• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy =
41       GTEST_FLAG_GET(also_run_disabled_tests) ||
42       GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43       GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44       GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45       GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46       GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47       GTEST_FLAG_GET(repeat) > 0 ||
48       GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49       GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50       GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51       GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52       GTEST_FLAG_GET(throw_on_failure);
53   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54 }
55 
56 #include <limits.h>  // For INT_MAX.
57 #include <stdlib.h>
58 #include <string.h>
59 #include <time.h>
60 
61 #include <cstdint>
62 #include <map>
63 #include <ostream>
64 #include <string>
65 #include <type_traits>
66 #include <unordered_set>
67 #include <vector>
68 
69 #include "gtest/gtest-spi.h"
70 #include "src/gtest-internal-inl.h"
71 
72 namespace testing {
73 namespace internal {
74 
75 #if GTEST_CAN_STREAM_RESULTS_
76 
77 class StreamingListenerTest : public Test {
78  public:
79   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
80    public:
81     // Sends a string to the socket.
Send(const std::string & message)82     void Send(const std::string& message) override { output_ += message; }
83 
84     std::string output_;
85   };
86 
StreamingListenerTest()87   StreamingListenerTest()
88       : fake_sock_writer_(new FakeSocketWriter),
89         streamer_(fake_sock_writer_),
90         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
91                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
92 
93  protected:
output()94   std::string* output() { return &(fake_sock_writer_->output_); }
95 
96   FakeSocketWriter* const fake_sock_writer_;
97   StreamingListener streamer_;
98   UnitTest unit_test_;
99   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
100 };
101 
TEST_F(StreamingListenerTest,OnTestProgramEnd)102 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
103   *output() = "";
104   streamer_.OnTestProgramEnd(unit_test_);
105   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
106 }
107 
TEST_F(StreamingListenerTest,OnTestIterationEnd)108 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
109   *output() = "";
110   streamer_.OnTestIterationEnd(unit_test_, 42);
111   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
112 }
113 
TEST_F(StreamingListenerTest,OnTestSuiteStart)114 TEST_F(StreamingListenerTest, OnTestSuiteStart) {
115   *output() = "";
116   streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
117   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
118 }
119 
TEST_F(StreamingListenerTest,OnTestSuiteEnd)120 TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
121   *output() = "";
122   streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
123   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
124 }
125 
TEST_F(StreamingListenerTest,OnTestStart)126 TEST_F(StreamingListenerTest, OnTestStart) {
127   *output() = "";
128   streamer_.OnTestStart(test_info_obj_);
129   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
130 }
131 
TEST_F(StreamingListenerTest,OnTestEnd)132 TEST_F(StreamingListenerTest, OnTestEnd) {
133   *output() = "";
134   streamer_.OnTestEnd(test_info_obj_);
135   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
136 }
137 
TEST_F(StreamingListenerTest,OnTestPartResult)138 TEST_F(StreamingListenerTest, OnTestPartResult) {
139   *output() = "";
140   streamer_.OnTestPartResult(TestPartResult(
141       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
142 
143   // Meta characters in the failure message should be properly escaped.
144   EXPECT_EQ(
145       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
146       *output());
147 }
148 
149 #endif  // GTEST_CAN_STREAM_RESULTS_
150 
151 // Provides access to otherwise private parts of the TestEventListeners class
152 // that are needed to test it.
