1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10
11 #include "include/core/SkData.h"
12 #include "include/core/SkTypes.h"
13 #include "src/core/SkUtils.h" // unaligned_{load,store}
14 #include <cstdint>
15
16 // Every function in this file should be marked static and inline using SI.
17 #if defined(__clang__)
18 #define SI __attribute__((always_inline)) static inline
19 #else
20 #define SI static inline
21 #endif
22
23 template <typename Dst, typename Src>
widen_cast(const Src & src)24 SI Dst widen_cast(const Src& src) {
25 static_assert(sizeof(Dst) > sizeof(Src));
26 static_assert(std::is_trivially_copyable<Dst>::value);
27 static_assert(std::is_trivially_copyable<Src>::value);
28 Dst dst;
29 memcpy(&dst, &src, sizeof(Src));
30 return dst;
31 }
32
33 // Our program is an array of void*, either
34 // - 1 void* per stage with no context pointer, the next stage;
35 // - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
36
37 // load_and_inc() steps the program forward by 1 void*, returning that pointer.
load_and_inc(void ** & program)38 SI void* load_and_inc(void**& program) {
39 #if defined(__GNUC__) && defined(__x86_64__)
40 // If program is in %rsi (we try to make this likely) then this is a single instruction.
41 void* rax;
42 asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
43 return rax;
44 #else
45 // On ARM *program++ compiles into pretty ideal code without any handholding.
46 return *program++;
47 #endif
48 }
49
50 // Lazily resolved on first cast. Does nothing if cast to Ctx::None.
51 struct Ctx {
52 struct None {};
53
54 void* ptr;
55 void**& program;
56
CtxCtx57 explicit Ctx(void**& p) : ptr(nullptr), program(p) {}
58
59 template <typename T>
60 operator T*() {
61 if (!ptr) { ptr = load_and_inc(program); }
62 return (T*)ptr;
63 }
NoneCtx64 operator None() { return None{}; }
65 };
66
67
68 #if !defined(__clang__)
69 #define JUMPER_IS_SCALAR
70 #elif defined(SK_ARM_HAS_NEON)
71 #define JUMPER_IS_NEON
72 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
73 #define JUMPER_IS_SKX
74 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
75 #define JUMPER_IS_HSW
76 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
77 #define JUMPER_IS_AVX
78 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
79 #define JUMPER_IS_SSE41
80 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
81 #define JUMPER_IS_SSE2
82 #else
83 #define JUMPER_IS_SCALAR
84 #endif
85
86 // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
87 #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
88 // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
89 #if defined(__apple_build_version__) && __clang_major__ < 9
90 #define JUMPER_IS_SCALAR
91 #elif __clang_major__ < 5
92 #define JUMPER_IS_SCALAR
93 #endif
94
95 #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
96 #undef JUMPER_IS_NEON
97 #endif
98 #endif
99
100 #if defined(JUMPER_IS_SCALAR)
101 #include <math.h>
102 #elif defined(JUMPER_IS_NEON)
103 #include <arm_neon.h>
104 #else
105 #include <immintrin.h>
106 #endif
107
108 // Notes:
109 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
110 // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
111 // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
112 // Intel this requires one additional step because its estimate has 12 bit precision.
113
114 namespace SK_OPTS_NS {
115 #if defined(JUMPER_IS_SCALAR)
116 // This path should lead to portable scalar code.
117 using F = float ;
118 using I32 = int32_t;
119 using U64 = uint64_t;
120 using U32 = uint32_t;
121 using U16 = uint16_t;
122 using U8 = uint8_t ;
123
mad(F f,F m,F a)124 SI F mad(F f, F m, F a) { return f*m+a; }
min(F a,F b)125 SI F min(F a, F b) { return fminf(a,b); }
max(F a,F b)126 SI F max(F a, F b) { return fmaxf(a,b); }
abs_(F v)127 SI F abs_ (F v) { return fabsf(v); }
floor_(F v)128 SI F floor_(F v) { return floorf(v); }
rcp_fast(F v)129 SI F rcp_fast(F v) { return 1.0f / v; }
rsqrt(F v)130 SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
sqrt_(F v)131 SI F sqrt_ (F v) { return sqrtf(v); }
rcp_precise(F v)132 SI F rcp_precise (F v) { return 1.0f / v; }
133
round(F v,F scale)134 SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
pack(U32 v)135 SI U16 pack(U32 v) { return (U16)v; }
pack(U16 v)136 SI U8 pack(U16 v) { return (U8)v; }
137
if_then_else(I32 c,F t,F e)138 SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
139
140 template <typename T>
gather(const T * p,U32 ix)141 SI T gather(const T* p, U32 ix) { return p[ix]; }
142
load2(const uint16_t * ptr,size_t tail,U16 * r,U16 * g)143 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
144 *r = ptr[0];
145 *g = ptr[1];
146 }
store2(uint16_t * ptr,size_t tail,U16 r,U16 g)147 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
148 ptr[0] = r;
149 ptr[1] = g;
150 }
load3(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b)151 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
152 *r = ptr[0];
153 *g = ptr[1];
154 *b = ptr[2];
155 }
load4(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b,U16 * a)156 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
157 *r = ptr[0];
158 *g = ptr[1];
159 *b = ptr[2];
160 *a = ptr[3];
161 }
store4(uint16_t * ptr,size_t tail,U16 r,U16 g,U16 b,U16 a)162 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
163 ptr[0] = r;
164 ptr[1] = g;
165 ptr[2] = b;
166 ptr[3] = a;
167 }
168
load2(const float * ptr,size_t tail,F * r,F * g)169 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
170 *r = ptr[0];
171 *g = ptr[1];
172 }
store2(float * ptr,size_t tail,F r,F g)173 SI void store2(float* ptr, size_t tail, F r, F g) {
174 ptr[0] = r;
175 ptr[1] = g;
176 }
load4(const float * ptr,size_t tail,F * r,F * g,F * b,F * a)177 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
178 *r = ptr[0];
179 *g = ptr[1];
180 *b = ptr[2];
181 *a = ptr[3];
182 }
store4(float * ptr,size_t tail,F r,F g,F b,F a)183 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
184 ptr[0] = r;
185 ptr[1] = g;
186 ptr[2] = b;
187 ptr[3] = a;
188 }
189
190 #elif defined(JUMPER_IS_NEON)
191 // Since we know we're using Clang, we can use its vector extensions.
192 template <typename T> using V = T __attribute__((ext_vector_type(4)));
193 using F = V<float >;
194 using I32 = V< int32_t>;
195 using U64 = V<uint64_t>;
196 using U32 = V<uint32_t>;
197 using U16 = V<uint16_t>;
198 using U8 = V<uint8_t >;
199
200 // We polyfill a few routines that Clang doesn't build into ext_vector_types.
201 SI F min(F a, F b) { return vminq_f32(a,b); }
202 SI F max(F a, F b) { return vmaxq_f32(a,b); }
203 SI F abs_ (F v) { return vabsq_f32(v); }
204 SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
205 SI F rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e ) * e; }
206 SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
207
208 SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
209 SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
210
211 SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
212
213 #if defined(SK_CPU_ARM64)
214 SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
215 SI F floor_(F v) { return vrndmq_f32(v); }
216 SI F sqrt_(F v) { return vsqrtq_f32(v); }
217 SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
218 #else
219 SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
220 SI F floor_(F v) {
221 F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
222 return roundtrip - if_then_else(roundtrip > v, 1, 0);
223 }
224
225 SI F sqrt_(F v) {
226 auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
227 e *= vrsqrtsq_f32(v,e*e);
228 e *= vrsqrtsq_f32(v,e*e);
229 return v*e; // sqrt(v) == v*rsqrt(v).
230 }
231
232 SI U32 round(F v, F scale) {
233 return vcvtq_u32_f32(mad(v,scale,0.5f));
234 }
235 #endif
236
237
238 template <typename T>
239 SI V<T> gather(const T* p, U32 ix) {
240 return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
241 }
242 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
243 uint16x4x2_t rg;
244 if (__builtin_expect(tail,0)) {
245 if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); }
246 if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); }
247 if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); }
248 } else {
249 rg = vld2_u16(ptr);
250 }
251 *r = rg.val[0];
252 *g = rg.val[1];
253 }
254 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
255 if (__builtin_expect(tail,0)) {
256 if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); }
257 if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); }
258 if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); }
259 } else {
260 vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
261 }
262 }
263 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
264 uint16x4x3_t rgb;
265 if (__builtin_expect(tail,0)) {
266 if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
267 if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
268 if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
269 } else {
270 rgb = vld3_u16(ptr);
271 }
272 *r = rgb.val[0];
273 *g = rgb.val[1];
274 *b = rgb.val[2];
275 }
276 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
277 uint16x4x4_t rgba;
278 if (__builtin_expect(tail,0)) {
279 if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
280 if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
281 if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
282 } else {
283 rgba = vld4_u16(ptr);
284 }
285 *r = rgba.val[0];
286 *g = rgba.val[1];
287 *b = rgba.val[2];
288 *a = rgba.val[3];
289 }
290
291 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
292 if (__builtin_expect(tail,0)) {
293 if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
294 if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
295 if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
296 } else {
297 vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
298 }
299 }
300 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
301 float32x4x2_t rg;
302 if (__builtin_expect(tail,0)) {
303 if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); }
304 if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); }
305 if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); }
306 } else {
307 rg = vld2q_f32(ptr);
308 }
309 *r = rg.val[0];
310 *g = rg.val[1];
311 }
312 SI void store2(float* ptr, size_t tail, F r, F g) {
313 if (__builtin_expect(tail,0)) {
314 if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); }
315 if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); }
316 if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); }
317 } else {
318 vst2q_f32(ptr, (float32x4x2_t{{r,g}}));
319 }
320 }
321 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
322 float32x4x4_t rgba;
323 if (__builtin_expect(tail,0)) {
324 if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
325 if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
326 if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
327 } else {
328 rgba = vld4q_f32(ptr);
329 }
330 *r = rgba.val[0];
331 *g = rgba.val[1];
332 *b = rgba.val[2];
333 *a = rgba.val[3];
334 }
335 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
336 if (__builtin_expect(tail,0)) {
337 if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
338 if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
339 if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
340 } else {
341 vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
342 }
343 }
344
345 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
346 // These are __m256 and __m256i, but friendlier and strongly-typed.
347 template <typename T> using V = T __attribute__((ext_vector_type(8)));
348 using F = V<float >;
349 using I32 = V< int32_t>;
350 using U64 = V<uint64_t>;
351 using U32 = V<uint32_t>;
352 using U16 = V<uint16_t>;
353 using U8 = V<uint8_t >;
354
355 SI F mad(F f, F m, F a) {
356 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
357 return _mm256_fmadd_ps(f,m,a);
358 #else
359 return f*m+a;
360 #endif
361 }
362
363 SI F min(F a, F b) { return _mm256_min_ps(a,b); }
364 SI F max(F a, F b) { return _mm256_max_ps(a,b); }
365 SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
366 SI F floor_(F v) { return _mm256_floor_ps(v); }
367 SI F rcp_fast(F v) { return _mm256_rcp_ps (v); }
368 SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
369 SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
370 SI F rcp_precise (F v) {
371 F e = rcp_fast(v);
372 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
373 return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
374 #else
375 return e * (2.0f - v * e);
376 #endif
377 }
378
379
380 SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
381 SI U16 pack(U32 v) {
382 return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
383 _mm256_extractf128_si256(v, 1));
384 }
385 SI U8 pack(U16 v) {
386 auto r = _mm_packus_epi16(v,v);
387 return sk_unaligned_load<U8>(&r);
388 }
389
390 SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
391
392 template <typename T>
393 SI V<T> gather(const T* p, U32 ix) {
394 return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
395 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
396 }
397 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
398 SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
399 SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
400 SI U64 gather(const uint64_t* p, U32 ix) {
401 __m256i parts[] = {
402 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
403 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
404 };
405 return sk_bit_cast<U64>(parts);
406 }
407 #endif
408
409 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
410 U16 _0123, _4567;
411 if (__builtin_expect(tail,0)) {
412 _0123 = _4567 = _mm_setzero_si128();
413 auto* d = &_0123;
414 if (tail > 3) {
415 *d = _mm_loadu_si128(((__m128i*)ptr) + 0);
416 tail -= 4;
417 ptr += 8;
418 d = &_4567;
419 }
420 bool high = false;
421 if (tail > 1) {
422 *d = _mm_loadu_si64(ptr);
423 tail -= 2;
424 ptr += 4;
425 high = true;
426 }
427 if (tail > 0) {
428 (*d)[high ? 4 : 0] = *(ptr + 0);
429 (*d)[high ? 5 : 1] = *(ptr + 1);
430 }
431 } else {
432 _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0);
433 _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
434 }
435 *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
436 _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
437 *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
438 _mm_srai_epi32(_4567, 16));
439 }
440 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
441 auto _0123 = _mm_unpacklo_epi16(r, g),
442 _4567 = _mm_unpackhi_epi16(r, g);
443 if (__builtin_expect(tail,0)) {
444 const auto* s = &_0123;
445 if (tail > 3) {
446 _mm_storeu_si128((__m128i*)ptr, *s);
447 s = &_4567;
448 tail -= 4;
449 ptr += 8;
450 }
451 bool high = false;
452 if (tail > 1) {
453 _mm_storel_epi64((__m128i*)ptr, *s);
454 ptr += 4;
455 tail -= 2;
456 high = true;
457 }
458 if (tail > 0) {
459 if (high) {
460 *(int32_t*)ptr = _mm_extract_epi32(*s, 2);
461 } else {
462 *(int32_t*)ptr = _mm_cvtsi128_si32(*s);
463 }
464 }
465 } else {
466 _mm_storeu_si128((__m128i*)ptr + 0, _0123);
467 _mm_storeu_si128((__m128i*)ptr + 1, _4567);
468 }
469 }
470
471 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
472 __m128i _0,_1,_2,_3,_4,_5,_6,_7;
473 if (__builtin_expect(tail,0)) {
474 auto load_rgb = [](const uint16_t* src) {
475 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
476 return _mm_insert_epi16(v, src[2], 2);
477 };
478 _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
479 if ( true ) { _0 = load_rgb(ptr + 0); }
480 if (tail > 1) { _1 = load_rgb(ptr + 3); }
481 if (tail > 2) { _2 = load_rgb(ptr + 6); }
482 if (tail > 3) { _3 = load_rgb(ptr + 9); }
483 if (tail > 4) { _4 = load_rgb(ptr + 12); }
484 if (tail > 5) { _5 = load_rgb(ptr + 15); }
485 if (tail > 6) { _6 = load_rgb(ptr + 18); }
486 } else {
487 // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
488 auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
489 auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
490 auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
491 auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
492 _0 = _01; _1 = _mm_srli_si128(_01, 6);
493 _2 = _23; _3 = _mm_srli_si128(_23, 6);
494 _4 = _45; _5 = _mm_srli_si128(_45, 6);
495 _6 = _67; _7 = _mm_srli_si128(_67, 6);
496 }
497
498 auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
499 _13 = _mm_unpacklo_epi16(_1, _3),
500 _46 = _mm_unpacklo_epi16(_4, _6),
501 _57 = _mm_unpacklo_epi16(_5, _7);
502
503 auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
504 bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
505 rg4567 = _mm_unpacklo_epi16(_46, _57),
506 bx4567 = _mm_unpackhi_epi16(_46, _57);
507
508 *r = _mm_unpacklo_epi64(rg0123, rg4567);
509 *g = _mm_unpackhi_epi64(rg0123, rg4567);
510 *b = _mm_unpacklo_epi64(bx0123, bx4567);
511 }
512 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
513 __m128i _01, _23, _45, _67;
514 if (__builtin_expect(tail,0)) {
515 auto src = (const double*)ptr;
516 _01 = _23 = _45 = _67 = _mm_setzero_si128();
517 if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
518 if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
519 if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
520 if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
521 if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
522 if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
523 if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
524 } else {
525 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
526 _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
527 _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
528 _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
529 }
530
531 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
532 _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
533 _46 = _mm_unpacklo_epi16(_45, _67),
534 _57 = _mm_unpackhi_epi16(_45, _67);
535
536 auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
537 ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
538 rg4567 = _mm_unpacklo_epi16(_46, _57),
539 ba4567 = _mm_unpackhi_epi16(_46, _57);
540
541 *r = _mm_unpacklo_epi64(rg0123, rg4567);
542 *g = _mm_unpackhi_epi64(rg0123, rg4567);
543 *b = _mm_unpacklo_epi64(ba0123, ba4567);
544 *a = _mm_unpackhi_epi64(ba0123, ba4567);
545 }
546 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
547 auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
548 rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
549 ba0123 = _mm_unpacklo_epi16(b, a),
550 ba4567 = _mm_unpackhi_epi16(b, a);
551
552 auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
553 _23 = _mm_unpackhi_epi32(rg0123, ba0123),
554 _45 = _mm_unpacklo_epi32(rg4567, ba4567),
555 _67 = _mm_unpackhi_epi32(rg4567, ba4567);
556
557 if (__builtin_expect(tail,0)) {
558 auto dst = (double*)ptr;
559 if (tail > 0) { _mm_storel_pd(dst+0, _01); }
560 if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
561 if (tail > 2) { _mm_storel_pd(dst+2, _23); }
562 if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
563 if (tail > 4) { _mm_storel_pd(dst+4, _45); }
564 if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
565 if (tail > 6) { _mm_storel_pd(dst+6, _67); }
566 } else {
567 _mm_storeu_si128((__m128i*)ptr + 0, _01);
568 _mm_storeu_si128((__m128i*)ptr + 1, _23);
569 _mm_storeu_si128((__m128i*)ptr + 2, _45);
570 _mm_storeu_si128((__m128i*)ptr + 3, _67);
571 }
572 }
573
574 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
575 F _0123, _4567;
576 if (__builtin_expect(tail, 0)) {
577 _0123 = _4567 = _mm256_setzero_ps();
578 F* d = &_0123;
579 if (tail > 3) {
580 *d = _mm256_loadu_ps(ptr);
581 ptr += 8;
582 tail -= 4;
583 d = &_4567;
584 }
585 bool high = false;
586 if (tail > 1) {
587 *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr));
588 ptr += 4;
589 tail -= 2;
590 high = true;
591 }
592 if (tail > 0) {
593 *d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1)
594 : _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0);
595 }
596 } else {
597 _0123 = _mm256_loadu_ps(ptr + 0);
598 _4567 = _mm256_loadu_ps(ptr + 8);
599 }
600
601 F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20),
602 _2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31);
603
604 *r = _mm256_shuffle_ps(_0145, _2367, 0x88);
605 *g = _mm256_shuffle_ps(_0145, _2367, 0xDD);
606 }
607 SI void store2(float* ptr, size_t tail, F r, F g) {
608 F _0145 = _mm256_unpacklo_ps(r, g),
609 _2367 = _mm256_unpackhi_ps(r, g);
610 F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20),
611 _4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31);
612
613 if (__builtin_expect(tail, 0)) {
614 const __m256* s = &_0123;
615 if (tail > 3) {
616 _mm256_storeu_ps(ptr, *s);
617 s = &_4567;
618 tail -= 4;
619 ptr += 8;
620 }
621 bool high = false;
622 if (tail > 1) {
623 _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0));
624 ptr += 4;
625 tail -= 2;
626 high = true;
627 }
628 if (tail > 0) {
629 *(ptr + 0) = (*s)[ high ? 4 : 0];
630 *(ptr + 1) = (*s)[ high ? 5 : 1];
631 }
632 } else {
633 _mm256_storeu_ps(ptr + 0, _0123);
634 _mm256_storeu_ps(ptr + 8, _4567);
635 }
636 }
637
638 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
639 F _04, _15, _26, _37;
640 _04 = _15 = _26 = _37 = 0;
641 switch (tail) {
642 case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]];
643 case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]];
644 case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]];
645 case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]];
646 case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]];
647 case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]];
648 case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]];
649 case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
650 }
651
652 F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
653 ba0145 = _mm256_unpackhi_ps(_04,_15),
654 rg2367 = _mm256_unpacklo_ps(_26,_37),
655 ba2367 = _mm256_unpackhi_ps(_26,_37);
656
657 *r = _mm256_unpacklo_pd(rg0145, rg2367);
658 *g = _mm256_unpackhi_pd(rg0145, rg2367);
659 *b = _mm256_unpacklo_pd(ba0145, ba2367);
660 *a = _mm256_unpackhi_pd(ba0145, ba2367);
661 }
662 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
663 F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
664 rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
665 ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
666 ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
667
668 F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
669 _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
670 _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
671 _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
672
673 if (__builtin_expect(tail, 0)) {
674 if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
675 if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
676 if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
677 if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
678 if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
679 if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
680 if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
681 } else {
682 F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
683 _23 = _mm256_permute2f128_ps(_26, _37, 32),
684 _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
685 _67 = _mm256_permute2f128_ps(_26, _37, 49);
686 _mm256_storeu_ps(ptr+ 0, _01);
687 _mm256_storeu_ps(ptr+ 8, _23);
688 _mm256_storeu_ps(ptr+16, _45);
689 _mm256_storeu_ps(ptr+24, _67);
690 }
691 }
692
693 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
694 template <typename T> using V = T __attribute__((ext_vector_type(4)));
695 using F = V<float >;
696 using I32 = V< int32_t>;
697 using U64 = V<uint64_t>;
698 using U32 = V<uint32_t>;
699 using U16 = V<uint16_t>;
700 using U8 = V<uint8_t >;
701
702 SI F mad(F f, F m, F a) { return f*m+a; }
703 SI F min(F a, F b) { return _mm_min_ps(a,b); }
704 SI F max(F a, F b) { return _mm_max_ps(a,b); }
705 SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
706 SI F rcp_fast(F v) { return _mm_rcp_ps (v); }
707 SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); }
708 SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
709 SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
710
711 SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
712
713 SI U16 pack(U32 v) {
714 #if defined(JUMPER_IS_SSE41)
715 auto p = _mm_packus_epi32(v,v);
716 #else
717 // Sign extend so that _mm_packs_epi32() does the pack we want.
