom)) {
938 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
939 continue;
940 }
941 sampling_rate_map[return_code] = denom;
942 }
943 return sampling_rate_map;
944 }
945
946 } // namespace
947
948 // Note that Cache is not thread-safe per se, access to its members must be protected
949 // by an external mutex.
950 //
951 // TODO: move all cache manipulation code here and make data members private.
952 struct Cache {
CacheCache953 Cache() {
954 entries.resize(CONFIG_MAX_ENTRIES);
955 mru_list.mru_prev = mru_list.mru_next = &mru_list;
956 }
~CacheCache957 ~Cache() { flush(); }
958
flushCache959 void flush() {
960 for (int nn = 0; nn < CONFIG_MAX_ENTRIES; nn++) {
961 Entry** pnode = (Entry**)&entries[nn];
962
963 while (*pnode) {
964 Entry* node = *pnode;
965 *pnode = node->hlink;
966 entry_free(node);
967 }
968 }
969
970 flushPendingRequests();
971
972 mru_list.mru_next = mru_list.mru_prev = &mru_list;
973 num_entries = 0;
974 last_id = 0;
975
976 LOG(INFO) << "DNS cache flushed";
977 }
978
flushPendingRequestsCache979 void flushPendingRequests() {
980 pending_req_info* ri = pending_requests.next;
981 while (ri) {
982 pending_req_info* tmp = ri;
983 ri = ri->next;
984 free(tmp);
985 }
986
987 pending_requests.next = nullptr;
988 cv.notify_all();
989 }
990
991 int num_entries = 0;
992
993 // TODO: convert to std::list
994 Entry mru_list;
995 int last_id = 0;
996 std::vector<Entry> entries;
997
998 // TODO: convert to std::vector
999 struct pending_req_info {
1000 unsigned int hash;
1001 struct pending_req_info* next;
1002 } pending_requests{};
1003 };
1004
1005 struct NetConfig {
NetConfigNetConfig1006 explicit NetConfig(unsigned netId) : netid(netId) {
1007 cache = std::make_unique<Cache>();
1008 dns_event_subsampling_map = resolv_get_dns_event_subsampling_map(false);
1009 mdns_event_subsampling_map = resolv_get_dns_event_subsampling_map(true);
1010 }
nameserverCountNetConfig1011 int nameserverCount() { return nameserverSockAddrs.size(); }
setOptionsNetConfig1012 int setOptions(const ResolverOptionsParcel& resolverOptions) {
1013 customizedTable.clear();
1014 for (const auto& host : resolverOptions.hosts) {
1015 if (!host.hostName.empty() && !host.ipAddr.empty())
1016 customizedTable.emplace(host.hostName, host.ipAddr);
1017 }
1018
1019 if (resolverOptions.tcMode < aidl::android::net::IDnsResolver::TC_MODE_DEFAULT ||
1020 resolverOptions.tcMode > aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP) {
1021 LOG(WARNING) << __func__ << ": netid = " << netid
1022 << ", invalid TC mode: " << resolverOptions.tcMode;
1023 return -EINVAL;
1024 }
1025 tc_mode = resolverOptions.tcMode;
1026 enforceDnsUid = resolverOptions.enforceDnsUid;
1027 return 0;
1028 }
1029 const unsigned netid;
1030 std::unique_ptr<Cache> cache;
1031 std::vector<std::string> nameservers;
1032 std::vector<IPSockAddr> nameserverSockAddrs;
1033 int revision_id = 0; // # times the nameservers have been replaced
1034 res_params params{};
1035 res_stats nsstats[MAXNS]{};
1036 std::vector<std::string> search_domains;
1037 int wait_for_pending_req_timeout_count = 0;
1038 // Map format: ReturnCode:rate_denom
1039 std::unordered_map<int, uint32_t> dns_event_subsampling_map;
1040 std::unordered_map<int, uint32_t> mdns_event_subsampling_map;
1041 DnsStats dnsStats;
1042
1043 // Customized hostname/address table will be stored in customizedTable.
1044 // If resolverParams.hosts is empty, the existing customized table will be erased.
1045 typedef std::multimap<std::string /* hostname */, std::string /* IPv4/IPv6 address */>
1046 HostMapping;
1047 HostMapping customizedTable = {};
1048
1049 int tc_mode = aidl::android::net::IDnsResolver::TC_MODE_DEFAULT;
1050 bool enforceDnsUid = false;
1051 std::vector<int32_t> transportTypes;
1052 };
1053
1054 /* gets cache associated with a network, or NULL if none exists */
1055 static Cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex);
1056
1057 // Return true - if there is a pending request in |cache| matching |key|.
1058 // Return false - if no pending request is found matching the key. Optionally
1059 // link a new one if parameter append_if_not_found is true.
cache_has_pending_request_locked(Cache * cache,const Entry * key,bool append_if_not_found)1060 static bool cache_has_pending_request_locked(Cache* cache, const Entry* key,
1061 bool append_if_not_found) {
1062 if (!cache || !key) return false;
1063
1064 Cache::pending_req_info* ri = cache->pending_requests.next;
1065 Cache::pending_req_info* prev = &cache->pending_requests;
1066 while (ri) {
1067 if (ri->hash == key->hash) {
1068 return true;
1069 }
1070 prev = ri;
1071 ri = ri->next;
1072 }
1073
1074 if (append_if_not_found) {
1075 ri = (Cache::pending_req_info*)calloc(1, sizeof(Cache::pending_req_info));
1076 if (ri) {
1077 ri->hash = key->hash;
1078 prev->next = ri;
1079 }
1080 }
1081 return false;
1082 }
1083
1084 // Notify all threads that the cache entry |key| has become available
cache_notify_waiting_tid_locked(struct Cache * cache,const Entry * key)1085 static void cache_notify_waiting_tid_locked(struct Cache* cache, const Entry* key) {
1086 if (!cache || !key) return;
1087
1088 Cache::pending_req_info* ri = cache->pending_requests.next;
1089 Cache::pending_req_info* prev = &cache->pending_requests;
1090 while (ri) {
1091 if (ri->hash == key->hash) {
1092 // remove item from list and destroy
1093 prev->next = ri->next;
1094 free(ri);
1095 cv.notify_all();
1096 return;
1097 }
1098 prev = ri;
1099 ri = ri->next;
1100 }
1101 }
1102
_resolv_cache_query_failed(unsigned netid,span<const uint8_t> query,uint32_t flags)1103 void _resolv_cache_query_failed(unsigned netid, span<const uint8_t> query, uint32_t flags) {
1104 // We should not notify with these flags.
