• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  *
113  * Portions of the attached software ("Contribution") are developed by
114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115  *
116  * The Contribution is licensed pursuant to the OpenSSL open source
117  * license provided above.
118  *
119  * ECC cipher suite support in OpenSSL originally written by
120  * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121  *
122  */
123 /* ====================================================================
124  * Copyright 2005 Nokia. All rights reserved.
125  *
126  * The portions of the attached software ("Contribution") is developed by
127  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128  * license.
129  *
130  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132  * support (see RFC 4279) to OpenSSL.
133  *
134  * No patent licenses or other rights except those expressly stated in
135  * the OpenSSL open source license shall be deemed granted or received
136  * expressly, by implication, estoppel, or otherwise.
137  *
138  * No assurances are provided by Nokia that the Contribution does not
139  * infringe the patent or other intellectual property rights of any third
140  * party or that the license provides you with all the necessary rights
141  * to make use of the Contribution.
142  *
143  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147  * OTHERWISE.
148  */
149 
150 #include <openssl/ssl.h>
151 
152 #include <assert.h>
153 #include <limits.h>
154 #include <string.h>
155 
156 #include <utility>
157 
158 #include <openssl/aead.h>
159 #include <openssl/bn.h>
160 #include <openssl/bytestring.h>
161 #include <openssl/ec_key.h>
162 #include <openssl/ecdsa.h>
163 #include <openssl/err.h>
164 #include <openssl/evp.h>
165 #include <openssl/hpke.h>
166 #include <openssl/md5.h>
167 #include <openssl/mem.h>
168 #include <openssl/rand.h>
169 #include <openssl/sha.h>
170 
171 #include "../crypto/internal.h"
172 #include "internal.h"
173 
174 
175 BSSL_NAMESPACE_BEGIN
176 
177 enum ssl_client_hs_state_t {
178   state_start_connect = 0,
179   state_enter_early_data,
180   state_early_reverify_server_certificate,
181   state_read_hello_verify_request,
182   state_read_server_hello,
183   state_tls13,
184   state_read_server_certificate,
185   state_read_certificate_status,
186   state_verify_server_certificate,
187   state_reverify_server_certificate,
188   state_read_server_key_exchange,
189   state_read_certificate_request,
190   state_read_server_hello_done,
191   state_send_client_certificate,
192   state_send_client_key_exchange,
193   state_send_client_certificate_verify,
194   state_send_client_finished,
195   state_finish_flight,
196   state_read_session_ticket,
197   state_process_change_cipher_spec,
198   state_read_server_finished,
199   state_finish_client_handshake,
200   state_done,
201 };
202 
203 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
204 // disabled algorithms.
ssl_get_client_disabled(const SSL_HANDSHAKE * hs,uint32_t * out_mask_a,uint32_t * out_mask_k)205 static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs,
206                                     uint32_t *out_mask_a,
207                                     uint32_t *out_mask_k) {
208   *out_mask_a = 0;
209   *out_mask_k = 0;
210 
211   // PSK requires a client callback.
212   if (hs->config->psk_client_callback == NULL) {
213     *out_mask_a |= SSL_aPSK;
214     *out_mask_k |= SSL_kPSK;
215   }
216 }
217 
ssl_write_client_cipher_list(const SSL_HANDSHAKE * hs,CBB * out,ssl_client_hello_type_t type)218 static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out,
219                                          ssl_client_hello_type_t type) {
220   const SSL *const ssl = hs->ssl;
221   uint32_t mask_a, mask_k;
222   ssl_get_client_disabled(hs, &mask_a, &mask_k);
223 
224   CBB child;
225   if (!CBB_add_u16_length_prefixed(out, &child)) {
226     return false;
227   }
228 
229   // Add a fake cipher suite. See RFC 8701.
230   if (ssl->ctx->grease_enabled &&
231       !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) {
232     return false;
233   }
234 
235   // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
236   // hardware support.
237   if (hs->max_version >= TLS1_3_VERSION) {
238     if (!EVP_has_aes_hardware() &&
239         !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
240       return false;
241     }
242     if (!CBB_add_u16(&child, TLS1_CK_AES_128_GCM_SHA256 & 0xffff) ||
243         !CBB_add_u16(&child, TLS1_CK_AES_256_GCM_SHA384 & 0xffff)) {
244       return false;
245     }
246     if (EVP_has_aes_hardware() &&
247         !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
248       return false;
249     }
250   }
251 
252   if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) {
253     bool any_enabled = false;
254     for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) {
255       // Skip disabled ciphers
256       if ((cipher->algorithm_mkey & mask_k) ||
257           (cipher->algorithm_auth & mask_a)) {
258         continue;
259       }
260       if (SSL_CIPHER_get_min_version(cipher) > hs->max_version ||
261           SSL_CIPHER_get_max_version(cipher) < hs->min_version) {
262         continue;
263       }
264       any_enabled = true;
265       if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) {
266         return false;
267       }
268     }
269 
270     // If all ciphers were disabled, return the error to the caller.
271     if (!any_enabled && hs->max_version < TLS1_3_VERSION) {
272       OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
273       return false;
274     }
275   }
276 
277   if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
278     if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
279       return false;
280     }
281   }
282 
283   return CBB_flush(out);
284 }
285 
ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE * hs,CBB * cbb,ssl_client_hello_type_t type,bool empty_session_id)286 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
287                                                CBB *cbb,
288                                                ssl_client_hello_type_t type,
289                                                bool empty_session_id) {
290   const SSL *const ssl = hs->ssl;
291   CBB child;
292   if (!CBB_add_u16(cbb, hs->client_version) ||
293       !CBB_add_bytes(cbb,
294                      type == ssl_client_hello_inner ? hs->inner_client_random
295                                                     : ssl->s3->client_random,
296                      SSL3_RANDOM_SIZE) ||
297       !CBB_add_u8_length_prefixed(cbb, &child)) {
298     return false;
299   }
300 
301   // Do not send a session ID on renegotiation.
302   if (!ssl->s3->initial_handshake_complete &&
303       !empty_session_id &&
304       !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) {
305     return false;
306   }
307 
308   if (SSL_is_dtls(ssl)) {
309     if (!CBB_add_u8_length_prefixed(cbb, &child) ||
310         !CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) {
311       return false;
312     }
313   }
314 
315   if (!ssl_write_client_cipher_list(hs, cbb, type) ||
316       !CBB_add_u8(cbb, 1 /* one compression method */) ||
317       !CBB_add_u8(cbb, 0 /* null compression */)) {
318     return false;
319   }
320   return true;
321 }
322 
ssl_add_client_hello(SSL_HANDSHAKE * hs)323 bool ssl_add_client_hello(SSL_HANDSHAKE *hs) {
324   SSL *const ssl = hs->ssl;
325   ScopedCBB cbb;
326   CBB body;
327   ssl_client_hello_type_t type = hs->selected_ech_config
328                                      ? ssl_client_hello_outer
329                                      : ssl_client_hello_unencrypted;
330   bool needs_psk_binder;
331   Array<uint8_t> msg;
332   if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) ||
333       !ssl_write_client_hello_without_extensions(hs, &body, type,
334                                                  /*empty_session_id=*/false) ||
335       !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr,
336                                   &needs_psk_binder, type, CBB_len(&body)) ||
337       !ssl->method->finish_message(ssl, cbb.get(), &msg)) {
338     return false;
339   }
340 
341   // Now that the length prefixes have been computed, fill in the placeholder
342   // PSK binder.
343   if (needs_psk_binder) {
344     // ClientHelloOuter cannot have a PSK binder. Otherwise the
345     // ClientHellOuterAAD computation would break.
346     assert(type != ssl_client_hello_outer);
347     if (!tls13_write_psk_binder(hs, hs->transcript, MakeSpan(msg),
348                                 /*out_binder_len=*/0)) {
349       return false;
350     }
351   }
352 
353   return ssl->method->add_message(ssl, std::move(msg));
354 }
355 
parse_server_version(const SSL_HANDSHAKE * hs,uint16_t * out_version,uint8_t * out_alert,const ParsedServerHello & server_hello)356 static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version,
357                                  uint8_t *out_alert,
358                                  const ParsedServerHello &server_hello) {
359   // If the outer version is not TLS 1.2, use it.