718 auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
719 p = _mm_packs_epi32(p,p);
720 #endif
721 return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
722 }
723 SI U8 pack(U16 v) {
724 auto r = widen_cast<__m128i>(v);
725 r = _mm_packus_epi16(r,r);
726 return sk_unaligned_load<U8>(&r);
727 }
728
729 SI F if_then_else(I32 c, F t, F e) {
730 return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
731 }
732
733 SI F floor_(F v) {
734 #if defined(JUMPER_IS_SSE41)
735 return _mm_floor_ps(v);
736 #else
737 F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
738 return roundtrip - if_then_else(roundtrip > v, 1, 0);
739 #endif
740 }
741
742 template <typename T>
743 SI V<T> gather(const T* p, U32 ix) {
744 return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
745 }
746
747 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
748 __m128i _01;
749 if (__builtin_expect(tail,0)) {
750 _01 = _mm_setzero_si128();
751 if (tail > 1) {
752 _01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00
753 if (tail > 2) {
754 _01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00
755 _01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00
756 }
757 } else {
758 _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00
759 }
760 } else {
761 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
762 }
763 auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
764 auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
765
766 auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
767 auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
768 *r = sk_unaligned_load<U16>(&R);
769 *g = sk_unaligned_load<U16>(&G);
770 }
771 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
772 U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
773 if (__builtin_expect(tail, 0)) {
774 if (tail > 1) {
775 _mm_storel_epi64((__m128i*)ptr, rg);
776 if (tail > 2) {
777 int32_t rgpair = rg[2];
778 memcpy(ptr + 4, &rgpair, sizeof(rgpair));
779 }
780 } else {
781 int32_t rgpair = rg[0];
782 memcpy(ptr, &rgpair, sizeof(rgpair));
783 }
784 } else {
785 _mm_storeu_si128((__m128i*)ptr + 0, rg);
786 }
787 }
788
789 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
790 __m128i _0, _1, _2, _3;
791 if (__builtin_expect(tail,0)) {
792 _1 = _2 = _3 = _mm_setzero_si128();
793 auto load_rgb = [](const uint16_t* src) {
794 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
795 return _mm_insert_epi16(v, src[2], 2);
796 };
797 if ( true ) { _0 = load_rgb(ptr + 0); }
798 if (tail > 1) { _1 = load_rgb(ptr + 3); }
799 if (tail > 2) { _2 = load_rgb(ptr + 6); }
800 } else {
801 // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
802 auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
803 _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
804
805 // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
806 _0 = _01;
807 _1 = _mm_srli_si128(_01, 6);
808 _2 = _23;
809 _3 = _mm_srli_si128(_23, 6);
810 }
811
812 // De-interlace to R,G,B.
813 auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
814 _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
815
816 auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
817 G = _mm_srli_si128(R, 8),
818 B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
819
820 *r = sk_unaligned_load<U16>(&R);
821 *g = sk_unaligned_load<U16>(&G);
822 *b = sk_unaligned_load<U16>(&B);
823 }
824
825 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
826 __m128i _01, _23;
827 if (__builtin_expect(tail,0)) {
828 _01 = _23 = _mm_setzero_si128();
829 auto src = (const double*)ptr;
830 if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
831 if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
832 if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
833 } else {
834 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
835 _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
836 }
837
838 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
839 _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
840
841 auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
842 ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
843
844 *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
845 *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
846 *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
847 *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
848 }
849
850 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
851 auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
852 ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
853
854 if (__builtin_expect(tail, 0)) {
855 auto dst = (double*)ptr;
856 if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
857 if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
858 if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
859 } else {
860 _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
861 _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
862 }
863 }
864
865 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
866 F _01, _23;
867 if (__builtin_expect(tail, 0)) {
868 _01 = _23 = _mm_setzero_si128();
869 if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); }
870 if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); }
871 if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); }
872 } else {
873 _01 = _mm_loadu_ps(ptr + 0);
874 _23 = _mm_loadu_ps(ptr + 4);
875 }
876 *r = _mm_shuffle_ps(_01, _23, 0x88);
877 *g = _mm_shuffle_ps(_01, _23, 0xDD);
878 }
879 SI void store2(float* ptr, size_t tail, F r, F g) {
880 F _01 = _mm_unpacklo_ps(r, g),
881 _23 = _mm_unpackhi_ps(r, g);
882 if (__builtin_expect(tail, 0)) {
883 if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); }
884 if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); }
885 if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); }
886 } else {
887 _mm_storeu_ps(ptr + 0, _01);
888 _mm_storeu_ps(ptr + 4, _23);
889 }
890 }
891
892 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
893 F _0, _1, _2, _3;
894 if (__builtin_expect(tail, 0)) {
895 _1 = _2 = _3 = _mm_setzero_si128();
896 if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
897 if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
898 if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
899 } else {
900 _0 = _mm_loadu_ps(ptr + 0);
901 _1 = _mm_loadu_ps(ptr + 4);
902 _2 = _mm_loadu_ps(ptr + 8);
903 _3 = _mm_loadu_ps(ptr +12);
904 }
905 _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
906 *r = _0;
907 *g = _1;
908 *b = _2;
909 *a = _3;
910 }
911
912 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
913 _MM_TRANSPOSE4_PS(r,g,b,a);
914 if (__builtin_expect(tail, 0)) {
915 if ( true ) { _mm_storeu_ps(ptr + 0, r); }
916 if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
917 if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
918 } else {
919 _mm_storeu_ps(ptr + 0, r);
920 _mm_storeu_ps(ptr + 4, g);
921 _mm_storeu_ps(ptr + 8, b);
922 _mm_storeu_ps(ptr +12, a);
923 }
924 }
925 #endif
926
927 // We need to be a careful with casts.
928 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
929 // These named casts and bit_cast() are always what they seem to be.
930 #if defined(JUMPER_IS_SCALAR)
cast(U32 v)931 SI F cast (U32 v) { return (F)v; }
cast64(U64 v)932 SI F cast64(U64 v) { return (F)v; }
trunc_(F v)933 SI U32 trunc_(F v) { return (U32)v; }
expand(U16 v)934 SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)935 SI U32 expand(U8 v) { return (U32)v; }
936 #else
cast(U32 v)937 SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
cast64(U64 v)938 SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
trunc_(F v)939 SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
expand(U16 v)940 SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
expand(U8 v)941 SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
942 #endif
943
944 template <typename V>
if_then_else(I32 c,V t,V e)945 SI V if_then_else(I32 c, V t, V e) {
946 return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e)));
947 }
948
bswap(U16 x)949 SI U16 bswap(U16 x) {
950 #if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
951 // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
952 // when generating code for SSE2 and SSE4.1. We'll do it manually...
953 auto v = widen_cast<__m128i>(x);
954 v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
955 return sk_unaligned_load<U16>(&v);
956 #else
957 return (x<<8) | (x>>8);
958 #endif
959 }
960
fract(F v)961 SI F fract(F v) { return v - floor_(v); }
962
963 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
approx_log2(F x)964 SI F approx_log2(F x) {
965 // e - 127 is a fair approximation of log2(x) in its own right...
966 F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
967
968 // ... but using the mantissa to refine its error is _much_ better.
969 F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
970 return e
971 - 124.225514990f
972 - 1.498030302f * m
973 - 1.725879990f / (0.3520887068f + m);
974 }
975
approx_log(F x)976 SI F approx_log(F x) {
977 const float ln2 = 0.69314718f;
978 return ln2 * approx_log2(x);
979 }
980
approx_pow2(F x)981 SI F approx_pow2(F x) {
982 F f = fract(x);
983 return sk_bit_cast<F>(round(1.0f * (1<<23),
984 x + 121.274057500f
985 - 1.490129070f * f
986 + 27.728023300f / (4.84252568f - f)));
987 }
988
approx_exp(F x)989 SI F approx_exp(F x) {
990 const float log2_e = 1.4426950408889634074f;
991 return approx_pow2(log2_e * x);
992 }
993
approx_powf(F x,F y)994 SI F approx_powf(F x, F y) {
995 return if_then_else((x == 0)|(x == 1), x
996 , approx_pow2(approx_log2(x) * y));
997 }
998
from_half(U16 h)999 SI F from_half(U16 h) {
1000 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1001 && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
1002 return vcvt_f32_f16(h);
1003
1004 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1005 return _mm256_cvtph_ps(h);
1006
1007 #else
1008 // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1009 U32 sem = expand(h),
1010 s = sem & 0x8000,
1011 em = sem ^ s;
1012
1013 // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1014 auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
1015 return if_then_else(denorm, F(0)
1016 , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1017 #endif
1018 }
1019
to_half(F f)1020 SI U16 to_half(F f) {
1021 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1022 && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
1023 return vcvt_f16_f32(f);
1024
1025 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1026 return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1027
1028 #else
1029 // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1030 U32 sem = sk_bit_cast<U32>(f),
1031 s = sem & 0x80000000,
1032 em = sem ^ s;
1033
1034 // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1035 auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
1036 return pack(if_then_else(denorm, U32(0)
1037 , (s>>16) + (em>>13) - ((127-15)<<10)));
1038 #endif
1039 }
1040
1041 // Our fundamental vector depth is our pixel stride.
1042 static const size_t N = sizeof(F) / sizeof(float);
1043
1044 // We're finally going to get to what a Stage function looks like!
1045 // tail == 0 ~~> work on a full N pixels
1046 // tail != 0 ~~> work on only the first tail pixels
1047 // tail is always < N.
1048
1049 // Any custom ABI to use for all (non-externally-facing) stage functions?
1050 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1051 #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
1052 // This lets us pass vectors more efficiently on 32-bit ARM.
1053 // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1054 #define ABI __attribute__((pcs("aapcs-vfp")))
1055 #define JUMPER_NARROW_STAGES 1
1056 #elif defined(_MSC_VER)
1057 // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1058 // instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
1059 #define ABI __vectorcall
1060 #define JUMPER_NARROW_STAGES 1
1061 #elif defined(__x86_64__) || defined(SK_CPU_ARM64)
1062 // These platforms are ideal for wider stages, and their default ABI is ideal.
1063 #define ABI
1064 #define JUMPER_NARROW_STAGES 0
1065 #else
1066 // 32-bit or unknown... shunt them down the narrow path.
1067 // Odds are these have few registers and are better off there.
1068 #define ABI
1069 #define JUMPER_NARROW_STAGES 1
1070 #endif
1071
1072 #if JUMPER_NARROW_STAGES
1073 struct Params {
1074 size_t dx, dy, tail;
1075 F dr,dg,db,da;
1076 };
1077 using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
1078 #else
1079 // We keep program the second argument, so that it's passed in rsi for load_and_inc().
1080 using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
1081 #endif
1082
1083
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,void ** program)1084 static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
1085 auto start = (Stage)load_and_inc(program);
1086 const size_t x0 = dx;
1087 for (; dy < ylimit; dy++) {
1088 #if JUMPER_NARROW_STAGES
1089 Params params = { x0,dy,0, 0,0,0,0 };
1090 while (params.dx + N <= xlimit) {
1091 start(¶ms,program, 0,0,0,0);
1092 params.dx += N;
1093 }
1094 if (size_t tail = xlimit - params.dx) {
1095 params.tail = tail;
1096 start(¶ms,program, 0,0,0,0);
1097 }
1098 #else
1099 dx = x0;
1100 while (dx + N <= xlimit) {
1101 start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
1102 dx += N;
1103 }
1104 if (size_t tail = xlimit - dx) {
1105 start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
1106 }
1107 #endif
1108 }
1109 }
1110
1111 #if JUMPER_NARROW_STAGES
1112 #define STAGE(name, ...) \
1113 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1114 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1115 static void ABI name(Params* params, void** program, \
1116 F r, F g, F b, F a) { \
1117 name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
1118 params->dr, params->dg, params->db, params->da); \
1119 auto next = (Stage)load_and_inc(program); \
1120 next(params,program, r,g,b,a); \
1121 } \
1122 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1123 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1124 #else
1125 #define STAGE(name, ...) \
1126 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1127 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1128 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
1129 F r, F g, F b, F a, F dr, F dg, F db, F da) { \
1130 name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
1131 auto next = (Stage)load_and_inc(program); \
1132 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
1133 } \
1134 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1135 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1136 #endif
1137
1138
1139 // just_return() is a simple no-op stage that only exists to end the chain,
1140 // returning back up to start_pipeline(), and from there to the caller.
1141 #if JUMPER_NARROW_STAGES
just_return(Params *,void **,F,F,F,F)1142 static void ABI just_return(Params*, void**, F,F,F,F) {}
1143 #else
just_return(size_t,void **,size_t,size_t,F,F,F,F,F,F,F,F)1144 static void ABI just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
1145 #endif
1146
1147
1148 // We could start defining normal Stages now. But first, some helper functions.
1149
1150 // These load() and store() methods are tail-aware,
1151 // but focus mainly on keeping the at-stride tail==0 case fast.