1105 if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) {
1106 return;
1107 }
1108 Entry key[1];
1109
1110 if (!entry_init_key(key, query)) return;
1111
1112 std::lock_guard guard(cache_mutex);
1113
1114 Cache* cache = find_named_cache_locked(netid);
1115
1116 if (cache) {
1117 cache_notify_waiting_tid_locked(cache, key);
1118 }
1119 }
1120
cache_dump_mru_locked(Cache * cache)1121 static void cache_dump_mru_locked(Cache* cache) {
1122 std::string buf = fmt::format("MRU LIST ({:2d}): ", cache->num_entries);
1123 for (Entry* e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) {
1124 fmt::format_to(std::back_inserter(buf), " {}", e->id);
1125 }
1126
1127 LOG(INFO) << __func__ << ": " << buf;
1128 }
1129
1130 /* This function tries to find a key within the hash table
1131 * In case of success, it will return a *pointer* to the hashed key.
1132 * In case of failure, it will return a *pointer* to NULL
1133 *
1134 * So, the caller must check '*result' to check for success/failure.
1135 *
1136 * The main idea is that the result can later be used directly in
1137 * calls to resolv_cache_add or _resolv_cache_remove as the 'lookup'
1138 * parameter. This makes the code simpler and avoids re-searching
1139 * for the key position in the htable.
1140 *
1141 * The result of a lookup_p is only valid until you alter the hash
1142 * table.
1143 */
_cache_lookup_p(Cache * cache,Entry * key)1144 static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
1145 int index = key->hash % CONFIG_MAX_ENTRIES;
1146 Entry** pnode = (Entry**) &cache->entries[index];
1147
1148 while (*pnode != NULL) {
1149 Entry* node = *pnode;
1150
1151 if (node == NULL) break;
1152
1153 if (node->hash == key->hash && entry_equals(node, key)) break;
1154
1155 pnode = &node->hlink;
1156 }
1157 return pnode;
1158 }
1159
1160 /* Add a new entry to the hash table. 'lookup' must be the
1161 * result of an immediate previous failed _lookup_p() call
1162 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1163 * newly created entry
1164 */
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1165 static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
1166 *lookup = e;
1167 e->id = ++cache->last_id;
1168 entry_mru_add(e, &cache->mru_list);
1169 cache->num_entries += 1;
1170
1171 LOG(INFO) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")";
1172 }
1173
1174 /* Remove an existing entry from the hash table,
1175 * 'lookup' must be the result of an immediate previous
1176 * and succesful _lookup_p() call.
1177 */
_cache_remove_p(Cache * cache,Entry ** lookup)1178 static void _cache_remove_p(Cache* cache, Entry** lookup) {
1179 Entry* e = *lookup;
1180
1181 LOG(INFO) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1
1182 << ")";
1183
1184 entry_mru_remove(e);
1185 *lookup = e->hlink;
1186 entry_free(e);
1187 cache->num_entries -= 1;
1188 }
1189
1190 /* Remove the oldest entry from the hash table.
1191 */
_cache_remove_oldest(Cache * cache)1192 static void _cache_remove_oldest(Cache* cache) {
1193 Entry* oldest = cache->mru_list.mru_prev;
1194 Entry** lookup = _cache_lookup_p(cache, oldest);
1195
1196 if (*lookup == NULL) { /* should not happen */
1197 LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?";
1198 return;
1199 }
1200 LOG(INFO) << __func__ << ": Cache full - removing oldest";
1201 res_pquery({oldest->query, oldest->querylen});
1202 _cache_remove_p(cache, lookup);
1203 }
1204
1205 /* Remove all expired entries from the hash table.
1206 */
_cache_remove_expired(Cache * cache)1207 static void _cache_remove_expired(Cache* cache) {
1208 Entry* e;
1209 time_t now = _time_now();
1210
1211 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
1212 // Entry is old, remove
1213 if (now >= e->expires) {
1214 Entry** lookup = _cache_lookup_p(cache, e);
1215 if (*lookup == NULL) { /* should not happen */
1216 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?";
1217 return;
1218 }
1219 e = e->mru_next;
1220 _cache_remove_p(cache, lookup);
1221 } else {
1222 e = e->mru_next;
1223 }
1224 }
1225 }
1226
1227 // Get a NetConfig associated with a network, or nullptr if not found.
1228 static NetConfig* find_netconfig_locked(unsigned netid) REQUIRES(cache_mutex);
1229
resolv_cache_lookup(unsigned netid,span<const uint8_t> query,span<uint8_t> answer,int * answerlen,uint32_t flags)1230 ResolvCacheStatus resolv_cache_lookup(unsigned netid, span<const uint8_t> query,
1231 span<uint8_t> answer, int* answerlen, uint32_t flags) {
1232 // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is
1233 // possible to cache the answer of this query.
1234 // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache
1235 // storing.
1236 // (b/150371903): ANDROID_RESOLV_NO_CACHE_STORE should imply ANDROID_RESOLV_NO_CACHE_LOOKUP
1237 // to avoid side channel attack.
1238 if (flags & (ANDROID_RESOLV_NO_CACHE_LOOKUP | ANDROID_RESOLV_NO_CACHE_STORE)) {
1239 return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND;
1240 }
1241 Entry key;
1242 Entry** lookup;
1243 Entry* e;
1244 time_t now;
1245
1246 LOG(INFO) << __func__ << ": lookup";
1247
1248 /* we don't cache malformed queries */
1249 if (!entry_init_key(&key, query)) {
1250 LOG(INFO) << __func__ << ": unsupported query";
1251 return RESOLV_CACHE_UNSUPPORTED;
1252 }
1253 /* lookup cache */
1254 std::unique_lock lock(cache_mutex);
1255 android::base::ScopedLockAssertion assume_lock(cache_mutex);
1256 Cache* cache = find_named_cache_locked(netid);
1257 if (cache == nullptr) {
1258 return RESOLV_CACHE_UNSUPPORTED;
1259 }
1260
1261 /* see the description of _lookup_p to understand this.