360   // TODO(davidben): This function doesn't quite match the RFC8446 formulation.
361   if (server_hello.legacy_version != TLS1_2_VERSION) {
362     *out_version = server_hello.legacy_version;
363     return true;
364   }
365 
366   SSLExtension supported_versions(TLSEXT_TYPE_supported_versions);
367   CBS extensions = server_hello.extensions;
368   if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions},
369                             /*ignore_unknown=*/true)) {
370     return false;
371   }
372 
373   if (!supported_versions.present) {
374     *out_version = server_hello.legacy_version;
375     return true;
376   }
377 
378   if (!CBS_get_u16(&supported_versions.data, out_version) ||
379        CBS_len(&supported_versions.data) != 0) {
380     *out_alert = SSL_AD_DECODE_ERROR;
381     return false;
382   }
383 
384   return true;
385 }
386 
387 // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should
388 // offer early data, and some other reason code otherwise.
should_offer_early_data(const SSL_HANDSHAKE * hs)389 static ssl_early_data_reason_t should_offer_early_data(
390     const SSL_HANDSHAKE *hs) {
391   const SSL *const ssl = hs->ssl;
392   assert(!ssl->server);
393   if (!ssl->enable_early_data) {
394     return ssl_early_data_disabled;
395   }
396 
397   if (hs->max_version < TLS1_3_VERSION) {
398     // We discard inapplicable sessions, so this is redundant with the session
399     // checks below, but reporting that TLS 1.3 was disabled is more useful.
400     return ssl_early_data_protocol_version;
401   }
402 
403   if (ssl->session == nullptr) {
404     return ssl_early_data_no_session_offered;
405   }
406 
407   if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION ||
408       ssl->session->ticket_max_early_data == 0) {
409     return ssl_early_data_unsupported_for_session;
410   }
411 
412   if (!ssl->session->early_alpn.empty()) {
413     if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) {
414       // Avoid reporting a confusing value in |SSL_get0_alpn_selected|.
415       return ssl_early_data_alpn_mismatch;
416     }
417 
418     // If the previous connection negotiated ALPS, only offer 0-RTT when the
419     // local are settings are consistent with what we'd offer for this
420     // connection.
421     if (ssl->session->has_application_settings) {
422       Span<const uint8_t> settings;
423       if (!ssl_get_local_application_settings(hs, &settings,
424                                               ssl->session->early_alpn) ||
425           settings != ssl->session->local_application_settings) {
426         return ssl_early_data_alps_mismatch;
427       }
428     }
429   }
430 
431   // Early data has not yet been accepted, but we use it as a success code.
432   return ssl_early_data_accepted;
433 }
434 
ssl_done_writing_client_hello(SSL_HANDSHAKE * hs)435 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) {
436   hs->ech_client_outer.Reset();
437   hs->cookie.Reset();
438   hs->key_share_bytes.Reset();
439 }
440 
do_start_connect(SSL_HANDSHAKE * hs)441 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
442   SSL *const ssl = hs->ssl;
443 
444   ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
445   // |session_reused| must be reset in case this is a renegotiation.
446   ssl->s3->session_reused = false;
447 
448   // Freeze the version range.
449   if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
450     return ssl_hs_error;
451   }
452 
453   uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH];
454   size_t ech_enc_len;
455   if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) {
456     return ssl_hs_error;
457   }
458 
459   // Always advertise the ClientHello version from the original maximum version,
460   // even on renegotiation. The static RSA key exchange uses this field, and
461   // some servers fail when it changes across handshakes.
462   if (SSL_is_dtls(hs->ssl)) {
463     hs->client_version =
464         hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION;
465   } else {
466     hs->client_version =
467         hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version;
468   }
469 
470   // If the configured session has expired or is not usable, drop it. We also do
471   // not offer sessions on renegotiation.
472   if (ssl->session != nullptr) {
473     if (ssl->session->is_server ||
474         !ssl_supports_version(hs, ssl->session->ssl_version) ||
475         // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not
476         // offer TLS 1.2, and the cleartext session ID may leak the server
477         // identity.
478         (hs->selected_ech_config &&
479          ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) ||
480         !SSL_SESSION_is_resumable(ssl->session.get()) ||
481         !ssl_session_is_time_valid(ssl, ssl->session.get()) ||
482         (ssl->quic_method != nullptr) != ssl->session->is_quic ||
483         ssl->s3->initial_handshake_complete) {
484       ssl_set_session(ssl, nullptr);
485     }
486   }
487 
488   if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
489     return ssl_hs_error;
490   }
491   if (hs->selected_ech_config &&
492       !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) {
493     return ssl_hs_error;
494   }
495 
496   // Never send a session ID in QUIC. QUIC uses TLS 1.3 at a minimum and
497   // disables TLS 1.3 middlebox compatibility mode.
498   if (ssl->quic_method == nullptr) {
499     const bool has_id_session = ssl->session != nullptr &&
500                                 ssl->session->session_id_length > 0 &&
501                                 ssl->session->ticket.empty();
502     const bool has_ticket_session =
503         ssl->session != nullptr && !ssl->session->ticket.empty();
504     if (has_id_session) {
505       hs->session_id_len = ssl->session->session_id_length;
506       OPENSSL_memcpy(hs->session_id, ssl->session->session_id,
507                      hs->session_id_len);
508     } else if (has_ticket_session || hs->max_version >= TLS1_3_VERSION) {
509       // Send a random session ID. TLS 1.3 always sends one, and TLS 1.2 session
510       // tickets require a placeholder value to signal resumption.
511       hs->session_id_len = sizeof(hs->session_id);
512       if (!RAND_bytes(hs->session_id, hs->session_id_len)) {
513         return ssl_hs_error;
514       }
515     }
516   }
517 
518   ssl_early_data_reason_t reason = should_offer_early_data(hs);
519   if (reason != ssl_early_data_accepted) {
520     ssl->s3->early_data_reason = reason;
521   } else {
522     hs->early_data_offered = true;
523   }
524 
525   if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) ||
526       !ssl_setup_extension_permutation(hs) ||
527       !ssl_encrypt_client_hello(hs, MakeConstSpan(ech_enc, ech_enc_len)) ||
528       !ssl_add_client_hello(hs)) {
529     return ssl_hs_error;
530   }
531 
532   hs->state = state_enter_early_data;
533   return ssl_hs_flush;
534 }
535 
do_enter_early_data(SSL_HANDSHAKE * hs)536 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) {
537   SSL *const ssl = hs->ssl;
538 
539   if (SSL_is_dtls(ssl)) {
540     hs->state = state_read_hello_verify_request;
541     return ssl_hs_ok;
542   }
543 
544   if (!hs->early_data_offered) {
545     hs->state = state_read_server_hello;
546     return ssl_hs_ok;
547   }
548 
549   ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version);
550   if (!ssl->method->add_change_cipher_spec(ssl)) {
551     return ssl_hs_error;
552   }
553 
554   if (!tls13_init_early_key_schedule(hs, ssl->session.get()) ||
555       !tls13_derive_early_secret(hs)) {
556     return ssl_hs_error;
557   }
558 
559   // Stash the early data session, so connection properties may be queried out
560   // of it.
561   hs->early_session = UpRef(ssl->session);
562   hs->state = state_early_reverify_server_certificate;
563   return ssl_hs_ok;
564 }
565 
do_early_reverify_server_certificate(SSL_HANDSHAKE * hs)566 static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) {
567   if (hs->ssl->ctx->reverify_on_resume) {
568     // Don't send an alert on error. The alert be in early data, which the
569     // server may not accept anyway. It would also be a mismatch between QUIC
570     // and TCP because the QUIC early keys are deferred below.
571     //
572     // TODO(davidben): The client behavior should be to verify the certificate
573     // before deciding whether to offer the session and, if invalid, decline to
574     // send the session.