1152
1153 template <typename V, typename T>
load(const T * src,size_t tail)1154 SI V load(const T* src, size_t tail) {
1155 #if !defined(JUMPER_IS_SCALAR)
1156 __builtin_assume(tail < N);
1157 if (__builtin_expect(tail, 0)) {
1158 V v{}; // Any inactive lanes are zeroed.
1159 switch (tail) {
1160 case 7: v[6] = src[6]; [[fallthrough]];
1161 case 6: v[5] = src[5]; [[fallthrough]];
1162 case 5: v[4] = src[4]; [[fallthrough]];
1163 case 4: memcpy(&v, src, 4*sizeof(T)); break;
1164 case 3: v[2] = src[2]; [[fallthrough]];
1165 case 2: memcpy(&v, src, 2*sizeof(T)); break;
1166 case 1: memcpy(&v, src, 1*sizeof(T)); break;
1167 }
1168 return v;
1169 }
1170 #endif
1171 return sk_unaligned_load<V>(src);
1172 }
1173
1174 template <typename V, typename T>
store(T * dst,V v,size_t tail)1175 SI void store(T* dst, V v, size_t tail) {
1176 #if !defined(JUMPER_IS_SCALAR)
1177 __builtin_assume(tail < N);
1178 if (__builtin_expect(tail, 0)) {
1179 switch (tail) {
1180 case 7: dst[6] = v[6]; [[fallthrough]];
1181 case 6: dst[5] = v[5]; [[fallthrough]];
1182 case 5: dst[4] = v[4]; [[fallthrough]];
1183 case 4: memcpy(dst, &v, 4*sizeof(T)); break;
1184 case 3: dst[2] = v[2]; [[fallthrough]];
1185 case 2: memcpy(dst, &v, 2*sizeof(T)); break;
1186 case 1: memcpy(dst, &v, 1*sizeof(T)); break;
1187 }
1188 return;
1189 }
1190 #endif
1191 sk_unaligned_store(dst, v);
1192 }
1193
from_byte(U8 b)1194 SI F from_byte(U8 b) {
1195 return cast(expand(b)) * (1/255.0f);
1196 }
from_short(U16 s)1197 SI F from_short(U16 s) {
1198 return cast(expand(s)) * (1/65535.0f);
1199 }
from_565(U16 _565,F * r,F * g,F * b)1200 SI void from_565(U16 _565, F* r, F* g, F* b) {
1201 U32 wide = expand(_565);
1202 *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1203 *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1204 *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1205 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1206 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1207 U32 wide = expand(_4444);
1208 *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1209 *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1210 *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1211 *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1212 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1213 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1214 *r = cast((_8888 ) & 0xff) * (1/255.0f);
1215 *g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
1216 *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1217 *a = cast((_8888 >> 24) ) * (1/255.0f);
1218 }
from_88(U16 _88,F * r,F * g)1219 SI void from_88(U16 _88, F* r, F* g) {
1220 U32 wide = expand(_88);
1221 *r = cast((wide ) & 0xff) * (1/255.0f);
1222 *g = cast((wide >> 8) & 0xff) * (1/255.0f);
1223 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1224 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1225 *r = cast((rgba ) & 0x3ff) * (1/1023.0f);
1226 *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1227 *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1228 *a = cast((rgba >> 30) ) * (1/ 3.0f);
1229 }
from_1616(U32 _1616,F * r,F * g)1230 SI void from_1616(U32 _1616, F* r, F* g) {
1231 *r = cast((_1616 ) & 0xffff) * (1/65535.0f);
1232 *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1233 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1234 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1235 *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
1236 *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1237 *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1238 *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1239 }
1240
1241 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1242 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,size_t dx,size_t dy)1243 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
1244 return (T*)ctx->pixels + dy*ctx->stride + dx;
1245 }
1246
1247 // clamp v to [0,limit).
clamp(F v,F limit)1248 SI F clamp(F v, F limit) {
1249 F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
1250 return min(max(0, v), inclusive);
1251 }
1252
1253 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1254 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1255 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1256 x = clamp(x, ctx->width);
1257 y = clamp(y, ctx->height);
1258
1259 *ptr = (const T*)ctx->pixels;
1260 return trunc_(y)*ctx->stride + trunc_(x);
1261 }
1262
1263 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
1264 // whether for a table lookup or to pack back down into bytes for storage.
1265 //
1266 // In practice, especially when dealing with interesting color spaces, that notionally
1267 // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
1268 //
1269 // You can adjust the expected input to [0,bias] by tweaking that parameter.
1270 SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
1271 // Any time we use round() we probably want to use to_unorm().
1272 return round(min(max(0, v), bias), scale);
1273 }
1274
cond_to_mask(I32 cond)1275 SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
1276
1277 // Now finally, normal Stages!
1278
STAGE(seed_shader,Ctx::None)1279 STAGE(seed_shader, Ctx::None) {
1280 static const float iota[] = {
1281 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
1282 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
1283 };
1284 // It's important for speed to explicitly cast(dx) and cast(dy),
1285 // which has the effect of splatting them to vectors before converting to floats.
1286 // On Intel this breaks a data dependency on previous loop iterations' registers.
1287 r = cast(dx) + sk_unaligned_load<F>(iota);
1288 g = cast(dy) + 0.5f;
1289 b = 1.0f;
1290 a = 0;
1291 dr = dg = db = da = 0;
1292 }
1293
STAGE(dither,const float * rate)1294 STAGE(dither, const float* rate) {
1295 // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
1296 uint32_t iota[] = {0,1,2,3,4,5,6,7};
1297 U32 X = dx + sk_unaligned_load<U32>(iota),
1298 Y = dy;
1299
1300 // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
1301 // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
1302
1303 // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
1304 Y ^= X;
1305
1306 // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
1307 // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
1308 U32 M = (Y & 1) << 5 | (X & 1) << 4
1309 | (Y & 2) << 2 | (X & 2) << 1
1310 | (Y & 4) >> 1 | (X & 4) >> 2;
1311
1312 // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
1313 // We want to make sure our dither is less than 0.5 in either direction to keep exact values
1314 // like 0 and 1 unchanged after rounding.
1315 F dither = cast(M) * (2/128.0f) - (63/128.0f);
1316
1317 r += *rate*dither;
1318 g += *rate*dither;
1319 b += *rate*dither;
1320
1321 r = max(0, min(r, a));
1322 g = max(0, min(g, a));
1323 b = max(0, min(b, a));
1324 }
1325
1326 // load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)1327 STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1328 r = c->r;
1329 g = c->g;
1330 b = c->b;
1331 a = c->a;
1332 }
STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)1333 STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1334 r = c->r;
1335 g = c->g;
1336 b = c->b;
1337 a = c->a;
1338 }
1339 // load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)1340 STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
1341 dr = c->r;
1342 dg = c->g;
1343 db = c->b;
1344 da = c->a;
1345 }
1346
1347 // splats opaque-black into r,g,b,a
STAGE(black_color,Ctx::None)1348 STAGE(black_color, Ctx::None) {
1349 r = g = b = 0.0f;
1350 a = 1.0f;
1351 }
1352
STAGE(white_color,Ctx::None)1353 STAGE(white_color, Ctx::None) {
1354 r = g = b = a = 1.0f;
1355 }
1356
1357 // load registers r,g,b,a from context (mirrors store_rgba)
STAGE(load_src,const float * ptr)1358 STAGE(load_src, const float* ptr) {
1359 r = sk_unaligned_load<F>(ptr + 0*N);
1360 g = sk_unaligned_load<F>(ptr + 1*N);
1361 b = sk_unaligned_load<F>(ptr + 2*N);
1362 a = sk_unaligned_load<F>(ptr + 3*N);
1363 }
1364
1365 // store registers r,g,b,a into context (mirrors load_rgba)
STAGE(store_src,float * ptr)1366 STAGE(store_src, float* ptr) {
1367 sk_unaligned_store(ptr + 0*N, r);
1368 sk_unaligned_store(ptr + 1*N, g);
1369 sk_unaligned_store(ptr + 2*N, b);
1370 sk_unaligned_store(ptr + 3*N, a);
1371 }
STAGE(store_src_a,float * ptr)1372 STAGE(store_src_a, float* ptr) {
1373 sk_unaligned_store(ptr, a);
1374 }
1375
1376 // load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst,const float * ptr)1377 STAGE(load_dst, const float* ptr) {
1378 dr = sk_unaligned_load<F>(ptr + 0*N);
1379 dg = sk_unaligned_load<F>(ptr + 1*N);
1380 db = sk_unaligned_load<F>(ptr + 2*N);
1381 da = sk_unaligned_load<F>(ptr + 3*N);
1382 }
1383
1384 // store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst,float * ptr)1385 STAGE(store_dst, float* ptr) {
1386 sk_unaligned_store(ptr + 0*N, dr);
1387 sk_unaligned_store(ptr + 1*N, dg);
1388 sk_unaligned_store(ptr + 2*N, db);
1389 sk_unaligned_store(ptr + 3*N, da);
1390 }
1391
1392 // Most blend modes apply the same logic to each channel.
1393 #define BLEND_MODE(name) \
1394 SI F name##_channel(F s, F d, F sa, F da); \
1395 STAGE(name, Ctx::None) { \
1396 r = name##_channel(r,dr,a,da); \
1397 g = name##_channel(g,dg,a,da); \
1398 b = name##_channel(b,db,a,da); \
1399 a = name##_channel(a,da,a,da); \
1400 } \
1401 SI F name##_channel(F s, F d, F sa, F da)
1402
inv(F x)1403 SI F inv(F x) { return 1.0f - x; }
two(F x)1404 SI F two(F x) { return x + x; }
1405
1406
BLEND_MODE(clear)1407 BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop)1408 BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop)1409 BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin)1410 BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin)1411 BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout)1412 BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout)1413 BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover)1414 BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)1415 BLEND_MODE(dstover) { return mad(s, inv(da), d); }
1416
BLEND_MODE(modulate)1417 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)1418 BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_)1419 BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen)1420 BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_)1421 BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
1422 #undef BLEND_MODE
1423
1424 // Most other blend modes apply the same logic to colors, and srcover to alpha.
1425 #define BLEND_MODE(name) \
1426 SI F name##_channel(F s, F d, F sa, F da); \
1427 STAGE(name, Ctx::None) { \
1428 r = name##_channel(r,dr,a,da); \
1429 g = name##_channel(g,dg,a,da); \
1430 b = name##_channel(b,db,a,da); \
1431 a = mad(da, inv(a), a); \
1432 } \
1433 SI F name##_channel(F s, F d, F sa, F da)
1434
BLEND_MODE(darken)1435 BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten)1436 BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference)1437 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)1438 BLEND_MODE(exclusion) { return s + d - two(s*d); }
1439
BLEND_MODE(colorburn)1440 BLEND_MODE(colorburn) {
1441 return if_then_else(d == da, d + s*inv(da),
1442 if_then_else(s == 0, /* s + */ d*inv(sa),
1443 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
1444 }
BLEND_MODE(colordodge)1445 BLEND_MODE(colordodge) {
1446 return if_then_else(d == 0, /* d + */ s*inv(da),
1447 if_then_else(s == sa, s + d*inv(sa),
1448 sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
1449 }
BLEND_MODE(hardlight)1450 BLEND_MODE(hardlight) {
1451 return s*inv(da) + d*inv(sa)
1452 + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
1453 }
BLEND_MODE(overlay)1454 BLEND_MODE(overlay) {
1455 return s*inv(da) + d*inv(sa)
1456 + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
1457 }
1458
BLEND_MODE(softlight)1459 BLEND_MODE(softlight) {
1460 F m = if_then_else(da > 0, d / da, 0),
1461 s2 = two(s),
1462 m4 = two(two(m));
1463
1464 // The logic forks three ways:
1465 // 1. dark src?
1466 // 2. light src, dark dst?
1467 // 3. light src, light dst?
1468 F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
1469 darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
1470 #if defined(SK_RASTER_PIPELINE_LEGACY_RCP_RSQRT)
1471 liteDst = rcp_fast(rsqrt(m)) - m, // Used in case 3.
1472 #else
1473 liteDst = sqrt_(m) - m,
1474 #endif
1475 liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
1476 return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
1477 }
1478 #undef BLEND_MODE
1479
1480 // We're basing our implemenation of non-separable blend modes on
1481 // https://www.w3.org/TR/compositing-1/#blendingnonseparable.
1482 // and
1483 // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
1484 // They're equivalent, but ES' math has been better simplified.
1485 //
1486 // Anything extra we add beyond that is to make the math work with premul inputs.
1487
sat(F r,F g,F b)1488 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)1489 SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
1490
set_sat(F * r,F * g,F * b,F s)1491 SI void set_sat(F* r, F* g, F* b, F s) {
1492 F mn = min(*r, min(*g,*b)),
1493 mx = max(*r, max(*g,*b)),
1494 sat = mx - mn;
1495
1496 // Map min channel to 0, max channel to s, and scale the middle proportionally.
1497 auto scale = [=](F c) {
1498 return if_then_else(sat == 0, 0, (c - mn) * s / sat);
1499 };
1500 *r = scale(*r);
1501 *g = scale(*g);
1502 *b = scale(*b);
1503 }
set_lum(F * r,F * g,F * b,F l)1504 SI void set_lum(F* r, F* g, F* b, F l) {
1505 F diff = l - lum(*r, *g, *b);
1506 *r += diff;
1507 *g += diff;
1508 *b += diff;
1509 }
clip_color(F * r,F * g,F * b,F a)1510 SI void clip_color(F* r, F* g, F* b, F a) {
1511 F mn = min(*r, min(*g, *b)),
1512 mx = max(*r, max(*g, *b)),
1513 l = lum(*r, *g, *b);
1514
1515 auto clip = [=](F c) {
1516 c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
1517 c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
1518 c = max(c, 0); // Sometimes without this we may dip just a little negative.
1519 return c;
1520 };
1521 *r = clip(*r);
1522 *g = clip(*g);
1523 *b = clip(*b);
1524 }
1525
STAGE(hue,Ctx::None)1526 STAGE(hue, Ctx::None) {
1527 F R = r*a,
1528 G = g*a,
1529 B = b*a;
1530
1531 set_sat(&R, &G, &B, sat(dr,dg,db)*a);
1532 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1533 clip_color(&R,&G,&B, a*da);
1534
1535 r = r*inv(da) + dr*inv(a) + R;
1536 g = g*inv(da) + dg*inv(a) + G;
1537 b = b*inv(da) + db*inv(a) + B;
1538 a = a + da - a*da;
1539 }
STAGE(saturation,Ctx::None)1540 STAGE(saturation, Ctx::None) {
1541 F R = dr*a,
1542 G = dg*a,
1543 B = db*a;
1544
1545 set_sat(&R, &G, &B, sat( r, g, b)*da);
1546 set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
1547 clip_color(&R,&G,&B, a*da);
1548
1549 r = r*inv(da) + dr*inv(a) + R;
1550 g = g*inv(da) + dg*inv(a) + G;
1551 b = b*inv(da) + db*inv(a) + B;
1552 a = a + da - a*da;
1553 }
STAGE(color,Ctx::None)1554 STAGE(color, Ctx::None) {
1555 F R = r*da,
1556 G = g*da,
1557 B = b*da;
1558
1559 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1560 clip_color(&R,&G,&B, a*da);
1561
1562 r = r*inv(da) + dr*inv(a) + R;
1563 g = g*inv(da) + dg*inv(a) + G;
1564 b = b*inv(da) + db*inv(a) + B;
1565 a = a + da - a*da;
1566 }
STAGE(luminosity,Ctx::None)1567 STAGE(luminosity, Ctx::None) {
1568 F R = dr*a,
1569 G = dg*a,
1570 B = db*a;
1571
1572 set_lum(&R, &G, &B, lum(r,g,b)*da);
1573 clip_color(&R,&G,&B, a*da);
1574
1575 r = r*inv(da) + dr*inv(a) + R;
1576 g = g*inv(da) + dg*inv(a) + G;
1577 b = b*inv(da) + db*inv(a) + B;
1578 a = a + da - a*da;
1579 }
1580
STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)1581 STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
1582 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
1583
1584 U32 dst = load<U32>(ptr, tail);
1585 dr = cast((dst ) & 0xff);
1586 dg = cast((dst >> 8) & 0xff);
1587 db = cast((dst >> 16) & 0xff);
1588 da = cast((dst >> 24) );
1589 // {dr,dg,db,da} are in [0,255]
1590 // { r, g, b, a} are in [0, 1] (but may be out of gamut)
1591
1592 r = mad(dr, inv(a), r*255.0f);
1593 g = mad(dg, inv(a), g*255.0f);
1594 b = mad(db, inv(a), b*255.0f);
1595 a = mad(da, inv(a), a*255.0f);
1596 // { r, g, b, a} are now in [0,255] (but may be out of gamut)
1597
1598 // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
1599 dst = to_unorm(r, 1, 255)
1600 | to_unorm(g, 1, 255) << 8
1601 | to_unorm(b, 1, 255) << 16
1602 | to_unorm(a, 1, 255) << 24;
1603 store(ptr, dst, tail);
1604 }
1605
STAGE(clamp_0,Ctx::None)1606 STAGE(clamp_0, Ctx::None) {
1607 r = max(r, 0);
1608 g = max(g, 0);
1609 b = max(b, 0);
1610 a = max(a, 0);
1611 }
1612
STAGE(clamp_1,Ctx::None)1613 STAGE(clamp_1, Ctx::None) {
1614 r = min(r, 1.0f);
1615 g = min(g, 1.0f);
1616 b = min(b, 1.0f);
1617 a = min(a, 1.0f);
1618 }
1619
STAGE(clamp_a,Ctx::None)1620 STAGE(clamp_a, Ctx::None) {
1621 a = min(a, 1.0f);
1622 r = min(r, a);
1623 g = min(g, a);
1624 b = min(b, a);
1625 }
1626
STAGE(clamp_gamut,Ctx::None)1627 STAGE(clamp_gamut, Ctx::None) {
1628 a = min(max(a, 0), 1.0f);
1629 r = min(max(r, 0), a);
1630 g = min(max(g, 0), a);
1631 b = min(max(b, 0), a);
1632 }
1633
STAGE(set_rgb,const float * rgb)1634 STAGE(set_rgb, const float* rgb) {
1635 r = rgb[0];
1636 g = rgb[1];
1637 b = rgb[2];
1638 }
STAGE(unbounded_set_rgb,const float * rgb)1639 STAGE(unbounded_set_rgb, const float* rgb) {
1640 r = rgb[0];
1641 g = rgb[1];
1642 b = rgb[2];
1643 }
1644
STAGE(swap_rb,Ctx::None)1645 STAGE(swap_rb, Ctx::None) {
1646 auto tmp = r;
1647 r = b;
1648 b = tmp;
1649 }
STAGE(swap_rb_dst,Ctx::None)1650 STAGE(swap_rb_dst, Ctx::None) {
1651 auto tmp = dr;
1652 dr = db;
1653 db = tmp;
1654 }
1655
STAGE(move_src_dst,Ctx::None)1656 STAGE(move_src_dst, Ctx::None) {
1657 dr = r;
1658 dg = g;
1659 db = b;
1660 da = a;
1661 }
STAGE(move_dst_src,Ctx::None)1662 STAGE(move_dst_src, Ctx::None) {
1663 r = dr;
1664 g = dg;
1665 b = db;
1666 a = da;
1667 }
STAGE(swap_src_dst,Ctx::None)1668 STAGE(swap_src_dst, Ctx::None) {
1669 std::swap(r, dr);
1670 std::swap(g, dg);
1671 std::swap(b, db);
1672 std::swap(a, da);
1673 }
1674
STAGE(premul,Ctx::None)1675 STAGE(premul, Ctx::None) {
1676 r = r * a;
1677 g = g * a;
1678 b = b * a;
1679 }
STAGE(premul_dst,Ctx::None)1680 STAGE(premul_dst, Ctx::None) {
1681 dr = dr * da;
1682 dg = dg * da;
1683 db = db * da;
1684 }
STAGE(unpremul,Ctx::None)1685 STAGE(unpremul, Ctx::None) {
1686 float inf = sk_bit_cast<float>(0x7f800000);
1687 auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
1688 r *= scale;
1689 g *= scale;
1690 b *= scale;
1691 }
1692
STAGE(force_opaque,Ctx::None)1693 STAGE(force_opaque , Ctx::None) { a = 1; }
STAGE(force_opaque_dst,Ctx::None)1694 STAGE(force_opaque_dst, Ctx::None) { da = 1; }
1695
1696 // Clamp x to [0,1], both sides inclusive (think, gradients).