1262 * the function always return a non-NULL pointer.
1263 */
1264 lookup = _cache_lookup_p(cache, &key);
1265 e = *lookup;
1266
1267 if (e == NULL) {
1268 LOG(INFO) << __func__ << ": NOT IN CACHE";
1269
1270 if (!cache_has_pending_request_locked(cache, &key, true)) {
1271 return RESOLV_CACHE_NOTFOUND;
1272
1273 } else {
1274 LOG(INFO) << __func__ << ": Waiting for previous request";
1275 // wait until (1) timeout OR
1276 // (2) cv is notified AND no pending request matching the |key|
1277 // (cv notifier should delete pending request before sending notification.)
1278 bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT),
1279 [netid, &cache, &key]() REQUIRES(cache_mutex) {
1280 // Must update cache as it could have been deleted
1281 cache = find_named_cache_locked(netid);
1282 return !cache_has_pending_request_locked(cache, &key, false);
1283 });
1284 if (!cache) {
1285 return RESOLV_CACHE_NOTFOUND;
1286 }
1287 if (ret == false) {
1288 NetConfig* info = find_netconfig_locked(netid);
1289 if (info != NULL) {
1290 info->wait_for_pending_req_timeout_count++;
1291 }
1292 }
1293 lookup = _cache_lookup_p(cache, &key);
1294 e = *lookup;
1295 if (e == NULL) {
1296 return RESOLV_CACHE_NOTFOUND;
1297 }
1298 }
1299 }
1300
1301 now = _time_now();
1302
1303 /* remove stale entries here */
1304 if (now >= e->expires) {
1305 LOG(INFO) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)";
1306 res_pquery({e->query, e->querylen});
1307 _cache_remove_p(cache, lookup);
1308 return RESOLV_CACHE_NOTFOUND;
1309 }
1310
1311 *answerlen = e->answerlen;
1312 if (e->answerlen > answer.size()) {
1313 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1314 LOG(INFO) << __func__ << ": ANSWER TOO LONG";
1315 return RESOLV_CACHE_UNSUPPORTED;
1316 }
1317
1318 memcpy(answer.data(), e->answer, e->answerlen);
1319
1320 /* bump up this entry to the top of the MRU list */
1321 if (e != cache->mru_list.mru_next) {
1322 entry_mru_remove(e);
1323 entry_mru_add(e, &cache->mru_list);
1324 }
1325
1326 LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e;
1327 return RESOLV_CACHE_FOUND;
1328 }
1329
resolv_cache_add(unsigned netid,span<const uint8_t> query,span<const uint8_t> answer)1330 int resolv_cache_add(unsigned netid, span<const uint8_t> query, span<const uint8_t> answer) {
1331 Entry key[1];
1332 Entry* e;
1333 Entry** lookup;
1334 uint32_t ttl;
1335 Cache* cache = NULL;
1336
1337 /* don't assume that the query has already been cached
1338 */
1339 if (!entry_init_key(key, query)) {
1340 LOG(INFO) << __func__ << ": passed invalid query?";
1341 return -EINVAL;
1342 }
1343
1344 std::lock_guard guard(cache_mutex);
1345
1346 cache = find_named_cache_locked(netid);
1347 if (cache == nullptr) {
1348 return -ENONET;
1349 }
1350
1351 lookup = _cache_lookup_p(cache, key);
1352 e = *lookup;
1353
1354 // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP
1355 if (e != NULL) {
1356 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1357 cache_notify_waiting_tid_locked(cache, key);
1358 return -EEXIST;
1359 }
1360
1361 if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
1362 _cache_remove_expired(cache);
1363 if (cache->num_entries >= CONFIG_MAX_ENTRIES) {
1364 _cache_remove_oldest(cache);
1365 }
1366 // TODO: It looks useless, remove below code after having test to prove it.
1367 lookup = _cache_lookup_p(cache, key);
1368 e = *lookup;
1369 if (e != NULL) {
1370 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1371 cache_notify_waiting_tid_locked(cache, key);
1372 return -EEXIST;
1373 }
1374 }
1375
1376 ttl = answer_getTTL(answer);
1377 if (ttl > 0) {
1378 e = entry_alloc(key, answer);
1379 if (e != NULL) {
1380 e->expires = ttl + _time_now();
1381 _cache_add_p(cache, lookup, e);
1382 }
1383 }
1384
1385 cache_dump_mru_locked(cache);
1386 cache_notify_waiting_tid_locked(cache, key);
1387
1388 return 0;
1389 }
1390
resolv_gethostbyaddr_from_cache(unsigned netid,char domain_name[],size_t domain_name_size,const char * ip_address,int af)1391 bool resolv_gethostbyaddr_from_cache(unsigned netid, char domain_name[], size_t domain_name_size,
1392 const char* ip_address, int af) {
1393 if (domain_name_size > NS_MAXDNAME) {
1394 LOG(WARNING) << __func__ << ": invalid domain_name_size " << domain_name_size;
1395 return false;
1396 } else if (ip_address == nullptr || ip_address[0] == '\0') {
1397 LOG(WARNING) << __func__ << ": invalid ip_address";
1398 return false;
1399 } else if (af != AF_INET && af != AF_INET6) {
1400 LOG(WARNING) << __func__ << ": unsupported AF";
1401 return false;
1402 }
1403
1404 Cache* cache = nullptr;
1405 Entry* node = nullptr;
1406
1407 ns_rr rr;
1408 ns_msg handle;
1409 ns_rr rr_query;
1410
1411 struct sockaddr_in sa;
1412 struct sockaddr_in6 sa6;
1413 char* addr_buf = nullptr;
1414
1415 std::lock_guard guard(cache_mutex);
1416
1417 cache = find_named_cache_locked(netid);
1418 if (cache == nullptr) {
1419 return false;
1420 }
1421
1422 for (node = cache->mru_list.mru_next; node != nullptr && node != &cache->mru_list;
1423 node = node->mru_next) {
1424 if (node->answer == nullptr) {
1425 continue;
1426 }
1427
1428 memset(&handle, 0, sizeof(handle));
1429
1430 if (ns_initparse(node->answer, node->answerlen, &handle) < 0) {
1431 continue;
1432 }
1433
1434 for (int n = 0; n < ns_msg_count(handle, ns_s_an); n++) {