575     switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) {
576       case ssl_verify_ok:
577         break;
578       case ssl_verify_invalid:
579         return ssl_hs_error;
580       case ssl_verify_retry:
581         hs->state = state_early_reverify_server_certificate;
582         return ssl_hs_certificate_verify;
583     }
584   }
585 
586   // Defer releasing the 0-RTT key to after certificate reverification, so the
587   // QUIC implementation does not accidentally write data too early.
588   if (!tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal,
589                              hs->early_session.get(),
590                              hs->early_traffic_secret())) {
591     return ssl_hs_error;
592   }
593 
594   hs->in_early_data = true;
595   hs->can_early_write = true;
596   hs->state = state_read_server_hello;
597   return ssl_hs_early_return;
598 }
599 
do_read_hello_verify_request(SSL_HANDSHAKE * hs)600 static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) {
601   SSL *const ssl = hs->ssl;
602 
603   assert(SSL_is_dtls(ssl));
604 
605   // When implementing DTLS 1.3, we need to handle the interactions between
606   // HelloVerifyRequest, DTLS 1.3's HelloVerifyRequest removal, and ECH.
607   assert(hs->max_version < TLS1_3_VERSION);
608 
609   SSLMessage msg;
610   if (!ssl->method->get_message(ssl, &msg)) {
611     return ssl_hs_read_message;
612   }
613 
614   if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
615     hs->state = state_read_server_hello;
616     return ssl_hs_ok;
617   }
618 
619   CBS hello_verify_request = msg.body, cookie;
620   uint16_t server_version;
621   if (!CBS_get_u16(&hello_verify_request, &server_version) ||
622       !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
623       CBS_len(&cookie) > sizeof(ssl->d1->cookie) ||
624       CBS_len(&hello_verify_request) != 0) {
625     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
626     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
627     return ssl_hs_error;
628   }
629 
630   OPENSSL_memcpy(ssl->d1->cookie, CBS_data(&cookie), CBS_len(&cookie));
631   ssl->d1->cookie_len = CBS_len(&cookie);
632 
633   ssl->method->next_message(ssl);
634 
635   // DTLS resets the handshake buffer after HelloVerifyRequest.
636   if (!hs->transcript.Init()) {
637     return ssl_hs_error;
638   }
639 
640   if (!ssl_add_client_hello(hs)) {
641     return ssl_hs_error;
642   }
643 
644   hs->state = state_read_server_hello;
645   return ssl_hs_flush;
646 }
647 
ssl_parse_server_hello(ParsedServerHello * out,uint8_t * out_alert,const SSLMessage & msg)648 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
649                             const SSLMessage &msg) {
650   if (msg.type != SSL3_MT_SERVER_HELLO) {
651     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
652     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
653     return false;
654   }
655   out->raw = msg.raw;
656   CBS body = msg.body;
657   if (!CBS_get_u16(&body, &out->legacy_version) ||
658       !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) ||
659       !CBS_get_u8_length_prefixed(&body, &out->session_id) ||
660       CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE ||
661       !CBS_get_u16(&body, &out->cipher_suite) ||
662       !CBS_get_u8(&body, &out->compression_method)) {
663     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
664     *out_alert = SSL_AD_DECODE_ERROR;
665     return false;
666   }
667   // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3,
668   // ServerHellos always have extensions, so this can be applied generically.
669   CBS_init(&out->extensions, nullptr, 0);
670   if ((CBS_len(&body) != 0 &&
671        !CBS_get_u16_length_prefixed(&body, &out->extensions)) ||
672       CBS_len(&body) != 0) {
673     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
674     *out_alert = SSL_AD_DECODE_ERROR;
675     return false;
676   }
677   return true;
678 }
679 
do_read_server_hello(SSL_HANDSHAKE * hs)680 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
681   SSL *const ssl = hs->ssl;
682   SSLMessage msg;
683   if (!ssl->method->get_message(ssl, &msg)) {
684     return ssl_hs_read_server_hello;
685   }
686 
687   ParsedServerHello server_hello;
688   uint16_t server_version;
689   uint8_t alert = SSL_AD_DECODE_ERROR;
690   if (!ssl_parse_server_hello(&server_hello, &alert, msg) ||
691       !parse_server_version(hs, &server_version, &alert, server_hello)) {
692     ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
693     return ssl_hs_error;
694   }
695 
696   if (!ssl_supports_version(hs, server_version)) {
697     OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
698     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
699     return ssl_hs_error;
700   }
701 
702   assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
703   if (!ssl->s3->have_version) {
704     ssl->version = server_version;
705     // At this point, the connection's version is known and ssl->version is
706     // fixed. Begin enforcing the record-layer version.
707     ssl->s3->have_version = true;
708     ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
709   } else if (server_version != ssl->version) {
710     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
711     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
712     return ssl_hs_error;
713   }
714 
715   if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
716     hs->state = state_tls13;
717     return ssl_hs_ok;
718   }
719 
720   // Clear some TLS 1.3 state that no longer needs to be retained.
721   hs->key_shares[0].reset();
722   hs->key_shares[1].reset();
723   ssl_done_writing_client_hello(hs);
724 
725   // A TLS 1.2 server would not know to skip the early data we offered. Report
726   // an error code sooner. The caller may use this error code to implement the
727   // fallback described in RFC 8446 appendix D.3.
728   if (hs->early_data_offered) {
729     // Disconnect early writes. This ensures subsequent |SSL_write| calls query
730     // the handshake which, in turn, will replay the error code rather than fail
731     // at the |write_shutdown| check. See https://crbug.com/1078515.
732     // TODO(davidben): Should all handshake errors do this? What about record
733     // decryption failures?
734     hs->can_early_write = false;
735     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
736     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
737     return ssl_hs_error;
738   }
739 
740   // TLS 1.2 handshakes cannot accept ECH.
741   if (hs->selected_ech_config) {
742     ssl->s3->ech_status = ssl_ech_rejected;
743   }
744 
745   // Copy over the server random.
746   OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
747                  SSL3_RANDOM_SIZE);
748 
749   // Enforce the TLS 1.3 anti-downgrade feature.
750   if (!ssl->s3->initial_handshake_complete &&
751       ssl_supports_version(hs, TLS1_3_VERSION)) {
752     static_assert(
753         sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
754         "downgrade signals have different size");
755     static_assert(
756         sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
757         "downgrade signals have different size");
758     auto suffix =
759         MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random))
760             .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom));
761     if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom ||
762         suffix == kJDK11DowngradeRandom) {
763       OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE);
764       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
765       return ssl_hs_error;
766     }
767   }
768 
769   // The cipher must be allowed in the selected version and enabled.
770   const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
771   uint32_t mask_a, mask_k;
772   ssl_get_client_disabled(hs, &mask_a, &mask_k);
773   if (cipher == nullptr ||
774       (cipher->algorithm_mkey & mask_k) ||
775       (cipher->algorithm_auth & mask_a) ||
776       SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) ||
777       SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) ||
778       !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) {
779     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
780     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
781     return ssl_hs_error;
782   }
783 
784   hs->new_cipher = cipher;
785 
786   if (hs->session_id_len != 0 &&
787       CBS_mem_equal(&server_hello.session_id, hs->session_id,
788                     hs->session_id_len)) {
789     // Echoing the ClientHello session ID in TLS 1.2, whether from the session
790     // or a synthetic one, indicates resumption. If there was no session (or if
791     // the session was only offered in ECH ClientHelloInner), this was the
792     // TLS 1.3 compatibility mode session ID. As we know this is not a session
793     // the server knows about, any server resuming it is in error. Reject the
794     // first connection deterministicly, rather than installing an invalid
795     // session into the session cache. https://crbug.com/796910
796     if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) {
797       OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID);
798       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
799       return ssl_hs_error;
800     }
801     if (ssl->session->ssl_version != ssl->version) {
802       OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
803       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
804       return ssl_hs_error;
805     }
806     if (ssl->session->cipher != hs->new_cipher) {
807       OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
808       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
809       return ssl_hs_error;
810     }
811     if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
812       // This is actually a client application bug.