1697 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
clamp_01(F v)1698 SI F clamp_01(F v) { return min(max(0, v), 1); }
1699
STAGE(rgb_to_hsl,Ctx::None)1700 STAGE(rgb_to_hsl, Ctx::None) {
1701 F mx = max(r, max(g,b)),
1702 mn = min(r, min(g,b)),
1703 d = mx - mn,
1704 d_rcp = 1.0f / d;
1705
1706 F h = (1/6.0f) *
1707 if_then_else(mx == mn, 0,
1708 if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
1709 if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
1710 (r-g)*d_rcp + 4.0f)));
1711
1712 F l = (mx + mn) * 0.5f;
1713 F s = if_then_else(mx == mn, 0,
1714 d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
1715
1716 r = h;
1717 g = s;
1718 b = l;
1719 }
STAGE(hsl_to_rgb,Ctx::None)1720 STAGE(hsl_to_rgb, Ctx::None) {
1721 // See GrRGBToHSLFilterEffect.fp
1722
1723 F h = r,
1724 s = g,
1725 l = b,
1726 c = (1.0f - abs_(2.0f * l - 1)) * s;
1727
1728 auto hue_to_rgb = [&](F hue) {
1729 F q = clamp_01(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
1730 return (q - 0.5f) * c + l;
1731 };
1732
1733 r = hue_to_rgb(h + 0.0f/3.0f);
1734 g = hue_to_rgb(h + 2.0f/3.0f);
1735 b = hue_to_rgb(h + 1.0f/3.0f);
1736 }
1737
1738 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)1739 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
1740 return if_then_else(a < da, min(cr, min(cg,cb))
1741 , max(cr, max(cg,cb)));
1742 }
1743
STAGE(scale_1_float,const float * c)1744 STAGE(scale_1_float, const float* c) {
1745 r = r * *c;
1746 g = g * *c;
1747 b = b * *c;
1748 a = a * *c;
1749 }
STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)1750 STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
1751 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1752
1753 auto scales = load<U8>(ptr, tail);
1754 auto c = from_byte(scales);
1755
1756 r = r * c;
1757 g = g * c;
1758 b = b * c;
1759 a = a * c;
1760 }
STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)1761 STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
1762 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1763
1764 F cr,cg,cb;
1765 from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
1766
1767 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
1768
1769 r = r * cr;
1770 g = g * cg;
1771 b = b * cb;
1772 a = a * ca;
1773 }
1774
lerp(F from,F to,F t)1775 SI F lerp(F from, F to, F t) {
1776 return mad(to-from, t, from);
1777 }
1778
STAGE(lerp_1_float,const float * c)1779 STAGE(lerp_1_float, const float* c) {
1780 r = lerp(dr, r, *c);
1781 g = lerp(dg, g, *c);
1782 b = lerp(db, b, *c);
1783 a = lerp(da, a, *c);
1784 }
STAGE(scale_native,const float scales[])1785 STAGE(scale_native, const float scales[]) {
1786 auto c = sk_unaligned_load<F>(scales);
1787 r = r * c;
1788 g = g * c;
1789 b = b * c;
1790 a = a * c;
1791 }
STAGE(lerp_native,const float scales[])1792 STAGE(lerp_native, const float scales[]) {
1793 auto c = sk_unaligned_load<F>(scales);
1794 r = lerp(dr, r, c);
1795 g = lerp(dg, g, c);
1796 b = lerp(db, b, c);
1797 a = lerp(da, a, c);
1798 }
STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)1799 STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
1800 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1801
1802 auto scales = load<U8>(ptr, tail);
1803 auto c = from_byte(scales);
1804
1805 r = lerp(dr, r, c);
1806 g = lerp(dg, g, c);
1807 b = lerp(db, b, c);
1808 a = lerp(da, a, c);
1809 }
STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)1810 STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
1811 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1812
1813 F cr,cg,cb;
1814 from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
1815
1816 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
1817
1818 r = lerp(dr, r, cr);
1819 g = lerp(dg, g, cg);
1820 b = lerp(db, b, cb);
1821 a = lerp(da, a, ca);
1822 }
1823
STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)1824 STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
1825 auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
1826 aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
1827
1828 F mul = from_byte(load<U8>(mptr, tail)),
1829 add = from_byte(load<U8>(aptr, tail));
1830
1831 r = mad(r, mul, add);
1832 g = mad(g, mul, add);
1833 b = mad(b, mul, add);
1834 }
1835
STAGE(byte_tables,const void * ctx)1836 STAGE(byte_tables, const void* ctx) {
1837 struct Tables { const uint8_t *r, *g, *b, *a; };
1838 auto tables = (const Tables*)ctx;
1839
1840 r = from_byte(gather(tables->r, to_unorm(r, 255)));
1841 g = from_byte(gather(tables->g, to_unorm(g, 255)));
1842 b = from_byte(gather(tables->b, to_unorm(b, 255)));
1843 a = from_byte(gather(tables->a, to_unorm(a, 255)));
1844 }
1845
strip_sign(F x,U32 * sign)1846 SI F strip_sign(F x, U32* sign) {
1847 U32 bits = sk_bit_cast<U32>(x);
1848 *sign = bits & 0x80000000;
1849 return sk_bit_cast<F>(bits ^ *sign);
1850 }
1851
apply_sign(F x,U32 sign)1852 SI F apply_sign(F x, U32 sign) {
1853 return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
1854 }
1855
STAGE(parametric,const skcms_TransferFunction * ctx)1856 STAGE(parametric, const skcms_TransferFunction* ctx) {
1857 auto fn = [&](F v) {
1858 U32 sign;
1859 v = strip_sign(v, &sign);
1860
1861 F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
1862 , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
1863 return apply_sign(r, sign);
1864 };
1865 r = fn(r);
1866 g = fn(g);
1867 b = fn(b);
1868 }
1869
STAGE(gamma_,const float * G)1870 STAGE(gamma_, const float* G) {
1871 auto fn = [&](F v) {
1872 U32 sign;
1873 v = strip_sign(v, &sign);
1874 return apply_sign(approx_powf(v, *G), sign);
1875 };
1876 r = fn(r);
1877 g = fn(g);
1878 b = fn(b);
1879 }
1880
STAGE(PQish,const skcms_TransferFunction * ctx)1881 STAGE(PQish, const skcms_TransferFunction* ctx) {
1882 auto fn = [&](F v) {
1883 U32 sign;
1884 v = strip_sign(v, &sign);
1885
1886 F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0)
1887 / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
1888 ctx->f);
1889
1890 return apply_sign(r, sign);
1891 };
1892 r = fn(r);
1893 g = fn(g);
1894 b = fn(b);
1895 }
1896
STAGE(HLGish,const skcms_TransferFunction * ctx)1897 STAGE(HLGish, const skcms_TransferFunction* ctx) {
1898 auto fn = [&](F v) {
1899 U32 sign;
1900 v = strip_sign(v, &sign);
1901
1902 const float R = ctx->a, G = ctx->b,
1903 a = ctx->c, b = ctx->d, c = ctx->e,
1904 K = ctx->f + 1.0f;
1905
1906 F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
1907 , approx_exp((v-c)*a) + b);
1908
1909 return K * apply_sign(r, sign);
1910 };
1911 r = fn(r);
1912 g = fn(g);
1913 b = fn(b);
1914 }
1915
STAGE(HLGinvish,const skcms_TransferFunction * ctx)1916 STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
1917 auto fn = [&](F v) {
1918 U32 sign;
1919 v = strip_sign(v, &sign);
1920
1921 const float R = ctx->a, G = ctx->b,
1922 a = ctx->c, b = ctx->d, c = ctx->e,
1923 K = ctx->f + 1.0f;
1924
1925 v /= K;
1926 F r = if_then_else(v <= 1, R * approx_powf(v, G)
1927 , a * approx_log(v - b) + c);
1928
1929 return apply_sign(r, sign);
1930 };
1931 r = fn(r);
1932 g = fn(g);
1933 b = fn(b);
1934 }
1935
STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)1936 STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
1937 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1938
1939 r = g = b = 0.0f;
1940 a = from_byte(load<U8>(ptr, tail));
1941 }
STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)1942 STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1943 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1944
1945 dr = dg = db = 0.0f;
1946 da = from_byte(load<U8>(ptr, tail));
1947 }
STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)1948 STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
1949 const uint8_t* ptr;
1950 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
1951 r = g = b = 0.0f;
1952 a = from_byte(gather(ptr, ix));
1953 }
STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)1954 STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
1955 auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
1956
1957 U8 packed = pack(pack(to_unorm(a, 255)));
1958 store(ptr, packed, tail);
1959 }
STAGE(store_r8,const SkRasterPipeline_MemoryCtx * ctx)1960 STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
1961 auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
1962
1963 U8 packed = pack(pack(to_unorm(r, 255)));
1964 store(ptr, packed, tail);
1965 }
1966
STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)1967 STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
1968 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1969
1970 from_565(load<U16>(ptr, tail), &r,&g,&b);
1971 a = 1.0f;
1972 }
STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)1973 STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1974 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1975
1976 from_565(load<U16>(ptr, tail), &dr,&dg,&db);
1977 da = 1.0f;
1978 }
STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)1979 STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
1980 const uint16_t* ptr;
1981 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
1982 from_565(gather(ptr, ix), &r,&g,&b);
1983 a = 1.0f;
1984 }
STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)1985 STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
1986 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
1987
1988 U16 px = pack( to_unorm(r, 31) << 11
1989 | to_unorm(g, 63) << 5
1990 | to_unorm(b, 31) );
1991 store(ptr, px, tail);
1992 }
1993
STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)1994 STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
1995 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1996 from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
1997 }
STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)1998 STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1999 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2000 from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
2001 }
STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)2002 STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
2003 const uint16_t* ptr;
2004 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2005 from_4444(gather(ptr, ix), &r,&g,&b,&a);
2006 }
STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2007 STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2008 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2009 U16 px = pack( to_unorm(r, 15) << 12
2010 | to_unorm(g, 15) << 8
2011 | to_unorm(b, 15) << 4
2012 | to_unorm(a, 15) );
2013 store(ptr, px, tail);
2014 }
2015
STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2016 STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2017 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2018 from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
2019 }
STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2020 STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2021 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2022 from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2023 }
STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2024 STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2025 const uint32_t* ptr;
2026 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2027 from_8888(gather(ptr, ix), &r,&g,&b,&a);
2028 }
STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2029 STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2030 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2031
2032 U32 px = to_unorm(r, 255)
2033 | to_unorm(g, 255) << 8
2034 | to_unorm(b, 255) << 16
2035 | to_unorm(a, 255) << 24;
2036 store(ptr, px, tail);
2037 }
2038
STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2039 STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2040 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2041 from_88(load<U16>(ptr, tail), &r, &g);
2042 b = 0;
2043 a = 1;
2044 }
STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2045 STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2046 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2047 from_88(load<U16>(ptr, tail), &dr, &dg);
2048 db = 0;
2049 da = 1;
2050 }
STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2051 STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2052 const uint16_t* ptr;
2053 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2054 from_88(gather(ptr, ix), &r, &g);
2055 b = 0;
2056 a = 1;
2057 }
STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2058 STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2059 auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2060 U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 );
2061 store(ptr, px, tail);
2062 }
2063
STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2064 STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2065 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2066 r = g = b = 0;
2067 a = from_short(load<U16>(ptr, tail));
2068 }
STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2069 STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2070 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2071 dr = dg = db = 0.0f;
2072 da = from_short(load<U16>(ptr, tail));
2073 }
STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2074 STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2075 const uint16_t* ptr;
2076 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2077 r = g = b = 0.0f;
2078 a = from_short(gather(ptr, ix));
2079 }
STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2080 STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2081 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2082
2083 U16 px = pack(to_unorm(a, 65535));
2084 store(ptr, px, tail);
2085 }
2086
STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2087 STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2088 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2089 b = 0; a = 1;
2090 from_1616(load<U32>(ptr, tail), &r,&g);
2091 }
STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2092 STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2093 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2094 from_1616(load<U32>(ptr, tail), &dr, &dg);
2095 db = 0;
2096 da = 1;
2097 }
STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2098 STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2099 const uint32_t* ptr;
2100 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2101 from_1616(gather(ptr, ix), &r, &g);
2102 b = 0;
2103 a = 1;
2104 }
STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2105 STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2106 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2107
2108 U32 px = to_unorm(r, 65535)
2109 | to_unorm(g, 65535) << 16;
2110 store(ptr, px, tail);
2111 }
2112
STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2113 STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2114 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2115 from_16161616(load<U64>(ptr, tail), &r,&g, &b, &a);
2116 }
STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2117 STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2118 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2119 from_16161616(load<U64>(ptr, tail), &dr, &dg, &db, &da);
2120 }
STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)2121 STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
2122 const uint64_t* ptr;
2123 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2124 from_16161616(gather(ptr, ix), &r, &g, &b, &a);
2125 }
STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)2126 STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2127 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
2128
2129 U16 R = pack(to_unorm(r, 65535)),
2130 G = pack(to_unorm(g, 65535)),
2131 B = pack(to_unorm(b, 65535)),
2132 A = pack(to_unorm(a, 65535));
2133
2134 store4(ptr,tail, R,G,B,A);
2135 }
2136
2137
STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)2138 STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2139 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2140 from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
2141 }
STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)2142 STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2143 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2144 from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2145 }
STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)2146 STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
2147 const uint32_t* ptr;
2148 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2149 from_1010102(gather(ptr, ix), &r,&g,&b,&a);
2150 }
STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)2151 STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2152 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2153
2154 U32 px = to_unorm(r, 1023)
2155 | to_unorm(g, 1023) << 10
2156 | to_unorm(b, 1023) << 20
2157 | to_unorm(a, 3) << 30;
2158 store(ptr, px, tail);
2159 }
2160
STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)2161 STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2162 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2163
2164 U16 R,G,B,A;
2165 load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2166 r = from_half(R);
2167 g = from_half(G);
2168 b = from_half(B);
2169 a = from_half(A);
2170 }
STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)2171 STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2172 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2173
2174 U16 R,G,B,A;
2175 load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2176 dr = from_half(R);
2177 dg = from_half(G);
2178 db = from_half(B);
2179 da = from_half(A);
2180 }
STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)2181 STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
2182 const uint64_t* ptr;
2183 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2184 auto px = gather(ptr, ix);
2185
2186 U16 R,G,B,A;
2187 load4((const uint16_t*)&px,0, &R,&G,&B,&A);
2188 r = from_half(R);
2189 g = from_half(G);
2190 b = from_half(B);
2191 a = from_half(A);
2192 }
STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)2193 STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2194 auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
2195 store4((uint16_t*)ptr,tail, to_half(r)
2196 , to_half(g)
2197 , to_half(b)
2198 , to_half(a));
2199 }
2200
STAGE(store_u16_be,const SkRasterPipeline_MemoryCtx * ctx)2201 STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) {
2202 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
2203
2204 U16 R = bswap(pack(to_unorm(r, 65535))),
2205 G = bswap(pack(to_unorm(g, 65535))),
2206 B = bswap(pack(to_unorm(b, 65535))),
2207 A = bswap(pack(to_unorm(a, 65535)));
2208
2209 store4(ptr,tail, R,G,B,A);
2210 }
2211
STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)2212 STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2213 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2214
2215 U16 A = load<U16>((const uint16_t*)ptr, tail);
2216 r = 0;
2217 g = 0;
2218 b = 0;
2219 a = from_half(A);
2220 }
STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)2221 STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2222 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2223
2224 U16 A = load<U16>((const uint16_t*)ptr, tail);
2225 dr = dg = db = 0.0f;
2226 da = from_half(A);
2227 }
STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)2228 STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
2229 const uint16_t* ptr;
2230 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2231 r = g = b = 0.0f;
2232 a = from_half(gather(ptr, ix));
2233 }
STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)2234 STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2235 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2236 store(ptr, to_half(a), tail);
2237 }
2238
STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2239 STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2240 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2241
2242 U16 R,G;
2243 load2((const uint16_t*)ptr, tail, &R, &G);
2244 r = from_half(R);
2245 g = from_half(G);
2246 b = 0;
2247 a = 1;
2248 }
STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)2249 STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2250 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2251
2252 U16 R,G;
2253 load2((const uint16_t*)ptr, tail, &R, &G);
2254 dr = from_half(R);
2255 dg = from_half(G);
2256 db = 0;
2257 da = 1;
2258 }
STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)2259 STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
2260 const uint32_t* ptr;
2261 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2262 auto px = gather(ptr, ix);
2263
2264 U16 R,G;
2265 load2((const uint16_t*)&px, 0, &R, &G);
2266 r = from_half(R);
2267 g = from_half(G);
2268 b = 0;
2269 a = 1;
2270 }
STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2271 STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2272 auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
2273 store2((uint16_t*)ptr, tail, to_half(r)
2274 , to_half(g));
2275 }
2276
STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)2277 STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2278 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2279 load4(ptr,tail, &r,&g,&b,&a);
2280 }
STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)2281 STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2282 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2283 load4(ptr,tail, &dr,&dg,&db,&da);
2284 }
STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)2285 STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
2286 const float* ptr;
2287 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2288 r = gather(ptr, 4*ix + 0);
2289 g = gather(ptr, 4*ix + 1);
2290 b = gather(ptr, 4*ix + 2);
2291 a = gather(ptr, 4*ix + 3);
2292 }
STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)2293 STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2294 auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
2295 store4(ptr,tail, r,g,b,a);
2296 }
2297
STAGE(load_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2298 STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2299 auto ptr = ptr_at_xy<const float>(ctx, 2*dx,2*dy);
2300 load2(ptr, tail, &r, &g);
2301 b = 0;
2302 a = 1;
2303 }
STAGE(store_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2304 STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2305 auto ptr = ptr_at_xy<float>(ctx, 2*dx,2*dy);
2306 store2(ptr, tail, r, g);
2307 }
2308
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)2309 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
2310 return v - floor_(v*ctx->invScale)*ctx->scale;
2311 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)2312 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
2313 auto limit = ctx->scale;
2314 auto invLimit = ctx->invScale;
2315 return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
2316 }
2317 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
2318 // The gather stages will hard clamp the output of these stages to [0,limit)...