1435 memset(&rr, 0, sizeof(rr));
1436
1437 if (ns_parserr(&handle, ns_s_an, n, &rr)) {
1438 continue;
1439 }
1440
1441 if (ns_rr_type(rr) == ns_t_a && af == AF_INET) {
1442 addr_buf = (char*)&(sa.sin_addr);
1443 } else if (ns_rr_type(rr) == ns_t_aaaa && af == AF_INET6) {
1444 addr_buf = (char*)&(sa6.sin6_addr);
1445 } else {
1446 continue;
1447 }
1448
1449 if (inet_pton(af, ip_address, addr_buf) != 1) {
1450 LOG(WARNING) << __func__ << ": inet_pton() fail";
1451 return false;
1452 }
1453
1454 if (memcmp(ns_rr_rdata(rr), addr_buf, ns_rr_rdlen(rr)) == 0) {
1455 int query_count = ns_msg_count(handle, ns_s_qd);
1456 for (int i = 0; i < query_count; i++) {
1457 memset(&rr_query, 0, sizeof(rr_query));
1458 if (ns_parserr(&handle, ns_s_qd, i, &rr_query)) {
1459 continue;
1460 }
1461 strlcpy(domain_name, ns_rr_name(rr_query), domain_name_size);
1462 if (domain_name[0] != '\0') {
1463 return true;
1464 }
1465 }
1466 }
1467 }
1468 }
1469
1470 return false;
1471 }
1472
1473 static std::unordered_map<unsigned, std::unique_ptr<NetConfig>> sNetConfigMap
1474 GUARDED_BY(cache_mutex);
1475
1476 // Clears nameservers set for |netconfig| and clears the stats
1477 static void free_nameservers_locked(NetConfig* netconfig);
1478 // Order-insensitive comparison for the two set of servers.
1479 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1480 const std::vector<std::string>& newServers);
1481 // clears the stats samples contained withing the given netconfig.
1482 static void res_cache_clear_stats_locked(NetConfig* netconfig);
1483
1484 // public API for netd to query if name server is set on specific netid
resolv_has_nameservers(unsigned netid)1485 bool resolv_has_nameservers(unsigned netid) {
1486 std::lock_guard guard(cache_mutex);
1487 NetConfig* info = find_netconfig_locked(netid);
1488 return (info != nullptr) && (info->nameserverCount() > 0);
1489 }
1490
resolv_create_cache_for_net(unsigned netid)1491 int resolv_create_cache_for_net(unsigned netid) {
1492 std::lock_guard guard(cache_mutex);
1493 if (sNetConfigMap.find(netid) != sNetConfigMap.end()) {
1494 LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid;
1495 return -EEXIST;
1496 }
1497
1498 sNetConfigMap[netid] = std::make_unique<NetConfig>(netid);
1499
1500 return 0;
1501 }
1502
resolv_delete_cache_for_net(unsigned netid)1503 void resolv_delete_cache_for_net(unsigned netid) {
1504 std::lock_guard guard(cache_mutex);
1505 sNetConfigMap.erase(netid);
1506 }
1507
resolv_flush_cache_for_net(unsigned netid)1508 int resolv_flush_cache_for_net(unsigned netid) {
1509 std::lock_guard guard(cache_mutex);
1510
1511 NetConfig* netconfig = find_netconfig_locked(netid);
1512 if (netconfig == nullptr) {
1513 return -ENONET;
1514 }
1515 netconfig->cache->flush();
1516
1517 // Also clear the NS statistics.
1518 res_cache_clear_stats_locked(netconfig);
1519 return 0;
1520 }
1521
resolv_list_caches()1522 std::vector<unsigned> resolv_list_caches() {
1523 std::lock_guard guard(cache_mutex);
1524 std::vector<unsigned> result;
1525 result.reserve(sNetConfigMap.size());
1526 for (const auto& [netId, _] : sNetConfigMap) {
1527 result.push_back(netId);
1528 }
1529 return result;
1530 }
1531
find_named_cache_locked(unsigned netid)1532 static Cache* find_named_cache_locked(unsigned netid) {
1533 NetConfig* info = find_netconfig_locked(netid);
1534 if (info != nullptr) return info->cache.get();
1535 return nullptr;
1536 }
1537
find_netconfig_locked(unsigned netid)1538 static NetConfig* find_netconfig_locked(unsigned netid) {
1539 if (auto it = sNetConfigMap.find(netid); it != sNetConfigMap.end()) {
1540 return it->second.get();
1541 }
1542 return nullptr;
1543 }
1544
resolv_set_experiment_params(res_params * params)1545 static void resolv_set_experiment_params(res_params* params) {
1546 if (params->retry_count == 0) {
1547 params->retry_count = getExperimentFlagInt("retry_count", RES_DFLRETRY);
1548 }
1549
1550 if (params->base_timeout_msec == 0) {
1551 params->base_timeout_msec =
1552 getExperimentFlagInt("retransmission_time_interval", RES_TIMEOUT);
1553 }
1554 }
1555
resolv_get_network_types_for_net(unsigned netid)1556 android::net::NetworkType resolv_get_network_types_for_net(unsigned netid) {
1557 std::lock_guard guard(cache_mutex);
1558 NetConfig* netconfig = find_netconfig_locked(netid);
1559 if (netconfig == nullptr) return android::net::NT_UNKNOWN;
1560 return convert_network_type(netconfig->transportTypes);
1561 }
1562
is_mdns_supported_transport_types(const std::vector<int32_t> & transportTypes)1563 bool is_mdns_supported_transport_types(const std::vector<int32_t>& transportTypes) {
1564 for (const auto& tp : transportTypes) {
1565 if (tp == IDnsResolver::TRANSPORT_CELLULAR || tp == IDnsResolver::TRANSPORT_VPN) {
1566 return false;
1567 }
1568 }
1569 return true;
1570 }
1571
is_mdns_supported_network(unsigned netid)1572 bool is_mdns_supported_network(unsigned netid) {
1573 std::lock_guard guard(cache_mutex);
1574 NetConfig* netconfig = find_netconfig_locked(netid);
1575 if (netconfig == nullptr) return false;
1576 return is_mdns_supported_transport_types(netconfig->transportTypes);
1577 }
1578
1579 namespace {
1580
1581 // Returns valid domains without duplicates which are limited to max size |MAXDNSRCH|.