813       OPENSSL_PUT_ERROR(SSL,
814                         SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
815       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
816       return ssl_hs_error;
817     }
818     // We never offer sessions on renegotiation.
819     assert(!ssl->s3->initial_handshake_complete);
820     ssl->s3->session_reused = true;
821   } else {
822     // The session wasn't resumed. Create a fresh SSL_SESSION to fill out.
823     ssl_set_session(ssl, NULL);
824     if (!ssl_get_new_session(hs)) {
825       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
826       return ssl_hs_error;
827     }
828     // Note: session_id could be empty.
829     hs->new_session->session_id_length = CBS_len(&server_hello.session_id);
830     OPENSSL_memcpy(hs->new_session->session_id,
831                    CBS_data(&server_hello.session_id),
832                    CBS_len(&server_hello.session_id));
833     hs->new_session->cipher = hs->new_cipher;
834   }
835 
836   // Now that the cipher is known, initialize the handshake hash and hash the
837   // ServerHello.
838   if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
839       !ssl_hash_message(hs, msg)) {
840     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
841     return ssl_hs_error;
842   }
843 
844   // If doing a full handshake, the server may request a client certificate
845   // which requires hashing the handshake transcript. Otherwise, the handshake
846   // buffer may be released.
847   if (ssl->session != NULL ||
848       !ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
849     hs->transcript.FreeBuffer();
850   }
851 
852   // Only the NULL compression algorithm is supported.
853   if (server_hello.compression_method != 0) {
854     OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
855     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
856     return ssl_hs_error;
857   }
858 
859   if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) {
860     OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
861     return ssl_hs_error;
862   }
863 
864   if (ssl->session != NULL &&
865       hs->extended_master_secret != ssl->session->extended_master_secret) {
866     if (ssl->session->extended_master_secret) {
867       OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
868     } else {
869       OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
870     }
871     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
872     return ssl_hs_error;
873   }
874 
875   ssl->method->next_message(ssl);
876 
877   if (ssl->session != NULL) {
878     if (ssl->ctx->reverify_on_resume &&
879         ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
880       hs->state = state_reverify_server_certificate;
881     } else {
882       hs->state = state_read_session_ticket;
883     }
884     return ssl_hs_ok;
885   }
886 
887   hs->state = state_read_server_certificate;
888   return ssl_hs_ok;
889 }
890 
do_tls13(SSL_HANDSHAKE * hs)891 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
892   enum ssl_hs_wait_t wait = tls13_client_handshake(hs);
893   if (wait == ssl_hs_ok) {
894     hs->state = state_finish_client_handshake;
895     return ssl_hs_ok;
896   }
897 
898   return wait;
899 }
900 
do_read_server_certificate(SSL_HANDSHAKE * hs)901 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
902   SSL *const ssl = hs->ssl;
903 
904   if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
905     hs->state = state_read_certificate_status;
906     return ssl_hs_ok;
907   }
908 
909   SSLMessage msg;
910   if (!ssl->method->get_message(ssl, &msg)) {
911     return ssl_hs_read_message;
912   }
913 
914   if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) ||
915       !ssl_hash_message(hs, msg)) {
916     return ssl_hs_error;
917   }
918 
919   CBS body = msg.body;
920   uint8_t alert = SSL_AD_DECODE_ERROR;
921   if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
922                             NULL, &body, ssl->ctx->pool)) {
923     ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
924     return ssl_hs_error;
925   }
926 
927   if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 ||
928       CBS_len(&body) != 0 ||
929       !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
930     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
931     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
932     return ssl_hs_error;
933   }
934 
935   if (!ssl_check_leaf_certificate(
936           hs, hs->peer_pubkey.get(),
937           sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) {
938     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
939     return ssl_hs_error;
940   }
941 
942   ssl->method->next_message(ssl);
943 
944   hs->state = state_read_certificate_status;
945   return ssl_hs_ok;
946 }
947 
do_read_certificate_status(SSL_HANDSHAKE * hs)948 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) {
949   SSL *const ssl = hs->ssl;
950 
951   if (!hs->certificate_status_expected) {
952     hs->state = state_verify_server_certificate;
953     return ssl_hs_ok;
954   }
955 
956   SSLMessage msg;
957   if (!ssl->method->get_message(ssl, &msg)) {
958     return ssl_hs_read_message;
959   }
960 
961   if (msg.type != SSL3_MT_CERTIFICATE_STATUS) {
962     // A server may send status_request in ServerHello and then change its mind
963     // about sending CertificateStatus.
964     hs->state = state_verify_server_certificate;
965     return ssl_hs_ok;
966   }
967 
968   if (!ssl_hash_message(hs, msg)) {
969     return ssl_hs_error;
970   }
971 
972   CBS certificate_status = msg.body, ocsp_response;
973   uint8_t status_type;
974   if (!CBS_get_u8(&certificate_status, &status_type) ||
975       status_type != TLSEXT_STATUSTYPE_ocsp ||
976       !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
977       CBS_len(&ocsp_response) == 0 ||
978       CBS_len(&certificate_status) != 0) {
979     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
980     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
981     return ssl_hs_error;
982   }
983 
984   hs->new_session->ocsp_response.reset(
985       CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool));
986   if (hs->new_session->ocsp_response == nullptr) {
987     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
988     return ssl_hs_error;
989   }
990 
991   ssl->method->next_message(ssl);
992 
993   hs->state = state_verify_server_certificate;
994   return ssl_hs_ok;
995 }
996 
do_verify_server_certificate(SSL_HANDSHAKE * hs)997 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) {
998   if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
999     hs->state = state_read_server_key_exchange;
1000     return ssl_hs_ok;
1001   }
1002 
1003   switch (ssl_verify_peer_cert(hs)) {
1004     case ssl_verify_ok:
1005       break;
1006     case ssl_verify_invalid:
1007       return ssl_hs_error;
1008     case ssl_verify_retry:
1009       hs->state = state_verify_server_certificate;
1010       return ssl_hs_certificate_verify;
1011   }
1012 
1013   hs->state = state_read_server_key_exchange;
1014   return ssl_hs_ok;
1015 }
1016 
do_reverify_server_certificate(SSL_HANDSHAKE * hs)1017 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) {
1018   assert(hs->ssl->ctx->reverify_on_resume);
1019 
1020   switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
1021     case ssl_verify_ok:
1022       break;
1023     case ssl_verify_invalid:
1024       return ssl_hs_error;
1025     case ssl_verify_retry:
1026       hs->state = state_reverify_server_certificate;
1027       return ssl_hs_certificate_verify;
1028   }
1029 
1030   hs->state = state_read_session_ticket;
1031   return ssl_hs_ok;
1032 }
1033 
do_read_server_key_exchange(SSL_HANDSHAKE * hs)1034 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) {
1035   SSL *const ssl = hs->ssl;
1036   SSLMessage msg;
1037   if (!ssl->method->get_message(ssl, &msg)) {
1038     return ssl_hs_read_message;
1039   }
1040 
1041   if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) {
1042     // Some ciphers (pure PSK) have an optional ServerKeyExchange message.
1043     if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
1044       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1045       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1046       return ssl_hs_error;
1047     }
1048 
1049     hs->state = state_read_certificate_request;
1050     return ssl_hs_ok;
1051   }
1052 
1053   if (!ssl_hash_message(hs, msg)) {
1054     return ssl_hs_error;
1055   }
1056 
1057   uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1058   uint32_t alg_a = hs->new_cipher->algorithm_auth;
1059   CBS server_key_exchange = msg.body;
1060   if (alg_a & SSL_aPSK) {
1061     CBS psk_identity_hint;
1062 
1063     // Each of the PSK key exchanges begins with a psk_identity_hint.
1064     if (!CBS_get_u16_length_prefixed(&server_key_exchange,
1065                                      &psk_identity_hint)) {
1066       OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1067       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1068       return ssl_hs_error;
1069     }
1070 
1071     // Store the PSK identity hint for the ClientKeyExchange. Assume that the
1072     // maximum length of a PSK identity hint can be as long as the maximum
1073     // length of a PSK identity. Also do not allow NULL characters; identities
1074     // are saved as C strings.