2319 // we just need to do the basic repeat or mirroring.
STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)2320 STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)2321 STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)2322 STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)2323 STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
2324
STAGE(clamp_x_1,Ctx::None)2325 STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
STAGE(repeat_x_1,Ctx::None)2326 STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
STAGE(mirror_x_1,Ctx::None)2327 STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
2328
2329 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
2330 // mask == 0x00000000 if the coordinate(s) are out of bounds
2331 // mask == 0xFFFFFFFF if the coordinate(s) are in bounds
2332 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
2333 // if either of the coordinates were out of bounds.
2334
STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)2335 STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
2336 auto w = ctx->limit_x;
2337 sk_unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
2338 }
STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)2339 STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
2340 auto h = ctx->limit_y;
2341 sk_unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
2342 }
STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)2343 STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
2344 auto w = ctx->limit_x;
2345 auto h = ctx->limit_y;
2346 sk_unaligned_store(ctx->mask,
2347 cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
2348 }
STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)2349 STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
2350 auto mask = sk_unaligned_load<U32>(ctx->mask);
2351 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
2352 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
2353 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
2354 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
2355 }
2356
STAGE(alpha_to_gray,Ctx::None)2357 STAGE(alpha_to_gray, Ctx::None) {
2358 r = g = b = a;
2359 a = 1;
2360 }
STAGE(alpha_to_gray_dst,Ctx::None)2361 STAGE(alpha_to_gray_dst, Ctx::None) {
2362 dr = dg = db = da;
2363 da = 1;
2364 }
STAGE(alpha_to_red,Ctx::None)2365 STAGE(alpha_to_red, Ctx::None) {
2366 r = a;
2367 a = 1;
2368 }
STAGE(alpha_to_red_dst,Ctx::None)2369 STAGE(alpha_to_red_dst, Ctx::None) {
2370 dr = da;
2371 da = 1;
2372 }
2373
STAGE(bt709_luminance_or_luma_to_alpha,Ctx::None)2374 STAGE(bt709_luminance_or_luma_to_alpha, Ctx::None) {
2375 a = r*0.2126f + g*0.7152f + b*0.0722f;
2376 r = g = b = 0;
2377 }
STAGE(bt709_luminance_or_luma_to_rgb,Ctx::None)2378 STAGE(bt709_luminance_or_luma_to_rgb, Ctx::None) {
2379 r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
2380 }
2381
STAGE(matrix_translate,const float * m)2382 STAGE(matrix_translate, const float* m) {
2383 r += m[0];
2384 g += m[1];
2385 }
STAGE(matrix_scale_translate,const float * m)2386 STAGE(matrix_scale_translate, const float* m) {
2387 r = mad(r,m[0], m[2]);
2388 g = mad(g,m[1], m[3]);
2389 }
STAGE(matrix_2x3,const float * m)2390 STAGE(matrix_2x3, const float* m) {
2391 auto R = mad(r,m[0], mad(g,m[1], m[2])),
2392 G = mad(r,m[3], mad(g,m[4], m[5]));
2393 r = R;
2394 g = G;
2395 }
STAGE(matrix_3x3,const float * m)2396 STAGE(matrix_3x3, const float* m) {
2397 auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
2398 G = mad(r,m[1], mad(g,m[4], b*m[7])),
2399 B = mad(r,m[2], mad(g,m[5], b*m[8]));
2400 r = R;
2401 g = G;
2402 b = B;
2403 }
STAGE(matrix_3x4,const float * m)2404 STAGE(matrix_3x4, const float* m) {
2405 auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
2406 G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
2407 B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
2408 r = R;
2409 g = G;
2410 b = B;
2411 }
STAGE(matrix_4x5,const float * m)2412 STAGE(matrix_4x5, const float* m) {
2413 auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
2414 G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
2415 B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
2416 A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
2417 r = R;
2418 g = G;
2419 b = B;
2420 a = A;
2421 }
STAGE(matrix_4x3,const float * m)2422 STAGE(matrix_4x3, const float* m) {
2423 auto X = r,
2424 Y = g;
2425
2426 r = mad(X, m[0], mad(Y, m[4], m[ 8]));
2427 g = mad(X, m[1], mad(Y, m[5], m[ 9]));
2428 b = mad(X, m[2], mad(Y, m[6], m[10]));
2429 a = mad(X, m[3], mad(Y, m[7], m[11]));
2430 }
STAGE(matrix_perspective,const float * m)2431 STAGE(matrix_perspective, const float* m) {
2432 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
2433 auto R = mad(r,m[0], mad(g,m[1], m[2])),
2434 G = mad(r,m[3], mad(g,m[4], m[5])),
2435 Z = mad(r,m[6], mad(g,m[7], m[8]));
2436 r = R * rcp_precise(Z);
2437 g = G * rcp_precise(Z);
2438 }
2439
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)2440 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
2441 F* r, F* g, F* b, F* a) {
2442 F fr, br, fg, bg, fb, bb, fa, ba;
2443 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
2444 if (c->stopCount <=8) {
2445 fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
2446 br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
2447 fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
2448 bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
2449 fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
2450 bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
2451 fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
2452 ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
2453 } else
2454 #endif
2455 {
2456 fr = gather(c->fs[0], idx);
2457 br = gather(c->bs[0], idx);
2458 fg = gather(c->fs[1], idx);
2459 bg = gather(c->bs[1], idx);
2460 fb = gather(c->fs[2], idx);
2461 bb = gather(c->bs[2], idx);
2462 fa = gather(c->fs[3], idx);
2463 ba = gather(c->bs[3], idx);
2464 }
2465
2466 *r = mad(t, fr, br);
2467 *g = mad(t, fg, bg);
2468 *b = mad(t, fb, bb);
2469 *a = mad(t, fa, ba);
2470 }
2471
STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)2472 STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
2473 auto t = r;
2474 auto idx = trunc_(t * (c->stopCount-1));
2475 gradient_lookup(c, idx, t, &r, &g, &b, &a);
2476 }
2477
STAGE(gradient,const SkRasterPipeline_GradientCtx * c)2478 STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
2479 auto t = r;
2480 U32 idx = 0;
2481
2482 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
2483 for (size_t i = 1; i < c->stopCount; i++) {
2484 idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
2485 }
2486
2487 gradient_lookup(c, idx, t, &r, &g, &b, &a);
2488 }
2489
STAGE(evenly_spaced_2_stop_gradient,const void * ctx)2490 STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
2491 struct Ctx { float f[4], b[4]; };
2492 auto c = (const Ctx*)ctx;
2493
2494 auto t = r;
2495 r = mad(t, c->f[0], c->b[0]);
2496 g = mad(t, c->f[1], c->b[1]);
2497 b = mad(t, c->f[2], c->b[2]);
2498 a = mad(t, c->f[3], c->b[3]);
2499 }
2500
STAGE(xy_to_unit_angle,Ctx::None)2501 STAGE(xy_to_unit_angle, Ctx::None) {
2502 F X = r,
2503 Y = g;
2504 F xabs = abs_(X),
2505 yabs = abs_(Y);
2506
2507 F slope = min(xabs, yabs)/max(xabs, yabs);
2508 F s = slope * slope;
2509
2510 // Use a 7th degree polynomial to approximate atan.
2511 // This was generated using sollya.gforge.inria.fr.
2512 // A float optimized polynomial was generated using the following command.
2513 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
2514 F phi = slope
2515 * (0.15912117063999176025390625f + s
2516 * (-5.185396969318389892578125e-2f + s
2517 * (2.476101927459239959716796875e-2f + s
2518 * (-7.0547382347285747528076171875e-3f))));
2519
2520 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
2521 phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
2522 phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
2523 phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
2524 r = phi;
2525 }
2526
STAGE(xy_to_radius,Ctx::None)2527 STAGE(xy_to_radius, Ctx::None) {
2528 F X2 = r * r,
2529 Y2 = g * g;
2530 r = sqrt_(X2 + Y2);
2531 }
2532
2533 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
2534
STAGE(negate_x,Ctx::None)2535 STAGE(negate_x, Ctx::None) { r = -r; }
2536
STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)2537 STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
2538 F x = r, y = g, &t = r;
2539 t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
2540 }
2541
STAGE(xy_to_2pt_conical_focal_on_circle,Ctx::None)2542 STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
2543 F x = r, y = g, &t = r;
2544 t = x + y*y / x; // (x^2 + y^2) / x
2545 }
2546
STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)2547 STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
2548 F x = r, y = g, &t = r;
2549 t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2550 }
2551
STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)2552 STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
2553 F x = r, y = g, &t = r;
2554 t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2555 }
2556
STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)2557 STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
2558 F x = r, y = g, &t = r;
2559 t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2560 }
2561
STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)2562 STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
2563 F& t = r;
2564 t = t + ctx->fP1; // ctx->fP1 = f
2565 }
2566
STAGE(alter_2pt_conical_unswap,Ctx::None)2567 STAGE(alter_2pt_conical_unswap, Ctx::None) {
2568 F& t = r;
2569 t = 1 - t;
2570 }
2571
STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)2572 STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
2573 F& t = r;
2574 auto is_degenerate = (t != t); // NaN
2575 t = if_then_else(is_degenerate, F(0), t);
2576 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
2577 }
2578
STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)2579 STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
2580 F& t = r;
2581 auto is_degenerate = (t <= 0) | (t != t);
2582 t = if_then_else(is_degenerate, F(0), t);
2583 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
2584 }
2585
STAGE(apply_vector_mask,const uint32_t * ctx)2586 STAGE(apply_vector_mask, const uint32_t* ctx) {
2587 const U32 mask = sk_unaligned_load<U32>(ctx);
2588 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
2589 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
2590 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
2591 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
2592 }
2593
STAGE(save_xy,SkRasterPipeline_SamplerCtx * c)2594 STAGE(save_xy, SkRasterPipeline_SamplerCtx* c) {
2595 // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
2596 // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
2597 // surrounding (x,y) at (0.5,0.5) off-center.
2598 F fx = fract(r + 0.5f),
2599 fy = fract(g + 0.5f);
2600
2601 // Samplers will need to load x and fx, or y and fy.
2602 sk_unaligned_store(c->x, r);
2603 sk_unaligned_store(c->y, g);
2604 sk_unaligned_store(c->fx, fx);
2605 sk_unaligned_store(c->fy, fy);
2606 }
2607
STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)2608 STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
2609 // Bilinear and bicubic filters are both separable, so we produce independent contributions
2610 // from x and y, multiplying them together here to get each pixel's total scale factor.
2611 auto scale = sk_unaligned_load<F>(c->scalex)
2612 * sk_unaligned_load<F>(c->scaley);
2613 dr = mad(scale, r, dr);
2614 dg = mad(scale, g, dg);
2615 db = mad(scale, b, db);
2616 da = mad(scale, a, da);
2617 }
2618
2619 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
2620 // are combined in direct proportion to their area overlapping that logical query pixel.
2621 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
2622 // The y-axis is symmetric.
2623
2624 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)2625 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
2626 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
2627 F fx = sk_unaligned_load<F>(ctx->fx);
2628
2629 F scalex;
2630 if (kScale == -1) { scalex = 1.0f - fx; }
2631 if (kScale == +1) { scalex = fx; }
2632 sk_unaligned_store(ctx->scalex, scalex);
2633 }
2634 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)2635 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
2636 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
2637 F fy = sk_unaligned_load<F>(ctx->fy);
2638
2639 F scaley;
2640 if (kScale == -1) { scaley = 1.0f - fy; }
2641 if (kScale == +1) { scaley = fy; }
2642 sk_unaligned_store(ctx->scaley, scaley);
2643 }
2644
STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)2645 STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)2646 STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)2647 STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)2648 STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
2649
2650
2651 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
2652 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
2653 //
2654 // We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
2655 // See GrCubicEffect for details of this particular filter.
2656
bicubic_near(F t)2657 SI F bicubic_near(F t) {
2658 // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
2659 return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
2660 }
bicubic_far(F t)2661 SI F bicubic_far(F t) {
2662 // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
2663 return (t*t)*mad((7/18.0f), t, (-6/18.0f));
2664 }
2665
2666 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)2667 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
2668 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
2669 F fx = sk_unaligned_load<F>(ctx->fx);
2670
2671 F scalex;
2672 if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
2673 if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
2674 if (kScale == +1) { scalex = bicubic_near( fx); }
2675 if (kScale == +3) { scalex = bicubic_far ( fx); }
2676 sk_unaligned_store(ctx->scalex, scalex);
2677 }
2678 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)2679 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
2680 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
2681 F fy = sk_unaligned_load<F>(ctx->fy);
2682
2683 F scaley;
2684 if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
2685 if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
2686 if (kScale == +1) { scaley = bicubic_near( fy); }
2687 if (kScale == +3) { scaley = bicubic_far ( fy); }
2688 sk_unaligned_store(ctx->scaley, scaley);
2689 }
2690
STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)2691 STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)2692 STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)2693 STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)2694 STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
2695
STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)2696 STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)2697 STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)2698 STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)2699 STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
2700
STAGE(callback,SkRasterPipeline_CallbackCtx * c)2701 STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
2702 store4(c->rgba,0, r,g,b,a);
2703 c->fn(c, tail ? tail : N);
2704 load4(c->read_from,0, &r,&g,&b,&a);
2705 }
2706
STAGE(gauss_a_to_rgba,Ctx::None)2707 STAGE(gauss_a_to_rgba, Ctx::None) {
2708 // x = 1 - x;
2709 // exp(-x * x * 4) - 0.018f;
2710 // ... now approximate with quartic
2711 //
2712 const float c4 = -2.26661229133605957031f;
2713 const float c3 = 2.89795351028442382812f;
2714 const float c2 = 0.21345567703247070312f;
2715 const float c1 = 0.15489584207534790039f;
2716 const float c0 = 0.00030726194381713867f;
2717 a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
2718 r = a;
2719 g = a;
2720 b = a;
2721 }
2722
tile(F v,SkTileMode mode,float limit,float invLimit)2723 SI F tile(F v, SkTileMode mode, float limit, float invLimit) {
2724 // The ix_and_ptr() calls in sample() will clamp tile()'s output, so no need to clamp here.
2725 switch (mode) {
2726 case SkTileMode::kDecal:
2727 case SkTileMode::kClamp: return v;
2728 case SkTileMode::kRepeat: return v - floor_(v*invLimit)*limit;
2729 case SkTileMode::kMirror:
2730 return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
2731 }
2732 SkUNREACHABLE;
2733 }
2734
sample(const SkRasterPipeline_SamplerCtx2 * ctx,F x,F y,F * r,F * g,F * b,F * a)2735 SI void sample(const SkRasterPipeline_SamplerCtx2* ctx, F x, F y,
2736 F* r, F* g, F* b, F* a) {
2737 x = tile(x, ctx->tileX, ctx->width , ctx->invWidth );
2738 y = tile(y, ctx->tileY, ctx->height, ctx->invHeight);
2739
2740 switch (ctx->ct) {
2741 default: *r = *g = *b = *a = 0;
2742 break;
2743
2744 case kRGBA_8888_SkColorType:
2745 case kBGRA_8888_SkColorType: {
2746 const uint32_t* ptr;
2747 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
2748 from_8888(gather(ptr, ix), r,g,b,a);
2749 if (ctx->ct == kBGRA_8888_SkColorType) {
2750 std::swap(*r,*b);
2751 }
2752 } break;
2753 }
2754 }
2755
2756 template <int D>
sampler(const SkRasterPipeline_SamplerCtx2 * ctx,F cx,F cy,const F (& wx)[D],const F (& wy)[D],F * r,F * g,F * b,F * a)2757 SI void sampler(const SkRasterPipeline_SamplerCtx2* ctx,
2758 F cx, F cy, const F (&wx)[D], const F (&wy)[D],
2759 F* r, F* g, F* b, F* a) {
2760
2761 float start = -0.5f*(D-1);
2762
2763 *r = *g = *b = *a = 0;
2764 F y = cy + start;
2765 for (int j = 0; j < D; j++, y += 1.0f) {
2766 F x = cx + start;
2767 for (int i = 0; i < D; i++, x += 1.0f) {
2768 F R,G,B,A;
2769 sample(ctx, x,y, &R,&G,&B,&A);
2770
2771 F w = wx[i] * wy[j];
2772 *r = mad(w,R,*r);
2773 *g = mad(w,G,*g);
2774 *b = mad(w,B,*b);
2775 *a = mad(w,A,*a);
2776 }
2777 }
2778 }
2779
STAGE(bilinear,const SkRasterPipeline_SamplerCtx2 * ctx)2780 STAGE(bilinear, const SkRasterPipeline_SamplerCtx2* ctx) {
2781 F x = r, fx = fract(x + 0.5f),
2782 y = g, fy = fract(y + 0.5f);
2783 const F wx[] = {1.0f - fx, fx};
2784 const F wy[] = {1.0f - fy, fy};
2785
2786 sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
2787 }
STAGE(bicubic,SkRasterPipeline_SamplerCtx2 * ctx)2788 STAGE(bicubic, SkRasterPipeline_SamplerCtx2* ctx) {
2789 F x = r, fx = fract(x + 0.5f),
2790 y = g, fy = fract(y + 0.5f);
2791 const F wx[] = { bicubic_far(1-fx), bicubic_near(1-fx), bicubic_near(fx), bicubic_far(fx) };
2792 const F wy[] = { bicubic_far(1-fy), bicubic_near(1-fy), bicubic_near(fy), bicubic_far(fy) };
2793
2794 sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
2795 }
2796
2797 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)2798 STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
2799 // (cx,cy) are the center of our sample.