filter_domains(const std::vector<std::string> & domains)1582 std::vector<std::string> filter_domains(const std::vector<std::string>& domains) {
1583 std::set<std::string> tmp_set;
1584 std::vector<std::string> res;
1585
1586 std::copy_if(domains.begin(), domains.end(), std::back_inserter(res),
1587 [&tmp_set](const std::string& str) {
1588 return !(str.size() > MAXDNSRCHPATH - 1) && (tmp_set.insert(str).second);
1589 });
1590 if (res.size() > MAXDNSRCH) {
1591 LOG(WARNING) << __func__ << ": valid domains=" << res.size()
1592 << ", but MAXDNSRCH=" << MAXDNSRCH;
1593 res.resize(MAXDNSRCH);
1594 }
1595 return res;
1596 }
1597
filter_nameservers(const std::vector<std::string> & servers)1598 std::vector<std::string> filter_nameservers(const std::vector<std::string>& servers) {
1599 std::vector<std::string> res = servers;
1600 if (res.size() > MAXNS) {
1601 LOG(WARNING) << __func__ << ": too many servers: " << res.size();
1602 res.resize(MAXNS);
1603 }
1604 return res;
1605 }
1606
isValidServer(const std::string & server)1607 bool isValidServer(const std::string& server) {
1608 const addrinfo hints = {
1609 .ai_family = AF_UNSPEC,
1610 .ai_socktype = SOCK_DGRAM,
1611 };
1612 addrinfo* result = nullptr;
1613 if (int err = getaddrinfo_numeric(server.c_str(), "53", hints, &result); err != 0) {
1614 LOG(WARNING) << __func__ << ": getaddrinfo_numeric(" << server
1615 << ") = " << gai_strerror(err);
1616 return false;
1617 }
1618 freeaddrinfo(result);
1619 return true;
1620 }
1621
1622 } // namespace
1623
getCustomizedTableByName(const size_t netid,const char * hostname)1624 std::vector<std::string> getCustomizedTableByName(const size_t netid, const char* hostname) {
1625 std::lock_guard guard(cache_mutex);
1626 NetConfig* netconfig = find_netconfig_locked(netid);
1627
1628 std::vector<std::string> result;
1629 if (netconfig != nullptr) {
1630 const auto& hosts = netconfig->customizedTable.equal_range(hostname);
1631 for (auto i = hosts.first; i != hosts.second; ++i) {
1632 result.push_back(i->second);
1633 }
1634 }
1635 return result;
1636 }
1637
resolv_set_nameservers(unsigned netid,const std::vector<std::string> & servers,const std::vector<std::string> & domains,const res_params & params,const std::optional<ResolverOptionsParcel> optionalResolverOptions,const std::vector<int32_t> & transportTypes)1638 int resolv_set_nameservers(unsigned netid, const std::vector<std::string>& servers,
1639 const std::vector<std::string>& domains, const res_params& params,
1640 const std::optional<ResolverOptionsParcel> optionalResolverOptions,
1641 const std::vector<int32_t>& transportTypes) {
1642 std::vector<std::string> nameservers = filter_nameservers(servers);
1643 const int numservers = static_cast<int>(nameservers.size());
1644
1645 LOG(INFO) << __func__ << ": netId = " << netid << ", numservers = " << numservers;
1646
1647 // Parse the addresses before actually locking or changing any state, in case there is an error.
1648 // As a side effect this also reduces the time the lock is kept.
1649 std::vector<IPSockAddr> ipSockAddrs;
1650 ipSockAddrs.reserve(nameservers.size());
1651 for (const auto& server : nameservers) {
1652 if (!isValidServer(server)) return -EINVAL;
1653 ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53));
1654 }
1655
1656 std::lock_guard guard(cache_mutex);
1657 NetConfig* netconfig = find_netconfig_locked(netid);
1658
1659 if (netconfig == nullptr) return -ENONET;
1660
1661 uint8_t old_max_samples = netconfig->params.max_samples;
1662 netconfig->params = params;
1663 resolv_set_experiment_params(&netconfig->params);
1664 if (!resolv_is_nameservers_equal(netconfig->nameservers, nameservers)) {
1665 // free current before adding new
1666 free_nameservers_locked(netconfig);
1667 netconfig->nameservers = std::move(nameservers);
1668 for (int i = 0; i < numservers; i++) {
1669 LOG(INFO) << __func__ << ": netid = " << netid
1670 << ", addr = " << netconfig->nameservers[i];
1671 }
1672 netconfig->nameserverSockAddrs = std::move(ipSockAddrs);
1673 } else {
1674 if (netconfig->params.max_samples != old_max_samples) {
1675 // If the maximum number of samples changes, the overhead of keeping the most recent
1676 // samples around is not considered worth the effort, so they are cleared instead.
1677 // All other parameters do not affect shared state: Changing these parameters does
1678 // not invalidate the samples, as they only affect aggregation and the conditions
1679 // under which servers are considered usable.
1680 res_cache_clear_stats_locked(netconfig);
1681 }
1682 }
1683
1684 // Always update the search paths. Cache-flushing however is not necessary,
1685 // since the stored cache entries do contain the domain, not just the host name.
1686 netconfig->search_domains = filter_domains(domains);
1687
1688 // Setup stats for cleartext dns servers.