1075     //
1076     // TODO(davidben): Should invalid hints be ignored? It's a hint rather than
1077     // a specific identity.
1078     if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
1079         CBS_contains_zero_byte(&psk_identity_hint)) {
1080       OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1081       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1082       return ssl_hs_error;
1083     }
1084 
1085     // Save non-empty identity hints as a C string. Empty identity hints we
1086     // treat as missing. Plain PSK makes it possible to send either no hint
1087     // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
1088     // empty hint. Having different capabilities is odd, so we interpret empty
1089     // and missing as identical.
1090     char *raw = nullptr;
1091     if (CBS_len(&psk_identity_hint) != 0 &&
1092         !CBS_strdup(&psk_identity_hint, &raw)) {
1093       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1094       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1095       return ssl_hs_error;
1096     }
1097     hs->peer_psk_identity_hint.reset(raw);
1098   }
1099 
1100   if (alg_k & SSL_kECDHE) {
1101     // Parse the server parameters.
1102     uint8_t group_type;
1103     uint16_t group_id;
1104     CBS point;
1105     if (!CBS_get_u8(&server_key_exchange, &group_type) ||
1106         group_type != NAMED_CURVE_TYPE ||
1107         !CBS_get_u16(&server_key_exchange, &group_id) ||
1108         !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
1109       OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1110       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1111       return ssl_hs_error;
1112     }
1113     hs->new_session->group_id = group_id;
1114 
1115     // Ensure the group is consistent with preferences.
1116     if (!tls1_check_group_id(hs, group_id)) {
1117       OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
1118       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1119       return ssl_hs_error;
1120     }
1121 
1122     // Initialize ECDH and save the peer public key for later.
1123     hs->key_shares[0] = SSLKeyShare::Create(group_id);
1124     if (!hs->key_shares[0] ||
1125         !hs->peer_key.CopyFrom(point)) {
1126       return ssl_hs_error;
1127     }
1128   } else if (!(alg_k & SSL_kPSK)) {
1129     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1130     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1131     return ssl_hs_error;
1132   }
1133 
1134   // At this point, |server_key_exchange| contains the signature, if any, while
1135   // |msg.body| contains the entire message. From that, derive a CBS containing
1136   // just the parameter.
1137   CBS parameter;
1138   CBS_init(&parameter, CBS_data(&msg.body),
1139            CBS_len(&msg.body) - CBS_len(&server_key_exchange));
1140 
1141   // ServerKeyExchange should be signed by the server's public key.
1142   if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1143     uint16_t signature_algorithm = 0;
1144     if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1145       if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
1146         OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1147         ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1148         return ssl_hs_error;
1149       }
1150       uint8_t alert = SSL_AD_DECODE_ERROR;
1151       if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm)) {
1152         ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1153         return ssl_hs_error;
1154       }
1155       hs->new_session->peer_signature_algorithm = signature_algorithm;
1156     } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1157                                                     hs->peer_pubkey.get())) {
1158       OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1159       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1160       return ssl_hs_error;
1161     }
1162 
1163     // The last field in |server_key_exchange| is the signature.
1164     CBS signature;
1165     if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
1166         CBS_len(&server_key_exchange) != 0) {
1167       OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1168       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1169       return ssl_hs_error;
1170     }
1171 
1172     ScopedCBB transcript;
1173     Array<uint8_t> transcript_data;
1174     if (!CBB_init(transcript.get(),
1175                   2 * SSL3_RANDOM_SIZE + CBS_len(&parameter)) ||
1176         !CBB_add_bytes(transcript.get(), ssl->s3->client_random,
1177                        SSL3_RANDOM_SIZE) ||
1178         !CBB_add_bytes(transcript.get(), ssl->s3->server_random,
1179                        SSL3_RANDOM_SIZE) ||
1180         !CBB_add_bytes(transcript.get(), CBS_data(&parameter),
1181                        CBS_len(&parameter)) ||
1182         !CBBFinishArray(transcript.get(), &transcript_data)) {
1183       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1184       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1185       return ssl_hs_error;
1186     }
1187 
1188     if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1189                                hs->peer_pubkey.get(), transcript_data)) {
1190       // bad signature
1191       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1192       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1193       return ssl_hs_error;
1194     }
1195   } else {
1196     // PSK ciphers are the only supported certificate-less ciphers.
1197     assert(alg_a == SSL_aPSK);
1198 
1199     if (CBS_len(&server_key_exchange) > 0) {
1200       OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
1201       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1202       return ssl_hs_error;
1203     }
1204   }
1205 
1206   ssl->method->next_message(ssl);
1207   hs->state = state_read_certificate_request;
1208   return ssl_hs_ok;
1209 }
1210 
do_read_certificate_request(SSL_HANDSHAKE * hs)1211 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
1212   SSL *const ssl = hs->ssl;
1213 
1214   if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1215     hs->state = state_read_server_hello_done;
1216     return ssl_hs_ok;
1217   }
1218 
1219   SSLMessage msg;
1220   if (!ssl->method->get_message(ssl, &msg)) {
1221     return ssl_hs_read_message;
1222   }
1223 
1224   if (msg.type == SSL3_MT_SERVER_HELLO_DONE) {
1225     // If we get here we don't need the handshake buffer as we won't be doing
1226     // client auth.
1227     hs->transcript.FreeBuffer();
1228     hs->state = state_read_server_hello_done;
1229     return ssl_hs_ok;
1230   }
1231 
1232   if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) ||
1233       !ssl_hash_message(hs, msg)) {
1234     return ssl_hs_error;
1235   }
1236 
1237   // Get the certificate types.
1238   CBS body = msg.body, certificate_types;
1239   if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) {
1240     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1241     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1242     return ssl_hs_error;
1243   }
1244 
1245   if (!hs->certificate_types.CopyFrom(certificate_types)) {
1246     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1247     return ssl_hs_error;
1248   }
1249 
1250   if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1251     CBS supported_signature_algorithms;
1252     if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) ||
1253         !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
1254       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1255       OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1256       return ssl_hs_error;
1257     }
1258   }
1259 
1260   uint8_t alert = SSL_AD_DECODE_ERROR;
1261   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names =
1262       ssl_parse_client_CA_list(ssl, &alert, &body);
1263   if (!ca_names) {
1264     ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1265     return ssl_hs_error;
1266   }
1267 
1268   if (CBS_len(&body) != 0) {
1269     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1270     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1271     return ssl_hs_error;
1272   }
1273 
1274   hs->cert_request = true;
1275   hs->ca_names = std::move(ca_names);
1276   ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
1277 
1278   ssl->method->next_message(ssl);
1279   hs->state = state_read_server_hello_done;
1280   return ssl_hs_ok;
1281 }
1282 
do_read_server_hello_done(SSL_HANDSHAKE * hs)1283 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) {
1284   SSL *const ssl = hs->ssl;
1285   SSLMessage msg;
1286   if (!ssl->method->get_message(ssl, &msg)) {
1287     return ssl_hs_read_message;
1288   }
1289 
1290   if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) ||
1291       !ssl_hash_message(hs, msg)) {
1292     return ssl_hs_error;
1293   }
1294 
1295   // ServerHelloDone is empty.
1296   if (CBS_len(&msg.body) != 0) {
1297     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1298     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1299     return ssl_hs_error;
1300   }
1301 
1302   // ServerHelloDone should be the end of the flight.
1303   if (ssl->method->has_unprocessed_handshake_data(ssl)) {
1304     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1305     OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
1306     return ssl_hs_error;
1307   }
1308 
1309   ssl->method->next_message(ssl);
1310   hs->state = state_send_client_certificate;
1311   return ssl_hs_ok;
1312 }
1313 
do_send_client_certificate(SSL_HANDSHAKE * hs)1314 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
1315   SSL *const ssl = hs->ssl;
1316 
1317   // The peer didn't request a certificate.