2800 F cx = r,
2801 cy = g;
2802
2803 // All sample points are at the same fractional offset (fx,fy).
2804 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
2805 F fx = fract(cx + 0.5f),
2806 fy = fract(cy + 0.5f);
2807
2808 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
2809 r = g = b = a = 0;
2810
2811 for (float py = -0.5f; py <= +0.5f; py += 1.0f)
2812 for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
2813 // (x,y) are the coordinates of this sample point.
2814 F x = cx + px,
2815 y = cy + py;
2816
2817 // ix_and_ptr() will clamp to the image's bounds for us.
2818 const uint32_t* ptr;
2819 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
2820
2821 F sr,sg,sb,sa;
2822 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
2823
2824 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
2825 // are combined in direct proportion to their area overlapping that logical query pixel.
2826 // At positive offsets, the x-axis contribution to that rectangle is fx,
2827 // or (1-fx) at negative x. Same deal for y.
2828 F sx = (px > 0) ? fx : 1.0f - fx,
2829 sy = (py > 0) ? fy : 1.0f - fy,
2830 area = sx * sy;
2831
2832 r += sr * area;
2833 g += sg * area;
2834 b += sb * area;
2835 a += sa * area;
2836 }
2837 }
2838
2839 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)2840 STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
2841 // (cx,cy) are the center of our sample.
2842 F cx = r,
2843 cy = g;
2844
2845 // All sample points are at the same fractional offset (fx,fy).
2846 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
2847 F fx = fract(cx + 0.5f),
2848 fy = fract(cy + 0.5f);
2849
2850 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
2851 r = g = b = a = 0;
2852
2853 const F scaley[4] = {
2854 bicubic_far (1.0f - fy), bicubic_near(1.0f - fy),
2855 bicubic_near( fy), bicubic_far ( fy),
2856 };
2857 const F scalex[4] = {
2858 bicubic_far (1.0f - fx), bicubic_near(1.0f - fx),
2859 bicubic_near( fx), bicubic_far ( fx),
2860 };
2861
2862 F sample_y = cy - 1.5f;
2863 for (int yy = 0; yy <= 3; ++yy) {
2864 F sample_x = cx - 1.5f;
2865 for (int xx = 0; xx <= 3; ++xx) {
2866 F scale = scalex[xx] * scaley[yy];
2867
2868 // ix_and_ptr() will clamp to the image's bounds for us.
2869 const uint32_t* ptr;
2870 U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
2871
2872 F sr,sg,sb,sa;
2873 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
2874
2875 r = mad(scale, sr, r);
2876 g = mad(scale, sg, g);
2877 b = mad(scale, sb, b);
2878 a = mad(scale, sa, a);
2879
2880 sample_x += 1;
2881 }
2882 sample_y += 1;
2883 }
2884 }
2885
2886 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
2887
STAGE(swizzle,void * ctx)2888 STAGE(swizzle, void* ctx) {
2889 auto ir = r, ig = g, ib = b, ia = a;
2890 F* o[] = {&r, &g, &b, &a};
2891 char swiz[4];
2892 memcpy(swiz, &ctx, sizeof(swiz));
2893
2894 for (int i = 0; i < 4; ++i) {
2895 switch (swiz[i]) {
2896 case 'r': *o[i] = ir; break;
2897 case 'g': *o[i] = ig; break;
2898 case 'b': *o[i] = ib; break;
2899 case 'a': *o[i] = ia; break;
2900 case '0': *o[i] = F(0); break;
2901 case '1': *o[i] = F(1); break;
2902 default: break;
2903 }
2904 }
2905 }
2906
2907 namespace lowp {
2908 #if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
2909 // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually),
2910 // we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the
2911 // highp float pipeline.
2912 #define M(st) static void (*st)(void) = nullptr;
2913 SK_RASTER_PIPELINE_STAGES(M)
2914 #undef M
2915 static void (*just_return)(void) = nullptr;
2916
start_pipeline(size_t,size_t,size_t,size_t,void **)2917 static void start_pipeline(size_t,size_t,size_t,size_t, void**) {}
2918
2919 #else // We are compiling vector code with Clang... let's make some lowp stages!
2920
2921 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
2922 using U8 = uint8_t __attribute__((ext_vector_type(16)));
2923 using U16 = uint16_t __attribute__((ext_vector_type(16)));
2924 using I16 = int16_t __attribute__((ext_vector_type(16)));
2925 using I32 = int32_t __attribute__((ext_vector_type(16)));
2926 using U32 = uint32_t __attribute__((ext_vector_type(16)));
2927 using I64 = int64_t __attribute__((ext_vector_type(16)));
2928 using U64 = uint64_t __attribute__((ext_vector_type(16)));
2929 using F = float __attribute__((ext_vector_type(16)));
2930 #else
2931 using U8 = uint8_t __attribute__((ext_vector_type(8)));
2932 using U16 = uint16_t __attribute__((ext_vector_type(8)));
2933 using I16 = int16_t __attribute__((ext_vector_type(8)));
2934 using I32 = int32_t __attribute__((ext_vector_type(8)));
2935 using U32 = uint32_t __attribute__((ext_vector_type(8)));
2936 using I64 = int64_t __attribute__((ext_vector_type(8)));
2937 using U64 = uint64_t __attribute__((ext_vector_type(8)));
2938 using F = float __attribute__((ext_vector_type(8)));
2939 #endif
2940
2941 static const size_t N = sizeof(U16) / sizeof(uint16_t);
2942
2943 // Once again, some platforms benefit from a restricted Stage calling convention,
2944 // but others can pass tons and tons of registers and we're happy to exploit that.
2945 // It's exactly the same decision and implementation strategy as the F stages above.
2946 #if JUMPER_NARROW_STAGES
2947 struct Params {
2948 size_t dx, dy, tail;
2949 U16 dr,dg,db,da;
2950 };
2951 using Stage = void(ABI*)(Params*, void** program, U16 r, U16 g, U16 b, U16 a);
2952 #else
2953 // We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
2954 using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
2955 U16 r, U16 g, U16 b, U16 a,
2956 U16 dr, U16 dg, U16 db, U16 da);
2957 #endif
2958
2959 static void start_pipeline(const size_t x0, const size_t y0,
2960 const size_t xlimit, const size_t ylimit, void** program) {
2961 auto start = (Stage)load_and_inc(program);
2962 for (size_t dy = y0; dy < ylimit; dy++) {
2963 #if JUMPER_NARROW_STAGES
2964 Params params = { x0,dy,0, 0,0,0,0 };
2965 for (; params.dx + N <= xlimit; params.dx += N) {
2966 start(¶ms,program, 0,0,0,0);
2967 }
2968 if (size_t tail = xlimit - params.dx) {
2969 params.tail = tail;
2970 start(¶ms,program, 0,0,0,0);
2971 }
2972 #else
2973 size_t dx = x0;
2974 for (; dx + N <= xlimit; dx += N) {
2975 start( 0,program,dx,dy, 0,0,0,0, 0,0,0,0);
2976 }
2977 if (size_t tail = xlimit - dx) {
2978 start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
2979 }
2980 #endif
2981 }
2982 }
2983
2984 #if JUMPER_NARROW_STAGES
2985 static void ABI just_return(Params*, void**, U16,U16,U16,U16) {}
2986 #else
2987 static void ABI just_return(size_t,void**,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {}
2988 #endif
2989
2990 // All stages use the same function call ABI to chain into each other, but there are three types:
2991 // GG: geometry in, geometry out -- think, a matrix
2992 // GP: geometry in, pixels out. -- think, a memory gather
2993 // PP: pixels in, pixels out. -- think, a blend mode
2994 //
2995 // (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
2996 //
2997 // These three STAGE_ macros let you define each type of stage,
2998 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
2999
3000 #if JUMPER_NARROW_STAGES
3001 #define STAGE_GG(name, ...) \
3002 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
3003 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
3004 auto x = join<F>(r,g), \
3005 y = join<F>(b,a); \
3006 name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \
3007 split(x, &r,&g); \
3008 split(y, &b,&a); \
3009 auto next = (Stage)load_and_inc(program); \
3010 next(params,program, r,g,b,a); \
3011 } \
3012 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
3013
3014 #define STAGE_GP(name, ...) \
3015 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3016 U16& r, U16& g, U16& b, U16& a, \
3017 U16& dr, U16& dg, U16& db, U16& da); \
3018 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
3019 auto x = join<F>(r,g), \
3020 y = join<F>(b,a); \
3021 name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \
3022 params->dr,params->dg,params->db,params->da); \
3023 auto next = (Stage)load_and_inc(program); \
3024 next(params,program, r,g,b,a); \
3025 } \
3026 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3027 U16& r, U16& g, U16& b, U16& a, \
3028 U16& dr, U16& dg, U16& db, U16& da)
3029
3030 #define STAGE_PP(name, ...) \
3031 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3032 U16& r, U16& g, U16& b, U16& a, \
3033 U16& dr, U16& dg, U16& db, U16& da); \
3034 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
3035 name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \
3036 params->dr,params->dg,params->db,params->da); \
3037 auto next = (Stage)load_and_inc(program); \
3038 next(params,program, r,g,b,a); \
3039 } \
3040 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3041 U16& r, U16& g, U16& b, U16& a, \
3042 U16& dr, U16& dg, U16& db, U16& da)
3043 #else
3044 #define STAGE_GG(name, ...) \
3045 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
3046 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3047 U16 r, U16 g, U16 b, U16 a, \
3048 U16 dr, U16 dg, U16 db, U16 da) { \
3049 auto x = join<F>(r,g), \
3050 y = join<F>(b,a); \
3051 name##_k(Ctx{program}, dx,dy,tail, x,y); \
3052 split(x, &r,&g); \
3053 split(y, &b,&a); \
3054 auto next = (Stage)load_and_inc(program); \
3055 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3056 } \
3057 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
3058
3059 #define STAGE_GP(name, ...) \
3060 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3061 U16& r, U16& g, U16& b, U16& a, \
3062 U16& dr, U16& dg, U16& db, U16& da); \
3063 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3064 U16 r, U16 g, U16 b, U16 a, \
3065 U16 dr, U16 dg, U16 db, U16 da) { \
3066 auto x = join<F>(r,g), \
3067 y = join<F>(b,a); \
3068 name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
3069 auto next = (Stage)load_and_inc(program); \
3070 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3071 } \
3072 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3073 U16& r, U16& g, U16& b, U16& a, \
3074 U16& dr, U16& dg, U16& db, U16& da)
3075
3076 #define STAGE_PP(name, ...) \
3077 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3078 U16& r, U16& g, U16& b, U16& a, \
3079 U16& dr, U16& dg, U16& db, U16& da); \
3080 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3081 U16 r, U16 g, U16 b, U16 a, \
3082 U16 dr, U16 dg, U16 db, U16 da) { \
3083 name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
3084 auto next = (Stage)load_and_inc(program); \
3085 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3086 } \
3087 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3088 U16& r, U16& g, U16& b, U16& a, \
3089 U16& dr, U16& dg, U16& db, U16& da)
3090 #endif
3091
3092 // ~~~~~~ Commonly used helper functions ~~~~~~ //
3093
3094 /**
3095 * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
3096 * thanks to a division by a non-power of two:
3097 * [1] (v + 127) / 255
3098 *
3099 * There is a two-step process that computes the correct answer for all inputs:
3100 * [2] (v + 128 + ((v + 128) >> 8)) >> 8
3101 *
3102 * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
3103 * [3] (v + 255) >> 8;
3104 *
3105 * We offer two different implementations here, depending on the requirements of the calling stage.
3106 */
3107
3108 /**
3109 * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
3110 * as [3]), and uses [3] elsewhere.
3111 */
3112 SI U16 div255(U16 v) {
3113 #if defined(JUMPER_IS_NEON)
3114 // With NEON we can compute [2] just as fast as [3], so let's be correct.
3115 // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
3116 return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
3117 #else
3118 // Otherwise, use [3], which is never wrong by more than 1:
3119 return (v+255)/256;
3120 #endif
3121 }
3122
3123 /**
3124 * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
3125 */
3126 SI U16 div255_accurate(U16 v) {
3127 #if defined(JUMPER_IS_NEON)
3128 // Our NEON implementation of div255 is already correct for all inputs:
3129 return div255(v);
3130 #else
3131 // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
3132 v += 128;
3133 return (v+(v/256))/256;
3134 #endif
3135 }
3136
3137 SI U16 inv(U16 v) { return 255-v; }
3138
3139 SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
3140 SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
3141
3142 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
3143 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
3144
3145 SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
3146
3147 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
3148
3149 template <typename D, typename S>
3150 SI D cast(S src) {
3151 return __builtin_convertvector(src, D);
3152 }
3153
3154 template <typename D, typename S>
3155 SI void split(S v, D* lo, D* hi) {
3156 static_assert(2*sizeof(D) == sizeof(S), "");
3157 memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
3158 memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
3159 }
3160 template <typename D, typename S>
3161 SI D join(S lo, S hi) {
3162 static_assert(sizeof(D) == 2*sizeof(S), "");
3163 D v;
3164 memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
3165 memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
3166 return v;
3167 }
3168
3169 SI F if_then_else(I32 c, F t, F e) {
3170 return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
3171 }
3172 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
3173 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
3174
3175 SI I32 if_then_else(I32 c, I32 t, I32 e) {
3176 return (t & c) | (e & ~c);
3177 }
3178 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
3179 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
3180
3181 SI F mad(F f, F m, F a) { return f*m+a; }
3182 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
3183
3184 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
3185 SI F rcp_precise(F x) {
3186 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3187 __m256 lo,hi;
3188 split(x, &lo,&hi);
3189 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3190 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3191 __m128 lo,hi;
3192 split(x, &lo,&hi);
3193 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3194 #elif defined(JUMPER_IS_NEON)
3195 float32x4_t lo,hi;
3196 split(x, &lo,&hi);
3197 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3198 #else
3199 return 1.0f / x;
3200 #endif
3201 }
3202 SI F sqrt_(F x) {
3203 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3204 __m256 lo,hi;
3205 split(x, &lo,&hi);
3206 return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
3207 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3208 __m128 lo,hi;
3209 split(x, &lo,&hi);
3210 return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
3211 #elif defined(SK_CPU_ARM64)
3212 float32x4_t lo,hi;
3213 split(x, &lo,&hi);
3214 return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
3215 #elif defined(JUMPER_IS_NEON)
3216 auto sqrt = [](float32x4_t v) {
3217 auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
3218 est *= vrsqrtsq_f32(v,est*est);
3219 est *= vrsqrtsq_f32(v,est*est);
3220 return v*est; // sqrt(v) == v*rsqrt(v).
3221 };
3222 float32x4_t lo,hi;
3223 split(x, &lo,&hi);
3224 return join<F>(sqrt(lo), sqrt(hi));
3225 #else
3226 return F{
3227 sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
3228 sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
3229 };
3230 #endif
3231 }
3232
3233 SI F floor_(F x) {
3234 #if defined(SK_CPU_ARM64)
3235 float32x4_t lo,hi;
3236 split(x, &lo,&hi);
3237 return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
3238 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3239 __m256 lo,hi;
3240 split(x, &lo,&hi);
3241 return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
3242 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3243 __m128 lo,hi;
3244 split(x, &lo,&hi);
3245 return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
3246 #else
3247 F roundtrip = cast<F>(cast<I32>(x));
3248 return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
3249 #endif
3250 }
3251
3252 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
3253 // this multiply is:
3254 // (2 * a * b + (1 << 15)) >> 16
3255 // The result is a number on [-1, 1).
3256 // Note: on neon this is a saturating multiply while the others are not.
3257 SI I16 scaled_mult(I16 a, I16 b) {
3258 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3259 return _mm256_mulhrs_epi16(a, b);
3260 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3261 return _mm_mulhrs_epi16(a, b);
3262 #elif defined(SK_CPU_ARM64)
3263 return vqrdmulhq_s16(a, b);
3264 #elif defined(JUMPER_IS_NEON)
3265 return vqrdmulhq_s16(a, b);
3266 #else
3267 const I32 roundingTerm = 1 << 14;
3268 return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
3269 #endif
3270 }
3271
3272 // This sum is to support lerp where the result will always be a positive number. In general,
3273 // a sum like this would require an additional bit, but because we know the range of the result
3274 // we know that the extra bit will always be zero.
3275 SI U16 constrained_add(I16 a, U16 b) {
3276 #if defined(SK_DEBUG)
3277 for (size_t i = 0; i < N; i++) {
3278 // Ensure that a + b is on the interval [0, UINT16_MAX]
3279 int ia = a[i],
3280 ib = b[i];
3281 // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
3282 // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
3283 // interpreted as an uint32_t.
3284 SkASSERT(-ib <= ia && ia <= 65535 - ib);
3285 }
3286 #endif
3287 return b + a;
3288 }
3289
3290 SI F fract(F x) { return x - floor_(x); }
3291 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
3292
3293 // ~~~~~~ Basic / misc. stages ~~~~~~ //
3294
3295 STAGE_GG(seed_shader, Ctx::None) {
3296 static const float iota[] = {
3297 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
3298 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
3299 };
3300 x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota);
3301 y = cast<F>(I32(dy)) + 0.5f;
3302 }
3303
3304 STAGE_GG(matrix_translate, const float* m) {
3305 x += m[0];
3306 y += m[1];
3307 }
3308 STAGE_GG(matrix_scale_translate, const float* m) {
3309 x = mad(x,m[0], m[2]);
3310 y = mad(y,m[1], m[3]);
3311 }
3312 STAGE_GG(matrix_2x3, const float* m) {
3313 auto X = mad(x,m[0], mad(y,m[1], m[2])),
3314 Y = mad(x,m[3], mad(y,m[4], m[5]));
3315 x = X;
3316 y = Y;
3317 }
3318 STAGE_GG(matrix_perspective, const float* m) {
3319 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
3320 auto X = mad(x,m[0], mad(y,m[1], m[2])),
3321 Y = mad(x,m[3], mad(y,m[4], m[5])),
3322 Z = mad(x,m[6], mad(y,m[7], m[8]));
3323 x = X * rcp_precise(Z);
3324 y = Y * rcp_precise(Z);
3325 }
3326
3327 STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
3328 r = c->rgba[0];
3329 g = c->rgba[1];
3330 b = c->rgba[2];
3331 a = c->rgba[3];
3332 }
3333 STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
3334 dr = c->rgba[0];
3335 dg = c->rgba[1];
3336 db = c->rgba[2];
3337 da = c->rgba[3];
3338 }
3339 STAGE_PP(black_color, Ctx::None) { r = g = b = 0; a = 255; }
3340 STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }
3341
3342 STAGE_PP(set_rgb, const float rgb[3]) {
3343 r = from_float(rgb[0]);
3344 g = from_float(rgb[1]);
3345 b = from_float(rgb[2]);
3346 }
3347
3348 STAGE_PP(clamp_0, Ctx::None) { /*definitely a noop*/ }
3349 STAGE_PP(clamp_1, Ctx::None) { /*_should_ be a noop*/ }
3350
3351 STAGE_PP(clamp_a, Ctx::None) {
3352 r = min(r, a);
3353 g = min(g, a);
3354 b = min(b, a);
3355 }
3356
3357 STAGE_PP(clamp_gamut, Ctx::None) {
3358 // It shouldn't be possible to get out-of-gamut
3359 // colors when working in lowp.