1689 if (!netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_TCP) ||
1690 !netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_UDP)) {
1691 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats";
1692 return -EINVAL;
1693 }
1694 netconfig->transportTypes = transportTypes;
1695 if (optionalResolverOptions.has_value()) {
1696 const ResolverOptionsParcel& resolverOptions = optionalResolverOptions.value();
1697 return netconfig->setOptions(resolverOptions);
1698 }
1699 return 0;
1700 }
1701
resolv_set_options(unsigned netid,const ResolverOptionsParcel & options)1702 int resolv_set_options(unsigned netid, const ResolverOptionsParcel& options) {
1703 std::lock_guard guard(cache_mutex);
1704 NetConfig* netconfig = find_netconfig_locked(netid);
1705
1706 if (netconfig == nullptr) return -ENONET;
1707 return netconfig->setOptions(options);
1708 }
1709
resolv_is_nameservers_equal(const std::vector<std::string> & oldServers,const std::vector<std::string> & newServers)1710 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1711 const std::vector<std::string>& newServers) {
1712 const std::set<std::string> olds(oldServers.begin(), oldServers.end());
1713 const std::set<std::string> news(newServers.begin(), newServers.end());
1714
1715 // TODO: this is incorrect if the list of current or previous nameservers
1716 // contains duplicates. This does not really matter because the framework
1717 // filters out duplicates, but we should probably fix it. It's also
1718 // insensitive to the order of the nameservers; we should probably fix that
1719 // too.
1720 return olds == news;
1721 }
1722
free_nameservers_locked(NetConfig * netconfig)1723 static void free_nameservers_locked(NetConfig* netconfig) {
1724 netconfig->nameservers.clear();
1725 netconfig->nameserverSockAddrs.clear();
1726 res_cache_clear_stats_locked(netconfig);
1727 }
1728
resolv_populate_res_for_net(ResState * statp)1729 void resolv_populate_res_for_net(ResState* statp) {
1730 if (statp == nullptr) {
1731 return;
1732 }
1733 LOG(INFO) << __func__ << ": netid=" << statp->netid;
1734
1735 std::lock_guard guard(cache_mutex);
1736 NetConfig* info = find_netconfig_locked(statp->netid);
1737 if (info == nullptr) return;
1738
1739 const bool sortNameservers = Experiments::getInstance()->getFlag("sort_nameservers", 0);
1740 statp->sort_nameservers = sortNameservers;
1741 statp->nsaddrs = sortNameservers ? info->dnsStats.getSortedServers(PROTO_UDP)
1742 : info->nameserverSockAddrs;
1743 statp->search_domains = info->search_domains;
1744 statp->tc_mode = info->tc_mode;
1745 statp->enforce_dns_uid = info->enforceDnsUid;
1746 }
1747
1748 /* Resolver reachability statistics. */
1749
res_cache_add_stats_sample_locked(res_stats * stats,const res_sample & sample,int max_samples)1750 static void res_cache_add_stats_sample_locked(res_stats* stats, const res_sample& sample,
1751 int max_samples) {
1752 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
1753 // allocated but supposedly unused memory for samples[0] will happen
1754 LOG(INFO) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next)
1755 << ", count = " << unsigned(stats->sample_count);
1756 stats->samples[stats->sample_next] = sample;
1757 if (stats->sample_count < max_samples) {
1758 ++stats->sample_count;
1759 }
1760 if (++stats->sample_next >= max_samples) {
1761 stats->sample_next = 0;
1762 }
1763 }
1764
res_cache_clear_stats_locked(NetConfig * netconfig)1765 static void res_cache_clear_stats_locked(NetConfig* netconfig) {
1766 for (int i = 0; i < MAXNS; ++i) {
1767 netconfig->nsstats[i].sample_count = 0;
1768 netconfig->nsstats[i].sample_next = 0;
1769 }
1770
1771 // Increment the revision id to ensure that sample state is not written back if the
1772 // servers change; in theory it would suffice to do so only if the servers or
1773 // max_samples actually change, in practice the overhead of checking is higher than the
1774 // cost, and overflows are unlikely.
1775 ++netconfig->revision_id;
1776 }
1777
android_net_res_stats_get_info_for_net(unsigned netid,int * nscount,struct sockaddr_storage servers[MAXNS],int * dcount,char domains[MAXDNSRCH][MAXDNSRCHPATH],res_params * params,struct res_stats stats[MAXNS],int * wait_for_pending_req_timeout_count)1778 int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
1779 struct sockaddr_storage servers[MAXNS], int* dcount,
1780 char domains[MAXDNSRCH][MAXDNSRCHPATH],
1781 res_params* params, struct res_stats stats[MAXNS],
1782 int* wait_for_pending_req_timeout_count) {
1783 std::lock_guard guard(cache_mutex);
1784 NetConfig* info = find_netconfig_locked(netid);
1785 if (!info) return -1;
1786
1787 const int num = info->nameserverCount();
1788 if (num > MAXNS) {
1789 LOG(INFO) << __func__ << ": nscount " << num << " > MAXNS " << MAXNS;
1790 errno = EFAULT;
1791 return -1;
1792 }
1793
1794 for (int i = 0; i < num; i++) {
1795 servers[i] = info->nameserverSockAddrs[i];
1796 stats[i] = info->nsstats[i];
1797 }
1798
1799 for (size_t i = 0; i < info->search_domains.size(); i++) {
1800 strlcpy(domains[i], info->search_domains[i].c_str(), MAXDNSRCHPATH);
1801 }
1802
1803 *nscount = num;
1804 *dcount = static_cast<int>(info->search_domains.size());
1805 *params = info->params;
1806 *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count;
1807
1808 return info->revision_id;
1809 }
1810
resolv_cache_dump_subsampling_map(unsigned netid,bool is_mdns)1811 std::vector<std::string> resolv_cache_dump_subsampling_map(unsigned netid, bool is_mdns) {
1812 std::lock_guard guard(cache_mutex);
1813 NetConfig* netconfig = find_netconfig_locked(netid);
1814 if (netconfig == nullptr) return {};
1815 std::vector<std::string> result;
1816 const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
1817 : netconfig->mdns_event_subsampling_map;
1818 result.reserve(subsampling_map.size());
1819 for (const auto& [return_code, rate_denom] : subsampling_map) {
1820 result.push_back(fmt::format("{}:{}",
1821 (return_code == DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY)
1822 ? "default"
1823 : std::to_string(return_code),
1824 rate_denom));
1825 }
1826 return result;
1827 }
1828
1829 // Decides whether an event should be sampled using a random number generator and
1830 // a sampling factor derived from the netid and the return code.