1318   if (!hs->cert_request) {
1319     hs->state = state_send_client_key_exchange;
1320     return ssl_hs_ok;
1321   }
1322 
1323   if (ssl->s3->ech_status == ssl_ech_rejected) {
1324     // Do not send client certificates on ECH reject. We have not authenticated
1325     // the server for the name that can learn the certificate.
1326     SSL_certs_clear(ssl);
1327   } else if (hs->config->cert->cert_cb != nullptr) {
1328     // Call cert_cb to update the certificate.
1329     int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
1330     if (rv == 0) {
1331       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1332       OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
1333       return ssl_hs_error;
1334     }
1335     if (rv < 0) {
1336       hs->state = state_send_client_certificate;
1337       return ssl_hs_x509_lookup;
1338     }
1339   }
1340 
1341   if (!ssl_has_certificate(hs)) {
1342     // Without a client certificate, the handshake buffer may be released.
1343     hs->transcript.FreeBuffer();
1344   }
1345 
1346   if (!ssl_on_certificate_selected(hs) ||
1347       !ssl_output_cert_chain(hs)) {
1348     return ssl_hs_error;
1349   }
1350 
1351 
1352   hs->state = state_send_client_key_exchange;
1353   return ssl_hs_ok;
1354 }
1355 
1356 static_assert(sizeof(size_t) >= sizeof(unsigned),
1357               "size_t is smaller than unsigned");
1358 
do_send_client_key_exchange(SSL_HANDSHAKE * hs)1359 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) {
1360   SSL *const ssl = hs->ssl;
1361   ScopedCBB cbb;
1362   CBB body;
1363   if (!ssl->method->init_message(ssl, cbb.get(), &body,
1364                                  SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1365     return ssl_hs_error;
1366   }
1367 
1368   Array<uint8_t> pms;
1369   uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1370   uint32_t alg_a = hs->new_cipher->algorithm_auth;
1371   if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1372     const CRYPTO_BUFFER *leaf =
1373         sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1374     CBS leaf_cbs;
1375     CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1376 
1377     // Check the key usage matches the cipher suite. We do this unconditionally
1378     // for non-RSA certificates. In particular, it's needed to distinguish ECDH
1379     // certificates, which we do not support, from ECDSA certificates.
1380     // Historically, we have not checked RSA key usages, so it is controlled by
1381     // a flag for now. See https://crbug.com/795089.
1382     ssl_key_usage_t intended_use = (alg_k & SSL_kRSA)
1383                                        ? key_usage_encipherment
1384                                        : key_usage_digital_signature;
1385     if (hs->config->enforce_rsa_key_usage ||
1386         EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) {
1387       if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) {
1388         return ssl_hs_error;
1389       }
1390     }
1391   }
1392 
1393   // If using a PSK key exchange, prepare the pre-shared key.
1394   unsigned psk_len = 0;
1395   uint8_t psk[PSK_MAX_PSK_LEN];
1396   if (alg_a & SSL_aPSK) {
1397     if (hs->config->psk_client_callback == NULL) {
1398       OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
1399       return ssl_hs_error;
1400     }
1401 
1402     char identity[PSK_MAX_IDENTITY_LEN + 1];
1403     OPENSSL_memset(identity, 0, sizeof(identity));
1404     psk_len = hs->config->psk_client_callback(
1405         ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk,
1406         sizeof(psk));
1407     if (psk_len == 0) {
1408       OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1409       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1410       return ssl_hs_error;
1411     }
1412     assert(psk_len <= PSK_MAX_PSK_LEN);
1413 
1414     hs->new_session->psk_identity.reset(OPENSSL_strdup(identity));
1415     if (hs->new_session->psk_identity == nullptr) {
1416       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1417       return ssl_hs_error;
1418     }
1419 
1420     // Write out psk_identity.
1421     CBB child;
1422     if (!CBB_add_u16_length_prefixed(&body, &child) ||
1423         !CBB_add_bytes(&child, (const uint8_t *)identity,
1424                        OPENSSL_strnlen(identity, sizeof(identity))) ||
1425         !CBB_flush(&body)) {
1426       return ssl_hs_error;
1427     }
1428   }
1429 
1430   // Depending on the key exchange method, compute |pms|.
1431   if (alg_k & SSL_kRSA) {
1432     if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) {
1433       return ssl_hs_error;
1434     }
1435 
1436     RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get());
1437     if (rsa == NULL) {
1438       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1439       return ssl_hs_error;
1440     }
1441 
1442     pms[0] = hs->client_version >> 8;
1443     pms[1] = hs->client_version & 0xff;
1444     if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
1445       return ssl_hs_error;
1446     }
1447 
1448     CBB enc_pms;
1449     uint8_t *ptr;
1450     size_t enc_pms_len;
1451     if (!CBB_add_u16_length_prefixed(&body, &enc_pms) ||
1452         !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) ||
1453         !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(),
1454                      pms.size(), RSA_PKCS1_PADDING) ||
1455         !CBB_did_write(&enc_pms, enc_pms_len) ||
1456         !CBB_flush(&body)) {
1457       return ssl_hs_error;
1458     }
1459   } else if (alg_k & SSL_kECDHE) {
1460     // Generate a keypair and serialize the public half.
1461     CBB child;
1462     if (!CBB_add_u8_length_prefixed(&body, &child)) {
1463       return ssl_hs_error;
1464     }
1465 
1466     // Compute the premaster.
1467     uint8_t alert = SSL_AD_DECODE_ERROR;
1468     if (!hs->key_shares[0]->Accept(&child, &pms, &alert, hs->peer_key)) {
1469       ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1470       return ssl_hs_error;
1471     }
1472     if (!CBB_flush(&body)) {
1473       return ssl_hs_error;
1474     }
1475 
1476     // The key exchange state may now be discarded.
1477     hs->key_shares[0].reset();
1478     hs->key_shares[1].reset();
1479     hs->peer_key.Reset();
1480   } else if (alg_k & SSL_kPSK) {
1481     // For plain PSK, other_secret is a block of 0s with the same length as
1482     // the pre-shared key.
1483     if (!pms.Init(psk_len)) {
1484       return ssl_hs_error;
1485     }
1486     OPENSSL_memset(pms.data(), 0, pms.size());
1487   } else {
1488     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1489     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1490     return ssl_hs_error;
1491   }
1492 
1493   // For a PSK cipher suite, other_secret is combined with the pre-shared
1494   // key.
1495   if (alg_a & SSL_aPSK) {
1496     ScopedCBB pms_cbb;
1497     CBB child;
1498     if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) ||
1499         !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1500         !CBB_add_bytes(&child, pms.data(), pms.size()) ||
1501         !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1502         !CBB_add_bytes(&child, psk, psk_len) ||
1503         !CBBFinishArray(pms_cbb.get(), &pms)) {
1504       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1505       return ssl_hs_error;
1506     }
1507   }
1508 
1509   // The message must be added to the finished hash before calculating the
1510   // master secret.
1511   if (!ssl_add_message_cbb(ssl, cbb.get())) {
1512     return ssl_hs_error;
1513   }
1514 
1515   hs->new_session->secret_length =
1516       tls1_generate_master_secret(hs, hs->new_session->secret, pms);
1517   if (hs->new_session->secret_length == 0) {
1518     return ssl_hs_error;
1519   }
1520   hs->new_session->extended_master_secret = hs->extended_master_secret;
1521 
1522   hs->state = state_send_client_certificate_verify;
1523   return ssl_hs_ok;
1524 }
1525 
do_send_client_certificate_verify(SSL_HANDSHAKE * hs)1526 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
1527   SSL *const ssl = hs->ssl;
1528 
1529   if (!hs->cert_request || !ssl_has_certificate(hs)) {
1530     hs->state = state_send_client_finished;
1531     return ssl_hs_ok;
1532   }
1533 
1534   assert(ssl_has_private_key(hs));
1535   ScopedCBB cbb;
1536   CBB body, child;
1537   if (!ssl->method->init_message(ssl, cbb.get(), &body,
1538                                  SSL3_MT_CERTIFICATE_VERIFY)) {
1539     return ssl_hs_error;
1540   }
1541 
1542   uint16_t signature_algorithm;
1543   if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
1544     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1545     return ssl_hs_error;
1546   }
1547   if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1548     // Write out the digest type in TLS 1.2.