3360 }
3361
3362 STAGE_PP(premul, Ctx::None) {
3363 r = div255_accurate(r * a);
3364 g = div255_accurate(g * a);
3365 b = div255_accurate(b * a);
3366 }
3367 STAGE_PP(premul_dst, Ctx::None) {
3368 dr = div255_accurate(dr * da);
3369 dg = div255_accurate(dg * da);
3370 db = div255_accurate(db * da);
3371 }
3372
3373 STAGE_PP(force_opaque , Ctx::None) { a = 255; }
3374 STAGE_PP(force_opaque_dst, Ctx::None) { da = 255; }
3375
3376 STAGE_PP(swap_rb, Ctx::None) {
3377 auto tmp = r;
3378 r = b;
3379 b = tmp;
3380 }
3381 STAGE_PP(swap_rb_dst, Ctx::None) {
3382 auto tmp = dr;
3383 dr = db;
3384 db = tmp;
3385 }
3386
3387 STAGE_PP(move_src_dst, Ctx::None) {
3388 dr = r;
3389 dg = g;
3390 db = b;
3391 da = a;
3392 }
3393
3394 STAGE_PP(move_dst_src, Ctx::None) {
3395 r = dr;
3396 g = dg;
3397 b = db;
3398 a = da;
3399 }
3400
3401 STAGE_PP(swap_src_dst, Ctx::None) {
3402 std::swap(r, dr);
3403 std::swap(g, dg);
3404 std::swap(b, db);
3405 std::swap(a, da);
3406 }
3407
3408 // ~~~~~~ Blend modes ~~~~~~ //
3409
3410 // The same logic applied to all 4 channels.
3411 #define BLEND_MODE(name) \
3412 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
3413 STAGE_PP(name, Ctx::None) { \
3414 r = name##_channel(r,dr,a,da); \
3415 g = name##_channel(g,dg,a,da); \
3416 b = name##_channel(b,db,a,da); \
3417 a = name##_channel(a,da,a,da); \
3418 } \
3419 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
3420
3421 BLEND_MODE(clear) { return 0; }
3422 BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
3423 BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
3424 BLEND_MODE(srcin) { return div255( s*da ); }
3425 BLEND_MODE(dstin) { return div255( d*sa ); }
3426 BLEND_MODE(srcout) { return div255( s*inv(da) ); }
3427 BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
3428 BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
3429 BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
3430 BLEND_MODE(modulate) { return div255( s*d ); }
3431 BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
3432 BLEND_MODE(plus_) { return min(s+d, 255); }
3433 BLEND_MODE(screen) { return s + d - div255( s*d ); }
3434 BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
3435 #undef BLEND_MODE
3436
3437 // The same logic applied to color, and srcover for alpha.
3438 #define BLEND_MODE(name) \
3439 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
3440 STAGE_PP(name, Ctx::None) { \
3441 r = name##_channel(r,dr,a,da); \
3442 g = name##_channel(g,dg,a,da); \
3443 b = name##_channel(b,db,a,da); \
3444 a = a + div255( da*inv(a) ); \
3445 } \
3446 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
3447
3448 BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
3449 BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
3450 BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
3451 BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
3452
3453 BLEND_MODE(hardlight) {
3454 return div255( s*inv(da) + d*inv(sa) +
3455 if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
3456 }
3457 BLEND_MODE(overlay) {
3458 return div255( s*inv(da) + d*inv(sa) +
3459 if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
3460 }
3461 #undef BLEND_MODE
3462
3463 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
3464
3465 template <typename T>
3466 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
3467 return (T*)ctx->pixels + dy*ctx->stride + dx;
3468 }
3469
3470 template <typename T>
3471 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
3472 // Exclusive -> inclusive.
3473 const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1),
3474 h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1);
3475
3476 x = min(max(0, x), w);
3477 y = min(max(0, y), h);
3478
3479 *ptr = (const T*)ctx->pixels;
3480 return trunc_(y)*ctx->stride + trunc_(x);
3481 }
3482
3483 template <typename T>
3484 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
3485 // Exclusive -> inclusive.
3486 const I32 w = ctx->width - 1,
3487 h = ctx->height - 1;
3488
3489 U32 ax = cast<U32>(min(max(0, x), w)),
3490 ay = cast<U32>(min(max(0, y), h));
3491
3492 *ptr = (const T*)ctx->pixels;
3493 return ay * ctx->stride + ax;
3494 }
3495
3496 template <typename V, typename T>
3497 SI V load(const T* ptr, size_t tail) {
3498 V v = 0;
3499 switch (tail & (N-1)) {
3500 case 0: memcpy(&v, ptr, sizeof(v)); break;
3501 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3502 case 15: v[14] = ptr[14]; [[fallthrough]];
3503 case 14: v[13] = ptr[13]; [[fallthrough]];
3504 case 13: v[12] = ptr[12]; [[fallthrough]];
3505 case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
3506 case 11: v[10] = ptr[10]; [[fallthrough]];
3507 case 10: v[ 9] = ptr[ 9]; [[fallthrough]];
3508 case 9: v[ 8] = ptr[ 8]; [[fallthrough]];
3509 case 8: memcpy(&v, ptr, 8*sizeof(T)); break;
3510 #endif
3511 case 7: v[ 6] = ptr[ 6]; [[fallthrough]];
3512 case 6: v[ 5] = ptr[ 5]; [[fallthrough]];
3513 case 5: v[ 4] = ptr[ 4]; [[fallthrough]];
3514 case 4: memcpy(&v, ptr, 4*sizeof(T)); break;
3515 case 3: v[ 2] = ptr[ 2]; [[fallthrough]];
3516 case 2: memcpy(&v, ptr, 2*sizeof(T)); break;
3517 case 1: v[ 0] = ptr[ 0];
3518 }
3519 return v;
3520 }
3521 template <typename V, typename T>
3522 SI void store(T* ptr, size_t tail, V v) {
3523 switch (tail & (N-1)) {
3524 case 0: memcpy(ptr, &v, sizeof(v)); break;
3525 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3526 case 15: ptr[14] = v[14]; [[fallthrough]];
3527 case 14: ptr[13] = v[13]; [[fallthrough]];
3528 case 13: ptr[12] = v[12]; [[fallthrough]];
3529 case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
3530 case 11: ptr[10] = v[10]; [[fallthrough]];
3531 case 10: ptr[ 9] = v[ 9]; [[fallthrough]];
3532 case 9: ptr[ 8] = v[ 8]; [[fallthrough]];
3533 case 8: memcpy(ptr, &v, 8*sizeof(T)); break;
3534 #endif
3535 case 7: ptr[ 6] = v[ 6]; [[fallthrough]];
3536 case 6: ptr[ 5] = v[ 5]; [[fallthrough]];
3537 case 5: ptr[ 4] = v[ 4]; [[fallthrough]];
3538 case 4: memcpy(ptr, &v, 4*sizeof(T)); break;
3539 case 3: ptr[ 2] = v[ 2]; [[fallthrough]];
3540 case 2: memcpy(ptr, &v, 2*sizeof(T)); break;
3541 case 1: ptr[ 0] = v[ 0];
3542 }
3543 }
3544
3545 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3546 template <typename V, typename T>
3547 SI V gather(const T* ptr, U32 ix) {
3548 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
3549 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
3550 ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
3551 ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
3552 }
3553
3554 template<>
3555 F gather(const float* ptr, U32 ix) {
3556 __m256i lo, hi;
3557 split(ix, &lo, &hi);
3558
3559 return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
3560 _mm256_i32gather_ps(ptr, hi, 4));
3561 }
3562
3563 template<>
3564 U32 gather(const uint32_t* ptr, U32 ix) {
3565 __m256i lo, hi;
3566 split(ix, &lo, &hi);
3567
3568 return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4),
3569 _mm256_i32gather_epi32(ptr, hi, 4));
3570 }
3571 #else
3572 template <typename V, typename T>
3573 SI V gather(const T* ptr, U32 ix) {
3574 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
3575 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
3576 }
3577 #endif
3578
3579
3580 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
3581
3582 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
3583 #if 1 && defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3584 // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
3585 __m256i _01,_23;
3586 split(rgba, &_01, &_23);
3587 __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
3588 _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
3589 rgba = join<U32>(_02, _13);
3590
3591 auto cast_U16 = [](U32 v) -> U16 {
3592 __m256i _02,_13;
3593 split(v, &_02,&_13);
3594 return _mm256_packus_epi32(_02,_13);
3595 };
3596 #else
3597 auto cast_U16 = [](U32 v) -> U16 {
3598 return cast<U16>(v);
3599 };
3600 #endif
3601 *r = cast_U16(rgba & 65535) & 255;
3602 *g = cast_U16(rgba & 65535) >> 8;
3603 *b = cast_U16(rgba >> 16) & 255;
3604 *a = cast_U16(rgba >> 16) >> 8;
3605 }
3606
3607 SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
3608 #if 1 && defined(JUMPER_IS_NEON)
3609 uint8x8x4_t rgba;
3610 switch (tail & (N-1)) {
3611 case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break;
3612 case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
3613 case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
3614 case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
3615 case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
3616 case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
3617 case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
3618 case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
3619 }
3620 *r = cast<U16>(rgba.val[0]);
3621 *g = cast<U16>(rgba.val[1]);
3622 *b = cast<U16>(rgba.val[2]);
3623 *a = cast<U16>(rgba.val[3]);
3624 #else
3625 from_8888(load<U32>(ptr, tail), r,g,b,a);
3626 #endif
3627 }
3628 SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
3629 #if 1 && defined(JUMPER_IS_NEON)
3630 uint8x8x4_t rgba = {{
3631 cast<U8>(r),
3632 cast<U8>(g),
3633 cast<U8>(b),
3634 cast<U8>(a),
3635 }};
3636 switch (tail & (N-1)) {
3637 case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break;
3638 case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
3639 case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
3640 case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
3641 case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
3642 case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
3643 case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
3644 case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
3645 }
3646 #else
3647 store(ptr, tail, cast<U32>(r | (g<<8)) << 0
3648 | cast<U32>(b | (a<<8)) << 16);
3649 #endif
3650 }
3651
3652 STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
3653 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
3654 }
3655 STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3656 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
3657 }
3658 STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
3659 store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
3660 }
3661 STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
3662 const uint32_t* ptr;
3663 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3664 from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
3665 }
3666
3667 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
3668
3669 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
3670 // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
3671 U16 R = (rgb >> 11) & 31,
3672 G = (rgb >> 5) & 63,
3673 B = (rgb >> 0) & 31;
3674
3675 // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
3676 *r = (R << 3) | (R >> 2);
3677 *g = (G << 2) | (G >> 4);
3678 *b = (B << 3) | (B >> 2);
3679 }
3680 SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
3681 from_565(load<U16>(ptr, tail), r,g,b);
3682 }
3683 SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
3684 // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
3685 // (Don't feel like you need to find some fundamental truth in these...
3686 // they were brute-force searched.)
3687 U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half.
3688 G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly.
3689 B = (b * 9 + 36) / 74;
3690 // Pack them back into 15|rrrrr gggggg bbbbb|0.
3691 store(ptr, tail, R << 11
3692 | G << 5
3693 | B << 0);
3694 }
3695
3696 STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
3697 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
3698 a = 255;
3699 }
3700 STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3701 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
3702 da = 255;
3703 }
3704 STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
3705 store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
3706 }
3707 STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
3708 const uint16_t* ptr;
3709 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3710 from_565(gather<U16>(ptr, ix), &r, &g, &b);
3711 a = 255;
3712 }
3713
3714 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
3715 // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
3716 U16 R = (rgba >> 12) & 15,
3717 G = (rgba >> 8) & 15,
3718 B = (rgba >> 4) & 15,
3719 A = (rgba >> 0) & 15;
3720
3721 // Scale [0,15] to [0,255].
3722 *r = (R << 4) | R;
3723 *g = (G << 4) | G;
3724 *b = (B << 4) | B;
3725 *a = (A << 4) | A;
3726 }
3727 SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
3728 from_4444(load<U16>(ptr, tail), r,g,b,a);
3729 }
3730 SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
3731 // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
3732 U16 R = (r + 8) / 17,
3733 G = (g + 8) / 17,
3734 B = (b + 8) / 17,
3735 A = (a + 8) / 17;
3736 // Pack them back into 15|rrrr gggg bbbb aaaa|0.
3737 store(ptr, tail, R << 12
3738 | G << 8
3739 | B << 4
3740 | A << 0);
3741 }
3742
3743 STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
3744 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
3745 }
3746 STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3747 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
3748 }
3749 STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
3750 store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
3751 }
3752 STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
3753 const uint16_t* ptr;
3754 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3755 from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
3756 }
3757
3758 SI void from_88(U16 rg, U16* r, U16* g) {
3759 *r = (rg & 0xFF);
3760 *g = (rg >> 8);
3761 }
3762
3763 SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
3764 #if 1 && defined(JUMPER_IS_NEON)
3765 uint8x8x2_t rg;
3766 switch (tail & (N-1)) {
3767 case 0: rg = vld2_u8 ((const uint8_t*)(ptr+0) ); break;
3768 case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
3769 case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
3770 case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
3771 case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
3772 case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
3773 case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
3774 case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0);
3775 }
3776 *r = cast<U16>(rg.val[0]);
3777 *g = cast<U16>(rg.val[1]);
3778 #else
3779 from_88(load<U16>(ptr, tail), r,g);
3780 #endif
3781 }
3782
3783 SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) {
3784 #if 1 && defined(JUMPER_IS_NEON)
3785 uint8x8x2_t rg = {{
3786 cast<U8>(r),
3787 cast<U8>(g),
3788 }};
3789 switch (tail & (N-1)) {
3790 case 0: vst2_u8 ((uint8_t*)(ptr+0), rg ); break;
3791 case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
3792 case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
3793 case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
3794 case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
3795 case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
3796 case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
3797 case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0);
3798 }
3799 #else
3800 store(ptr, tail, cast<U16>(r | (g<<8)) << 0);
3801 #endif
3802 }
3803
3804 STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
3805 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &r, &g);
3806 b = 0;
3807 a = 255;
3808 }
3809 STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3810 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &dr, &dg);
3811 db = 0;
3812 da = 255;
3813 }
3814 STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
3815 store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), tail, r, g);
3816 }
3817 STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
3818 const uint16_t* ptr;
3819 U32 ix = ix_and_ptr(&ptr, ctx, x, y);
3820 from_88(gather<U16>(ptr, ix), &r, &g);
3821 b = 0;
3822 a = 255;
3823 }
3824
3825 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
3826
3827 SI U16 load_8(const uint8_t* ptr, size_t tail) {
3828 return cast<U16>(load<U8>(ptr, tail));
3829 }
3830 SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
3831 store(ptr, tail, cast<U8>(v));
3832 }
3833
3834 STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
3835 r = g = b = 0;
3836 a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3837 }
3838 STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3839 dr = dg = db = 0;
3840 da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3841 }
3842 STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
3843 store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
3844 }
3845 STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
3846 const uint8_t* ptr;
3847 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3848 r = g = b = 0;
3849 a = cast<U16>(gather<U8>(ptr, ix));
3850 }
3851 STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
3852 store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, r);
3853 }
3854
3855 STAGE_PP(alpha_to_gray, Ctx::None) {
3856 r = g = b = a;
3857 a = 255;
3858 }
3859 STAGE_PP(alpha_to_gray_dst, Ctx::None) {
3860 dr = dg = db = da;
3861 da = 255;
3862 }
3863 STAGE_PP(alpha_to_red, Ctx::None) {
3864 r = a;
3865 a = 255;
3866 }
3867 STAGE_PP(alpha_to_red_dst, Ctx::None) {
3868 dr = da;
3869 da = 255;
3870 }
3871
3872 STAGE_PP(bt709_luminance_or_luma_to_alpha, Ctx::None) {
3873 a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
3874 r = g = b = 0;
3875 }
3876 STAGE_PP(bt709_luminance_or_luma_to_rgb, Ctx::None) {
3877 r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
3878 }
3879
3880 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
3881
3882 STAGE_PP(load_src, const uint16_t* ptr) {
3883 r = sk_unaligned_load<U16>(ptr + 0*N);
3884 g = sk_unaligned_load<U16>(ptr + 1*N);
3885 b = sk_unaligned_load<U16>(ptr + 2*N);
3886 a = sk_unaligned_load<U16>(ptr + 3*N);
3887 }
3888 STAGE_PP(store_src, uint16_t* ptr) {
3889 sk_unaligned_store(ptr + 0*N, r);
3890 sk_unaligned_store(ptr + 1*N, g);
3891 sk_unaligned_store(ptr + 2*N, b);
3892 sk_unaligned_store(ptr + 3*N, a);
3893 }
3894 STAGE_PP(store_src_a, uint16_t* ptr) {
3895 sk_unaligned_store(ptr, a);
3896 }
3897 STAGE_PP(load_dst, const uint16_t* ptr) {
3898 dr = sk_unaligned_load<U16>(ptr + 0*N);
3899 dg = sk_unaligned_load<U16>(ptr + 1*N);
3900 db = sk_unaligned_load<U16>(ptr + 2*N);
3901 da = sk_unaligned_load<U16>(ptr + 3*N);
3902 }
3903 STAGE_PP(store_dst, uint16_t* ptr) {
3904 sk_unaligned_store(ptr + 0*N, dr);
3905 sk_unaligned_store(ptr + 1*N, dg);
3906 sk_unaligned_store(ptr + 2*N, db);
3907 sk_unaligned_store(ptr + 3*N, da);
3908 }
3909
3910 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
3911
3912 STAGE_PP(scale_1_float, const float* f) {
3913 U16 c = from_float(*f);
3914 r = div255( r * c );
3915 g = div255( g * c );
3916 b = div255( b * c );
3917 a = div255( a * c );
3918 }
3919 STAGE_PP(lerp_1_float, const float* f) {
3920 U16 c = from_float(*f);
3921 r = lerp(dr, r, c);
3922 g = lerp(dg, g, c);
3923 b = lerp(db, b, c);
3924 a = lerp(da, a, c);
3925 }
3926 STAGE_PP(scale_native, const uint16_t scales[]) {
3927 auto c = sk_unaligned_load<U16>(scales);
3928 r = div255( r * c );
3929 g = div255( g * c );
3930 b = div255( b * c );
3931 a = div255( a * c );
3932 }
3933
3934 STAGE_PP(lerp_native, const uint16_t scales[]) {
3935 auto c = sk_unaligned_load<U16>(scales);
3936 r = lerp(dr, r, c);
3937 g = lerp(dg, g, c);
3938 b = lerp(db, b, c);
3939 a = lerp(da, a, c);
3940 }
3941
3942 STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
3943 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3944 r = div255( r * c );
3945 g = div255( g * c );
3946 b = div255( b * c );
3947 a = div255( a * c );
3948 }
3949 STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
3950 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3951 r = lerp(dr, r, c);
3952 g = lerp(dg, g, c);
3953 b = lerp(db, b, c);
3954 a = lerp(da, a, c);
3955 }
3956
3957 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
3958 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
3959 return if_then_else(a < da, min(cr, min(cg,cb))
3960 , max(cr, max(cg,cb)));
3961 }
3962 STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
3963 U16 cr,cg,cb;
3964 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
3965 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
3966
3967 r = div255( r * cr );
3968 g = div255( g * cg );
3969 b = div255( b * cb );
3970 a = div255( a * ca );
3971 }
3972 STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
3973 U16 cr,cg,cb;
3974 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
3975 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
3976
3977 r = lerp(dr, r, cr);
3978 g = lerp(dg, g, cg);
3979 b = lerp(db, b, cb);
3980 a = lerp(da, a, ca);
3981 }
3982
3983 STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
3984 U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), tail),
3985 add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy), tail);
3986
3987 r = min(div255(r*mul) + add, a);
3988 g = min(div255(g*mul) + add, a);
3989 b = min(div255(b*mul) + add, a);
3990 }
3991
3992
3993 // ~~~~~~ Gradient stages ~~~~~~ //
3994
3995 // Clamp x to [0,1], both sides inclusive (think, gradients).