1831 //
1832 // Returns the subsampling rate if the event should be sampled, or 0 if it should be discarded.
resolv_cache_get_subsampling_denom(unsigned netid,int return_code,bool is_mdns)1833 uint32_t resolv_cache_get_subsampling_denom(unsigned netid, int return_code, bool is_mdns) {
1834 std::lock_guard guard(cache_mutex);
1835 NetConfig* netconfig = find_netconfig_locked(netid);
1836 if (netconfig == nullptr) return 0; // Don't log anything at all.
1837 const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
1838 : netconfig->mdns_event_subsampling_map;
1839 auto search_returnCode = subsampling_map.find(return_code);
1840 uint32_t denom;
1841 if (search_returnCode != subsampling_map.end()) {
1842 denom = search_returnCode->second;
1843 } else {
1844 auto search_default = subsampling_map.find(DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY);
1845 denom = (search_default == subsampling_map.end()) ? 0 : search_default->second;
1846 }
1847 return denom;
1848 }
1849
resolv_cache_get_resolver_stats(unsigned netid,res_params * params,res_stats stats[MAXNS],const std::vector<IPSockAddr> & serverSockAddrs)1850 int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS],
1851 const std::vector<IPSockAddr>& serverSockAddrs) {
1852 std::lock_guard guard(cache_mutex);
1853 NetConfig* info = find_netconfig_locked(netid);
1854 if (!info) return -1;
1855
1856 for (size_t i = 0; i < serverSockAddrs.size(); i++) {
1857 for (size_t j = 0; j < info->nameserverSockAddrs.size(); j++) {
1858 // Should never happen. Just in case because of the fix-sized array |stats|.
1859 if (j >= MAXNS) {
1860 LOG(WARNING) << __func__ << ": unexpected size " << j;
1861 return -1;
1862 }
1863
1864 // It's possible that the server is not found, e.g. when a new list of nameservers
1865 // is updated to the NetConfig just after this look up thread being populated.
1866 // Keep the server valid as-is (by means of keeping stats[i] unset), but we should
1867 // think about if there's a better way.
1868 if (info->nameserverSockAddrs[j] == serverSockAddrs[i]) {
1869 stats[i] = info->nsstats[j];
1870 break;
1871 }
1872 }
1873 }
1874
1875 *params = info->params;
1876 return info->revision_id;
1877 }
1878
resolv_cache_add_resolver_stats_sample(unsigned netid,int revision_id,const IPSockAddr & serverSockAddr,const res_sample & sample,int max_samples)1879 void resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id,
1880 const IPSockAddr& serverSockAddr,
1881 const res_sample& sample, int max_samples) {
1882 if (max_samples <= 0) return;
1883
1884 std::lock_guard guard(cache_mutex);
1885 NetConfig* info = find_netconfig_locked(netid);
1886
1887 if (info && info->revision_id == revision_id) {
1888 const int serverNum = std::min(MAXNS, static_cast<int>(info->nameserverSockAddrs.size()));
1889 for (int ns = 0; ns < serverNum; ns++) {
1890 if (serverSockAddr == info->nameserverSockAddrs[ns]) {
1891 res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
1892 return;
1893 }
1894 }
1895 }
1896 }
1897
has_named_cache(unsigned netid)1898 bool has_named_cache(unsigned netid) {
1899 std::lock_guard guard(cache_mutex);
1900 return find_named_cache_locked(netid) != nullptr;
1901 }
1902
resolv_cache_get_expiration(unsigned netid,span<const uint8_t> query,time_t * expiration)1903 int resolv_cache_get_expiration(unsigned netid, span<const uint8_t> query, time_t* expiration) {
1904 Entry key;
1905 *expiration = -1;
1906
1907 // A malformed query is not allowed.
1908 if (!entry_init_key(&key, query)) {
1909 LOG(WARNING) << __func__ << ": unsupported query";
1910 return -EINVAL;
1911 }
1912
1913 // lookup cache.
1914 Cache* cache;
1915 std::lock_guard guard(cache_mutex);
1916 if (cache = find_named_cache_locked(netid); cache == nullptr) {
1917 LOG(WARNING) << __func__ << ": cache not created in the network " << netid;
1918 return -ENONET;
1919 }
1920 Entry** lookup = _cache_lookup_p(cache, &key);
1921 Entry* e = *lookup;
1922 if (e == NULL) {
1923 LOG(WARNING) << __func__ << ": not in cache";
1924 return -ENODATA;
1925 }
1926
1927 if (_time_now() >= e->expires) {
1928 LOG(WARNING) << __func__ << ": entry expired";
1929 return -ENODATA;
1930 }
1931
1932 *expiration = e->expires;
1933 return 0;
1934 }
1935
protocol_to_str(const Protocol proto)1936 static const char* protocol_to_str(const Protocol proto) {
1937 switch (proto) {
1938 case PROTO_UDP:
1939 return "UDP";
1940 case PROTO_TCP:
1941 return "TCP";
1942 case PROTO_DOT:
1943 return "DOT";
1944 case PROTO_DOH:
1945 return "DOH";
1946 case PROTO_MDNS:
1947 return "MDNS";
1948 default:
1949 return "UNKNOWN";
1950 }
1951 }
1952
resolv_stats_set_addrs(unsigned netid,Protocol proto,const std::vector<std::string> & addrs,int port)1953 int resolv_stats_set_addrs(unsigned netid, Protocol proto, const std::vector<std::string>& addrs,
1954 int port) {
1955 std::lock_guard guard(cache_mutex);
1956 const auto info = find_netconfig_locked(netid);
1957
1958 if (info == nullptr) return -ENONET;
1959
1960 std::vector<IPSockAddr> sockAddrs;
1961 sockAddrs.reserve(addrs.size());
1962 for (const auto& addr : addrs) {