1549     if (!CBB_add_u16(&body, signature_algorithm)) {
1550       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1551       return ssl_hs_error;
1552     }
1553   }
1554 
1555   // Set aside space for the signature.
1556   const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get());
1557   uint8_t *ptr;
1558   if (!CBB_add_u16_length_prefixed(&body, &child) ||
1559       !CBB_reserve(&child, &ptr, max_sig_len)) {
1560     return ssl_hs_error;
1561   }
1562 
1563   size_t sig_len = max_sig_len;
1564   switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1565                                signature_algorithm,
1566                                hs->transcript.buffer())) {
1567     case ssl_private_key_success:
1568       break;
1569     case ssl_private_key_failure:
1570       return ssl_hs_error;
1571     case ssl_private_key_retry:
1572       hs->state = state_send_client_certificate_verify;
1573       return ssl_hs_private_key_operation;
1574   }
1575 
1576   if (!CBB_did_write(&child, sig_len) ||
1577       !ssl_add_message_cbb(ssl, cbb.get())) {
1578     return ssl_hs_error;
1579   }
1580 
1581   // The handshake buffer is no longer necessary.
1582   hs->transcript.FreeBuffer();
1583 
1584   hs->state = state_send_client_finished;
1585   return ssl_hs_ok;
1586 }
1587 
do_send_client_finished(SSL_HANDSHAKE * hs)1588 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) {
1589   SSL *const ssl = hs->ssl;
1590   hs->can_release_private_key = true;
1591   if (!ssl->method->add_change_cipher_spec(ssl) ||
1592       !tls1_change_cipher_state(hs, evp_aead_seal)) {
1593     return ssl_hs_error;
1594   }
1595 
1596   if (hs->next_proto_neg_seen) {
1597     static const uint8_t kZero[32] = {0};
1598     size_t padding_len =
1599         32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32);
1600 
1601     ScopedCBB cbb;
1602     CBB body, child;
1603     if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) ||
1604         !CBB_add_u8_length_prefixed(&body, &child) ||
1605         !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(),
1606                        ssl->s3->next_proto_negotiated.size()) ||
1607         !CBB_add_u8_length_prefixed(&body, &child) ||
1608         !CBB_add_bytes(&child, kZero, padding_len) ||
1609         !ssl_add_message_cbb(ssl, cbb.get())) {
1610       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1611       return ssl_hs_error;
1612     }
1613   }
1614 
1615   if (hs->channel_id_negotiated) {
1616     ScopedCBB cbb;
1617     CBB body;
1618     if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
1619         !tls1_write_channel_id(hs, &body) ||
1620         !ssl_add_message_cbb(ssl, cbb.get())) {
1621       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1622       return ssl_hs_error;
1623     }
1624   }
1625 
1626   if (!ssl_send_finished(hs)) {
1627     return ssl_hs_error;
1628   }
1629 
1630   hs->state = state_finish_flight;
1631   return ssl_hs_flush;
1632 }
1633 
can_false_start(const SSL_HANDSHAKE * hs)1634 static bool can_false_start(const SSL_HANDSHAKE *hs) {
1635   const SSL *const ssl = hs->ssl;
1636 
1637   // False Start bypasses the Finished check's downgrade protection. This can
1638   // enable attacks where we send data under weaker settings than supported
1639   // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD
1640   // cipher, our strongest settings before TLS 1.3.
1641   //
1642   // Now that TLS 1.3 exists, we would like to avoid similar attacks between
1643   // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to
1644   // sacrifice False Start on them. Instead, we rely on the ServerHello.random
1645   // downgrade signal, which we unconditionally enforce.
1646   if (SSL_is_dtls(ssl) ||
1647       SSL_version(ssl) != TLS1_2_VERSION ||
1648       hs->new_cipher->algorithm_mkey != SSL_kECDHE ||
1649       hs->new_cipher->algorithm_mac != SSL_AEAD) {
1650     return false;
1651   }
1652 
1653   // If ECH was rejected, disable False Start. We run the handshake to
1654   // completion, including the Finished downgrade check, to authenticate the
1655   // recovery flow.
1656   if (ssl->s3->ech_status == ssl_ech_rejected) {
1657     return false;
1658   }
1659 
1660   // Additionally require ALPN or NPN by default.
1661   //
1662   // TODO(davidben): Can this constraint be relaxed globally now that cipher
1663   // suite requirements have been tightened?
1664   if (!ssl->ctx->false_start_allowed_without_alpn &&
1665       ssl->s3->alpn_selected.empty() &&
1666       ssl->s3->next_proto_negotiated.empty()) {
1667     return false;
1668   }
1669 
1670   return true;
1671 }
1672 
do_finish_flight(SSL_HANDSHAKE * hs)1673 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) {
1674   SSL *const ssl = hs->ssl;
1675   if (ssl->session != NULL) {
1676     hs->state = state_finish_client_handshake;
1677     return ssl_hs_ok;
1678   }
1679 
1680   // This is a full handshake. If it involves ChannelID, then record the
1681   // handshake hashes at this point in the session so that any resumption of
1682   // this session with ChannelID can sign those hashes.
1683   if (!tls1_record_handshake_hashes_for_channel_id(hs)) {
1684     return ssl_hs_error;
1685   }
1686 
1687   hs->state = state_read_session_ticket;
1688 
1689   if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
1690       can_false_start(hs) &&
1691       // No False Start on renegotiation (would complicate the state machine).
1692       !ssl->s3->initial_handshake_complete) {
1693     hs->in_false_start = true;
1694     hs->can_early_write = true;
1695     return ssl_hs_early_return;
1696   }
1697 
1698   return ssl_hs_ok;
1699 }
1700 
do_read_session_ticket(SSL_HANDSHAKE * hs)1701 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) {
1702   SSL *const ssl = hs->ssl;
1703 
1704   if (!hs->ticket_expected) {
1705     hs->state = state_process_change_cipher_spec;
1706     return ssl_hs_read_change_cipher_spec;
1707   }
1708 
1709   SSLMessage msg;
1710   if (!ssl->method->get_message(ssl, &msg)) {
1711     return ssl_hs_read_message;
1712   }
1713 
1714   if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) ||
1715       !ssl_hash_message(hs, msg)) {
1716     return ssl_hs_error;
1717   }
1718 
1719   CBS new_session_ticket = msg.body, ticket;
1720   uint32_t ticket_lifetime_hint;
1721   if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) ||
1722       !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
1723       CBS_len(&new_session_ticket) != 0) {
1724     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1725     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1726     return ssl_hs_error;
1727   }
1728 
1729   if (CBS_len(&ticket) == 0) {
1730     // RFC 5077 allows a server to change its mind and send no ticket after
1731     // negotiating the extension. The value of |ticket_expected| is checked in
1732     // |ssl_update_cache| so is cleared here to avoid an unnecessary update.
1733     hs->ticket_expected = false;
1734     ssl->method->next_message(ssl);
1735     hs->state = state_process_change_cipher_spec;
1736     return ssl_hs_read_change_cipher_spec;
1737   }
1738 
1739   if (ssl->session != nullptr) {
1740     // The server is sending a new ticket for an existing session. Sessions are
1741     // immutable once established, so duplicate all but the ticket of the
1742     // existing session.
1743     assert(!hs->new_session);
1744     hs->new_session =
1745         SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1746     if (!hs->new_session) {
1747       return ssl_hs_error;
1748     }
1749   }
1750 
1751   // |ticket_lifetime_hint| is measured from when the ticket was issued.
1752   ssl_session_rebase_time(ssl, hs->new_session.get());
1753 
1754   if (!hs->new_session->ticket.CopyFrom(ticket)) {
1755     return ssl_hs_error;
1756   }
1757   hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint;
1758 
1759   // Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
1760   // TODO(davidben): Are external callers relying on this? Try removing this.