3996 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
3997 SI F clamp_01(F v) { return min(max(0, v), 1); }
3998
3999 STAGE_GG(clamp_x_1 , Ctx::None) { x = clamp_01(x); }
4000 STAGE_GG(repeat_x_1, Ctx::None) { x = clamp_01(x - floor_(x)); }
4001 STAGE_GG(mirror_x_1, Ctx::None) {
4002 auto two = [](F x){ return x+x; };
4003 x = clamp_01(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
4004 }
4005
4006 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
4007
4008 STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
4009 auto w = ctx->limit_x;
4010 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
4011 }
4012 STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
4013 auto h = ctx->limit_y;
4014 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
4015 }
4016 STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
4017 auto w = ctx->limit_x;
4018 auto h = ctx->limit_y;
4019 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
4020 }
4021 STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
4022 auto mask = sk_unaligned_load<U16>(ctx->mask);
4023 r = r & mask;
4024 g = g & mask;
4025 b = b & mask;
4026 a = a & mask;
4027 }
4028
4029 SI void round_F_to_U16(F R, F G, F B, F A, bool interpolatedInPremul,
4030 U16* r, U16* g, U16* b, U16* a) {
4031 auto round = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
4032
4033 F limit = interpolatedInPremul ? A
4034 : 1;
4035 *r = round(min(max(0,R), limit));
4036 *g = round(min(max(0,G), limit));
4037 *b = round(min(max(0,B), limit));
4038 *a = round(A); // we assume alpha is already in [0,1].
4039 }
4040
4041 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
4042 U16* r, U16* g, U16* b, U16* a) {
4043
4044 F fr, fg, fb, fa, br, bg, bb, ba;
4045 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4046 if (c->stopCount <=8) {
4047 __m256i lo, hi;
4048 split(idx, &lo, &hi);
4049
4050 fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
4051 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
4052 br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
4053 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
4054 fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
4055 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
4056 bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
4057 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
4058 fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
4059 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
4060 bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
4061 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
4062 fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
4063 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
4064 ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
4065 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
4066 } else
4067 #endif
4068 {
4069 fr = gather<F>(c->fs[0], idx);
4070 fg = gather<F>(c->fs[1], idx);
4071 fb = gather<F>(c->fs[2], idx);
4072 fa = gather<F>(c->fs[3], idx);
4073 br = gather<F>(c->bs[0], idx);
4074 bg = gather<F>(c->bs[1], idx);
4075 bb = gather<F>(c->bs[2], idx);
4076 ba = gather<F>(c->bs[3], idx);
4077 }
4078 round_F_to_U16(mad(t, fr, br),
4079 mad(t, fg, bg),
4080 mad(t, fb, bb),
4081 mad(t, fa, ba),
4082 c->interpolatedInPremul,
4083 r,g,b,a);
4084 }
4085
4086 STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
4087 auto t = x;
4088 U32 idx = 0;
4089
4090 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
4091 for (size_t i = 1; i < c->stopCount; i++) {
4092 idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
4093 }
4094
4095 gradient_lookup(c, idx, t, &r, &g, &b, &a);
4096 }
4097
4098 STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
4099 auto t = x;
4100 auto idx = trunc_(t * (c->stopCount-1));
4101 gradient_lookup(c, idx, t, &r, &g, &b, &a);
4102 }
4103
4104 STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
4105 auto t = x;
4106 round_F_to_U16(mad(t, c->f[0], c->b[0]),
4107 mad(t, c->f[1], c->b[1]),
4108 mad(t, c->f[2], c->b[2]),
4109 mad(t, c->f[3], c->b[3]),
4110 c->interpolatedInPremul,
4111 &r,&g,&b,&a);
4112 }
4113
4114 SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
4115 #if !defined(SK_SUPPORT_LEGACY_BILERP_HIGHP)
4116 STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4117 // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
4118 // point number.
4119 I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
4120 qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
4121
4122 // Calculate screen coordinates sx & sy by flooring qx and qy.
4123 I32 sx = qx >> 16,
4124 sy = qy >> 16;
4125
4126 // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
4127 // This will put tx in Q15 format for use with q_mult.
4128 // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
4129 // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
4130 // the same math:
4131 // tx = 2 * {qx} - 1, so
4132 // {qx} = (tx + 1) / 2.
4133 // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
4134 // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
4135 // order to use the full 16-bit resolution.
4136 I16 tx = cast<I16>(qx ^ 0x8000),
4137 ty = cast<I16>(qy ^ 0x8000);
4138
4139 // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
4140 // the lerped value:
4141 // v = {qx}*(R - L) + L,
4142 // v = 1/2*(tx + 1)*(R - L) + L
4143 // 2 * v = (tx + 1)*(R - L) + 2*L
4144 // = tx*R - tx*L + R - L + 2*L
4145 // = tx*(R - L) + (R + L).
4146 // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
4147 // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
4148 // code, we can multiply by 2^7 to get the value directly.
4149 // 2 * v = tx*(R - L) + (R + L)
4150 // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
4151 // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
4152 // v = 1/2 * (tx*(R - L) + (R + L))
4153 auto lerpX = [&](U16 left, U16 right) -> U16 {
4154 I16 width = (I16)(right - left) << 7;
4155 U16 middle = (right + left) << 7;
4156 // The constrained_add is the most subtle part of lerp. The first term is on the interval
4157 // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
4158 // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
4159 // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
4160 // should overflow, but because we know that sum produces an output on the
4161 // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
4162 // we need to be careful to treat this sum as an unsigned positive number in the divide
4163 // by 2 below. Add +1 for rounding.
4164 U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1;
4165 // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
4166 // interval [0, 1/2] to set up for the lerpY.
4167 return v2 >> 1;
4168 };
4169
4170 const uint32_t* ptr;
4171 U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
4172 U16 leftR, leftG, leftB, leftA;
4173 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
4174
4175 ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
4176 U16 rightR, rightG, rightB, rightA;
4177 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
4178
4179 U16 topR = lerpX(leftR, rightR),
4180 topG = lerpX(leftG, rightG),
4181 topB = lerpX(leftB, rightB),
4182 topA = lerpX(leftA, rightA);
4183
4184 ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
4185 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
4186
4187 ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
4188 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
4189
4190 U16 bottomR = lerpX(leftR, rightR),
4191 bottomG = lerpX(leftG, rightG),
4192 bottomB = lerpX(leftB, rightB),
4193 bottomA = lerpX(leftA, rightA);
4194
4195 // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
4196 // in a value on [0, 255].
4197 auto lerpY = [&](U16 top, U16 bottom) -> U16 {
4198 I16 width = (I16)bottom - top;
4199 U16 middle = bottom + top;
4200 // Add + 0x80 for rounding.
4201 U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80;
4202
4203 return blend >> 8;
4204 };
4205
4206 r = lerpY(topR, bottomR);
4207 g = lerpY(topG, bottomG);
4208 b = lerpY(topB, bottomB);
4209 a = lerpY(topA, bottomA);
4210 }
4211 #endif // SK_SUPPORT_LEGACY_BILERP_HIGHP
4212
4213 STAGE_GG(xy_to_unit_angle, Ctx::None) {
4214 F xabs = abs_(x),
4215 yabs = abs_(y);
4216
4217 F slope = min(xabs, yabs)/max(xabs, yabs);
4218 F s = slope * slope;
4219
4220 // Use a 7th degree polynomial to approximate atan.
4221 // This was generated using sollya.gforge.inria.fr.
4222 // A float optimized polynomial was generated using the following command.
4223 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
4224 F phi = slope
4225 * (0.15912117063999176025390625f + s
4226 * (-5.185396969318389892578125e-2f + s
4227 * (2.476101927459239959716796875e-2f + s
4228 * (-7.0547382347285747528076171875e-3f))));
4229
4230 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
4231 phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
4232 phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
4233 phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
4234 x = phi;
4235 }
4236 STAGE_GG(xy_to_radius, Ctx::None) {
4237 x = sqrt_(x*x + y*y);
4238 }
4239
4240 // ~~~~~~ Compound stages ~~~~~~ //
4241
4242 STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
4243 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
4244
4245 load_8888_(ptr, tail, &dr,&dg,&db,&da);
4246 r = r + div255( dr*inv(a) );
4247 g = g + div255( dg*inv(a) );
4248 b = b + div255( db*inv(a) );
4249 a = a + div255( da*inv(a) );
4250 store_8888_(ptr, tail, r,g,b,a);
4251 }
4252
4253 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
4254
4255 STAGE_PP(swizzle, void* ctx) {
4256 auto ir = r, ig = g, ib = b, ia = a;
4257 U16* o[] = {&r, &g, &b, &a};
4258 char swiz[4];
4259 memcpy(swiz, &ctx, sizeof(swiz));
4260
4261 for (int i = 0; i < 4; ++i) {
4262 switch (swiz[i]) {
4263 case 'r': *o[i] = ir; break;
4264 case 'g': *o[i] = ig; break;
4265 case 'b': *o[i] = ib; break;
4266 case 'a': *o[i] = ia; break;
4267 case '0': *o[i] = U16(0); break;
4268 case '1': *o[i] = U16(255); break;
4269 default: break;
4270 }
4271 }
4272 }
4273
4274 // Now we'll add null stand-ins for stages we haven't implemented in lowp.
4275 // If a pipeline uses these stages, it'll boot it out of lowp into highp.
4276 #define NOT_IMPLEMENTED(st) static void (*st)(void) = nullptr;
4277 NOT_IMPLEMENTED(callback)
4278 NOT_IMPLEMENTED(unbounded_set_rgb)
4279 NOT_IMPLEMENTED(unbounded_uniform_color)
4280 NOT_IMPLEMENTED(unpremul)
4281 NOT_IMPLEMENTED(dither)
4282 NOT_IMPLEMENTED(load_16161616)
4283 NOT_IMPLEMENTED(load_16161616_dst)
4284 NOT_IMPLEMENTED(store_16161616)
4285 NOT_IMPLEMENTED(gather_16161616)
4286 NOT_IMPLEMENTED(load_a16)
4287 NOT_IMPLEMENTED(load_a16_dst)
4288 NOT_IMPLEMENTED(store_a16)
4289 NOT_IMPLEMENTED(gather_a16)
4290 NOT_IMPLEMENTED(load_rg1616)
4291 NOT_IMPLEMENTED(load_rg1616_dst)
4292 NOT_IMPLEMENTED(store_rg1616)
4293 NOT_IMPLEMENTED(gather_rg1616)
4294 NOT_IMPLEMENTED(load_f16)
4295 NOT_IMPLEMENTED(load_f16_dst)
4296 NOT_IMPLEMENTED(store_f16)
4297 NOT_IMPLEMENTED(gather_f16)
4298 NOT_IMPLEMENTED(load_af16)
4299 NOT_IMPLEMENTED(load_af16_dst)
4300 NOT_IMPLEMENTED(store_af16)
4301 NOT_IMPLEMENTED(gather_af16)
4302 NOT_IMPLEMENTED(load_rgf16)
4303 NOT_IMPLEMENTED(load_rgf16_dst)
4304 NOT_IMPLEMENTED(store_rgf16)
4305 NOT_IMPLEMENTED(gather_rgf16)
4306 NOT_IMPLEMENTED(load_f32)
4307 NOT_IMPLEMENTED(load_f32_dst)
4308 NOT_IMPLEMENTED(store_f32)
4309 NOT_IMPLEMENTED(gather_f32)
4310 NOT_IMPLEMENTED(load_rgf32)
4311 NOT_IMPLEMENTED(store_rgf32)
4312 NOT_IMPLEMENTED(load_1010102)
4313 NOT_IMPLEMENTED(load_1010102_dst)
4314 NOT_IMPLEMENTED(store_1010102)
4315 NOT_IMPLEMENTED(gather_1010102)
4316 NOT_IMPLEMENTED(store_u16_be)
4317 NOT_IMPLEMENTED(byte_tables)
4318 NOT_IMPLEMENTED(colorburn)
4319 NOT_IMPLEMENTED(colordodge)
4320 NOT_IMPLEMENTED(softlight)
4321 NOT_IMPLEMENTED(hue)
4322 NOT_IMPLEMENTED(saturation)
4323 NOT_IMPLEMENTED(color)
4324 NOT_IMPLEMENTED(luminosity)
4325 NOT_IMPLEMENTED(matrix_3x3)
4326 NOT_IMPLEMENTED(matrix_3x4)
4327 NOT_IMPLEMENTED(matrix_4x5)
4328 NOT_IMPLEMENTED(matrix_4x3)
4329 NOT_IMPLEMENTED(parametric)
4330 NOT_IMPLEMENTED(gamma_)
4331 NOT_IMPLEMENTED(PQish)
4332 NOT_IMPLEMENTED(HLGish)
4333 NOT_IMPLEMENTED(HLGinvish)
4334 NOT_IMPLEMENTED(rgb_to_hsl)
4335 NOT_IMPLEMENTED(hsl_to_rgb)
4336 NOT_IMPLEMENTED(gauss_a_to_rgba)
4337 NOT_IMPLEMENTED(mirror_x)
4338 NOT_IMPLEMENTED(repeat_x)
4339 NOT_IMPLEMENTED(mirror_y)
4340 NOT_IMPLEMENTED(repeat_y)
4341 NOT_IMPLEMENTED(negate_x)
4342 NOT_IMPLEMENTED(bilinear)
4343 #if defined(SK_SUPPORT_LEGACY_BILERP_HIGHP)
4344 NOT_IMPLEMENTED(bilerp_clamp_8888)
4345 #endif
4346 NOT_IMPLEMENTED(bicubic)
4347 NOT_IMPLEMENTED(bicubic_clamp_8888)
4348 NOT_IMPLEMENTED(bilinear_nx)
4349 NOT_IMPLEMENTED(bilinear_ny)
4350 NOT_IMPLEMENTED(bilinear_px)
4351 NOT_IMPLEMENTED(bilinear_py)
4352 NOT_IMPLEMENTED(bicubic_n3x)
4353 NOT_IMPLEMENTED(bicubic_n1x)
4354 NOT_IMPLEMENTED(bicubic_p1x)
4355 NOT_IMPLEMENTED(bicubic_p3x)
4356 NOT_IMPLEMENTED(bicubic_n3y)
4357 NOT_IMPLEMENTED(bicubic_n1y)
4358 NOT_IMPLEMENTED(bicubic_p1y)
4359 NOT_IMPLEMENTED(bicubic_p3y)
4360 NOT_IMPLEMENTED(save_xy)
4361 NOT_IMPLEMENTED(accumulate)
4362 NOT_IMPLEMENTED(xy_to_2pt_conical_well_behaved)
4363 NOT_IMPLEMENTED(xy_to_2pt_conical_strip)
4364 NOT_IMPLEMENTED(xy_to_2pt_conical_focal_on_circle)
4365 NOT_IMPLEMENTED(xy_to_2pt_conical_smaller)
4366 NOT_IMPLEMENTED(xy_to_2pt_conical_greater)
4367 NOT_IMPLEMENTED(alter_2pt_conical_compensate_focal)
4368 NOT_IMPLEMENTED(alter_2pt_conical_unswap)
4369 NOT_IMPLEMENTED(mask_2pt_conical_nan)
4370 NOT_IMPLEMENTED(mask_2pt_conical_degenerates)
4371 NOT_IMPLEMENTED(apply_vector_mask)
4372 #undef NOT_IMPLEMENTED
4373
4374 #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
4375 } // namespace lowp
4376
4377 } // namespace SK_OPTS_NS
4378
4379 #undef SI
4380
4381 #endif//SkRasterPipeline_opts_DEFINED
4382