1963 sockAddrs.push_back(IPSockAddr::toIPSockAddr(addr, port));
1964 }
1965
1966 if (!info->dnsStats.setAddrs(sockAddrs, proto)) {
1967 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set "
1968 << protocol_to_str(proto) << " stats";
1969 return -EINVAL;
1970 }
1971
1972 return 0;
1973 }
1974
resolv_stats_add(unsigned netid,const android::netdutils::IPSockAddr & server,const DnsQueryEvent * record)1975 bool resolv_stats_add(unsigned netid, const android::netdutils::IPSockAddr& server,
1976 const DnsQueryEvent* record) {
1977 if (record == nullptr) return false;
1978
1979 std::lock_guard guard(cache_mutex);
1980 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
1981 return info->dnsStats.addStats(server, *record);
1982 }
1983 return false;
1984 }
1985
tc_mode_to_str(const int mode)1986 static const char* tc_mode_to_str(const int mode) {
1987 switch (mode) {
1988 case aidl::android::net::IDnsResolver::TC_MODE_DEFAULT:
1989 return "default";
1990 case aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP:
1991 return "UDP_TCP";
1992 default:
1993 return "unknown";
1994 }
1995 }
1996
to_stats_network_type(int32_t mainType,bool withVpn)1997 static android::net::NetworkType to_stats_network_type(int32_t mainType, bool withVpn) {
1998 switch (mainType) {
1999 case IDnsResolver::TRANSPORT_CELLULAR:
2000 return withVpn ? android::net::NT_CELLULAR_VPN : android::net::NT_CELLULAR;
2001 case IDnsResolver::TRANSPORT_WIFI:
2002 return withVpn ? android::net::NT_WIFI_VPN : android::net::NT_WIFI;
2003 case IDnsResolver::TRANSPORT_BLUETOOTH:
2004 return withVpn ? android::net::NT_BLUETOOTH_VPN : android::net::NT_BLUETOOTH;
2005 case IDnsResolver::TRANSPORT_ETHERNET:
2006 return withVpn ? android::net::NT_ETHERNET_VPN : android::net::NT_ETHERNET;
2007 case IDnsResolver::TRANSPORT_VPN:
2008 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_VPN;
2009 case IDnsResolver::TRANSPORT_WIFI_AWARE:
2010 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_WIFI_AWARE;
2011 case IDnsResolver::TRANSPORT_LOWPAN:
2012 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_LOWPAN;
2013 default:
2014 return android::net::NT_UNKNOWN;
2015 }
2016 }
2017
convert_network_type(const std::vector<int32_t> & transportTypes)2018 android::net::NetworkType convert_network_type(const std::vector<int32_t>& transportTypes) {
2019 // The valid transportTypes size is 1 to 3.
2020 if (transportTypes.size() > 3 || transportTypes.size() == 0) return android::net::NT_UNKNOWN;
2021 // TransportTypes size == 1, map the type to stats network type directly.
2022 if (transportTypes.size() == 1) return to_stats_network_type(transportTypes[0], false);
2023 // TransportTypes size == 3, only cellular + wifi + vpn is valid.
2024 if (transportTypes.size() == 3) {
2025 std::vector<int32_t> sortedTransTypes = transportTypes;
2026 std::sort(sortedTransTypes.begin(), sortedTransTypes.end());
2027 if (sortedTransTypes != std::vector<int32_t>{IDnsResolver::TRANSPORT_CELLULAR,
2028 IDnsResolver::TRANSPORT_WIFI,
2029 IDnsResolver::TRANSPORT_VPN}) {
2030 return android::net::NT_UNKNOWN;
2031 }
2032 return android::net::NT_WIFI_CELLULAR_VPN;
2033 }
2034 // TransportTypes size == 2, it shoud be 1 main type + vpn type.
2035 // Otherwise, consider it as UNKNOWN.
2036 bool hasVpn = false;
2037 int32_t mainType = IDnsResolver::TRANSPORT_UNKNOWN;
2038 for (const auto& transportType : transportTypes) {
2039 if (transportType == IDnsResolver::TRANSPORT_VPN) {
2040 hasVpn = true;
2041 continue;
2042 }
2043 mainType = transportType;
2044 }
2045 return hasVpn ? to_stats_network_type(mainType, true) : android::net::NT_UNKNOWN;
2046 }
2047
transport_type_to_str(const std::vector<int32_t> & transportTypes)2048 static const char* transport_type_to_str(const std::vector<int32_t>& transportTypes) {
2049 switch (convert_network_type(transportTypes)) {
2050 case android::net::NT_CELLULAR:
2051 return "CELLULAR";
2052 case android::net::NT_WIFI:
2053 return "WIFI";
2054 case android::net::NT_BLUETOOTH:
2055 return "BLUETOOTH";
2056 case android::net::NT_ETHERNET:
2057 return "ETHERNET";
2058 case android::net::NT_VPN:
2059 return "VPN";
2060 case android::net::NT_WIFI_AWARE:
2061 return "WIFI_AWARE";
2062 case android::net::NT_LOWPAN:
2063 return "LOWPAN";
2064 case android::net::NT_CELLULAR_VPN:
2065 return "CELLULAR_VPN";
2066 case android::net::NT_WIFI_VPN:
2067 return "WIFI_VPN";
2068 case android::net::NT_BLUETOOTH_VPN:
2069 return "BLUETOOTH_VPN";
2070 case android::net::NT_ETHERNET_VPN:
2071 return "ETHERNET_VPN";
2072 case android::net::NT_WIFI_CELLULAR_VPN:
2073 return "WIFI_CELLULAR_VPN";
2074 default:
2075 return "UNKNOWN";
2076 }
2077 }
2078
resolv_netconfig_dump(DumpWriter & dw,unsigned netid)2079 void resolv_netconfig_dump(DumpWriter& dw, unsigned netid) {
2080 std::lock_guard guard(cache_mutex);
2081 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
2082 info->dnsStats.dump(dw);
2083 // TODO: dump info->hosts
2084 dw.println("TC mode: %s", tc_mode_to_str(info->tc_mode));
2085 dw.println("TransportType: %s", transport_type_to_str(info->transportTypes));
2086 }
2087 }
2088