1761   SHA256(CBS_data(&ticket), CBS_len(&ticket), hs->new_session->session_id);
1762   hs->new_session->session_id_length = SHA256_DIGEST_LENGTH;
1763 
1764   ssl->method->next_message(ssl);
1765   hs->state = state_process_change_cipher_spec;
1766   return ssl_hs_read_change_cipher_spec;
1767 }
1768 
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1769 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1770   if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1771     return ssl_hs_error;
1772   }
1773 
1774   hs->state = state_read_server_finished;
1775   return ssl_hs_ok;
1776 }
1777 
do_read_server_finished(SSL_HANDSHAKE * hs)1778 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
1779   SSL *const ssl = hs->ssl;
1780   enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1781   if (wait != ssl_hs_ok) {
1782     return wait;
1783   }
1784 
1785   if (ssl->session != NULL) {
1786     hs->state = state_send_client_finished;
1787     return ssl_hs_ok;
1788   }
1789 
1790   hs->state = state_finish_client_handshake;
1791   return ssl_hs_ok;
1792 }
1793 
do_finish_client_handshake(SSL_HANDSHAKE * hs)1794 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) {
1795   SSL *const ssl = hs->ssl;
1796   if (ssl->s3->ech_status == ssl_ech_rejected) {
1797     // Release the retry configs.
1798     hs->ech_authenticated_reject = true;
1799     ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED);
1800     OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED);
1801     return ssl_hs_error;
1802   }
1803 
1804   ssl->method->on_handshake_complete(ssl);
1805 
1806   // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the
1807   // resumed session) and |hs->new_session| (the session with the new ticket).
1808   bool has_new_session = hs->new_session != nullptr;
1809   if (has_new_session) {
1810     // When False Start is enabled, the handshake reports completion early. The
1811     // caller may then have passed the (then unresuable) |hs->new_session| to
1812     // another thread via |SSL_get0_session| for resumption. To avoid potential
1813     // race conditions in such callers, we duplicate the session before
1814     // clearing |not_resumable|.
1815     ssl->s3->established_session =
1816         SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL);
1817     if (!ssl->s3->established_session) {
1818       return ssl_hs_error;
1819     }
1820     // Renegotiations do not participate in session resumption.
1821     if (!ssl->s3->initial_handshake_complete) {
1822       ssl->s3->established_session->not_resumable = false;
1823     }
1824 
1825     hs->new_session.reset();
1826   } else {
1827     assert(ssl->session != nullptr);
1828     ssl->s3->established_session = UpRef(ssl->session);
1829   }
1830 
1831   hs->handshake_finalized = true;
1832   ssl->s3->initial_handshake_complete = true;
1833   if (has_new_session) {
1834     ssl_update_cache(ssl);
1835   }
1836 
1837   hs->state = state_done;
1838   return ssl_hs_ok;
1839 }
1840 
ssl_client_handshake(SSL_HANDSHAKE * hs)1841 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) {
1842   while (hs->state != state_done) {
1843     enum ssl_hs_wait_t ret = ssl_hs_error;
1844     enum ssl_client_hs_state_t state =
1845         static_cast<enum ssl_client_hs_state_t>(hs->state);
1846     switch (state) {
1847       case state_start_connect:
1848         ret = do_start_connect(hs);
1849         break;
1850       case state_enter_early_data:
1851         ret = do_enter_early_data(hs);
1852         break;
1853       case state_early_reverify_server_certificate:
1854         ret = do_early_reverify_server_certificate(hs);
1855         break;
1856       case state_read_hello_verify_request:
1857         ret = do_read_hello_verify_request(hs);
1858         break;
1859       case state_read_server_hello:
1860         ret = do_read_server_hello(hs);
1861         break;
1862       case state_tls13:
1863         ret = do_tls13(hs);
1864         break;
1865       case state_read_server_certificate:
1866         ret = do_read_server_certificate(hs);
1867         break;
1868       case state_read_certificate_status:
1869         ret = do_read_certificate_status(hs);
1870         break;
1871       case state_verify_server_certificate:
1872         ret = do_verify_server_certificate(hs);
1873         break;
1874       case state_reverify_server_certificate:
1875         ret = do_reverify_server_certificate(hs);
1876         break;
1877       case state_read_server_key_exchange:
1878         ret = do_read_server_key_exchange(hs);
1879         break;
1880       case state_read_certificate_request:
1881         ret = do_read_certificate_request(hs);
1882         break;
1883       case state_read_server_hello_done:
1884         ret = do_read_server_hello_done(hs);
1885         break;
1886       case state_send_client_certificate:
1887         ret = do_send_client_certificate(hs);
1888         break;
1889       case state_send_client_key_exchange:
1890         ret = do_send_client_key_exchange(hs);
1891         break;
1892       case state_send_client_certificate_verify:
1893         ret = do_send_client_certificate_verify(hs);
1894         break;
1895       case state_send_client_finished:
1896         ret = do_send_client_finished(hs);
1897         break;
1898       case state_finish_flight:
1899         ret = do_finish_flight(hs);
1900         break;
1901       case state_read_session_ticket:
1902         ret = do_read_session_ticket(hs);
1903         break;
1904       case state_process_change_cipher_spec:
1905         ret = do_process_change_cipher_spec(hs);
1906         break;
1907       case state_read_server_finished:
1908         ret = do_read_server_finished(hs);
1909         break;
1910       case state_finish_client_handshake:
1911         ret = do_finish_client_handshake(hs);
1912         break;
1913       case state_done:
1914         ret = ssl_hs_ok;
1915         break;
1916     }
1917 
1918     if (hs->state != state) {
1919       ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
1920     }
1921 
1922     if (ret != ssl_hs_ok) {
1923       return ret;
1924     }
1925   }
1926 
1927   ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1928   return ssl_hs_ok;
1929 }
1930 
ssl_client_handshake_state(SSL_HANDSHAKE * hs)1931 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) {
1932   enum ssl_client_hs_state_t state =
1933       static_cast<enum ssl_client_hs_state_t>(hs->state);
1934   switch (state) {
1935     case state_start_connect:
1936       return "TLS client start_connect";
1937     case state_enter_early_data:
1938       return "TLS client enter_early_data";
1939     case state_early_reverify_server_certificate:
1940       return "TLS client early_reverify_server_certificate";
1941     case state_read_hello_verify_request:
1942       return "TLS client read_hello_verify_request";
1943     case state_read_server_hello:
1944       return "TLS client read_server_hello";
1945     case state_tls13:
1946       return tls13_client_handshake_state(hs);
1947     case state_read_server_certificate:
1948       return "TLS client read_server_certificate";
1949     case state_read_certificate_status:
1950       return "TLS client read_certificate_status";
1951     case state_verify_server_certificate:
1952       return "TLS client verify_server_certificate";
1953     case state_reverify_server_certificate:
1954       return "TLS client reverify_server_certificate";
1955     case state_read_server_key_exchange:
1956       return "TLS client read_server_key_exchange";
1957     case state_read_certificate_request:
1958       return "TLS client read_certificate_request";
1959     case state_read_server_hello_done:
1960       return "TLS client read_server_hello_done";
1961     case state_send_client_certificate:
1962       return "TLS client send_client_certificate";
1963     case state_send_client_key_exchange:
1964       return "TLS client send_client_key_exchange";
1965     case state_send_client_certificate_verify:
1966       return "TLS client send_client_certificate_verify";
1967     case state_send_client_finished:
1968       return "TLS client send_client_finished";
1969     case state_finish_flight:
1970       return "TLS client finish_flight";
1971     case state_read_session_ticket:
1972       return "TLS client read_session_ticket";
1973     case state_process_change_cipher_spec:
1974       return "TLS client process_change_cipher_spec";
1975     case state_read_server_finished:
1976       return "TLS client read_server_finished";
1977     case state_finish_client_handshake:
1978       return "TLS client finish_client_handshake";
1979     case state_done:
1980       return "TLS client done";
1981   }
1982 
1983   return "TLS client unknown";
1984 }
1985 
1986 BSSL_NAMESPACE_END
1987