153 class TestEventListenersAccessor {
154  public:
GetRepeater(TestEventListeners * listeners)155   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
156     return listeners->repeater();
157   }
158 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)159   static void SetDefaultResultPrinter(TestEventListeners* listeners,
160                                       TestEventListener* listener) {
161     listeners->SetDefaultResultPrinter(listener);
162   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)163   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
164                                      TestEventListener* listener) {
165     listeners->SetDefaultXmlGenerator(listener);
166   }
167 
EventForwardingEnabled(const TestEventListeners & listeners)168   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
169     return listeners.EventForwardingEnabled();
170   }
171 
SuppressEventForwarding(TestEventListeners * listeners)172   static void SuppressEventForwarding(TestEventListeners* listeners) {
173     listeners->SuppressEventForwarding();
174   }
175 };
176 
177 class UnitTestRecordPropertyTestHelper : public Test {
178  protected:
UnitTestRecordPropertyTestHelper()179   UnitTestRecordPropertyTestHelper() {}
180 
181   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)182   void UnitTestRecordProperty(const char* key, const std::string& value) {
183     unit_test_.RecordProperty(key, value);
184   }
185 
186   UnitTest unit_test_;
187 };
188 
189 }  // namespace internal
190 }  // namespace testing
191 
192 using testing::AssertionFailure;
193 using testing::AssertionResult;
194 using testing::AssertionSuccess;
195 using testing::DoubleLE;
196 using testing::EmptyTestEventListener;
197 using testing::Environment;
198 using testing::FloatLE;
199 using testing::IsNotSubstring;
200 using testing::IsSubstring;
201 using testing::kMaxStackTraceDepth;
202 using testing::Message;
203 using testing::ScopedFakeTestPartResultReporter;
204 using testing::StaticAssertTypeEq;
205 using testing::Test;
206 using testing::TestEventListeners;
207 using testing::TestInfo;
208 using testing::TestPartResult;
209 using testing::TestPartResultArray;
210 using testing::TestProperty;
211 using testing::TestResult;
212 using testing::TestSuite;
213 using testing::TimeInMillis;
214 using testing::UnitTest;
215 using testing::internal::AlwaysFalse;
216 using testing::internal::AlwaysTrue;
217 using testing::internal::AppendUserMessage;
218 using testing::internal::ArrayAwareFind;
219 using testing::internal::ArrayEq;
220 using testing::internal::CodePointToUtf8;
221 using testing::internal::CopyArray;
222 using testing::internal::CountIf;
223 using testing::internal::EqFailure;
224 using testing::internal::FloatingPoint;
225 using testing::internal::ForEach;
226 using testing::internal::FormatEpochTimeInMillisAsIso8601;
227 using testing::internal::FormatTimeInMillisAsSeconds;
228 using testing::internal::GetCurrentOsStackTraceExceptTop;
229 using testing::internal::GetElementOr;
230 using testing::internal::GetNextRandomSeed;
231 using testing::internal::GetRandomSeedFromFlag;
232 using testing::internal::GetTestTypeId;
233 using testing::internal::GetTimeInMillis;
234 using testing::internal::GetTypeId;
235 using testing::internal::GetUnitTestImpl;
236 using testing::internal::GTestFlagSaver;
237 using testing::internal::HasDebugStringAndShortDebugString;
238 using testing::internal::Int32FromEnvOrDie;
239 using testing::internal::IsContainer;
240 using testing::internal::IsContainerTest;
241 using testing::internal::IsNotContainer;
242 using testing::internal::kMaxRandomSeed;
243 using testing::internal::kTestTypeIdInGoogleTest;
244 using testing::internal::NativeArray;
245 using testing::internal::OsStackTraceGetter;
246 using testing::internal::OsStackTraceGetterInterface;
247 using testing::internal::ParseFlag;
248 using testing::internal::RelationToSourceCopy;
249 using testing::internal::RelationToSourceReference;
250 using testing::internal::ShouldRunTestOnShard;
251 using testing::internal::ShouldShard;
252 using testing::internal::ShouldUseColor;
253 using testing::internal::Shuffle;
254 using testing::internal::ShuffleRange;
255 using testing::internal::SkipPrefix;
256 using testing::internal::StreamableToString;
257 using testing::internal::String;
258 using testing::internal::TestEventListenersAccessor;
259 using testing::internal::TestResultAccessor;
260 using testing::internal::UnitTestImpl;
261 using testing::internal::WideStringToUtf8;
262 using testing::internal::edit_distance::CalculateOptimalEdits;
263 using testing::internal::edit_distance::CreateUnifiedDiff;
264 using testing::internal::edit_distance::EditType;
265 
266 #if GTEST_HAS_STREAM_REDIRECTION
267 using testing::internal::CaptureStdout;
268 using testing::internal::GetCapturedStdout;
269 #endif
270 
271 #if GTEST_IS_THREADSAFE
272 using testing::internal::ThreadWithParam;
273 #endif
274 
275 class TestingVector : public std::vector<int> {
276 };
277 
operator <<(::std::ostream & os,const TestingVector & vector)278 ::std::ostream& operator<<(::std::ostream& os,
279                            const TestingVector& vector) {
280   os << "{ ";
281   for (size_t i = 0; i < vector.size(); i++) {
282     os << vector[i] << " ";
283   }
284   os << "}";
285   return os;
286 }
287 
288 // This line tests that we can define tests in an unnamed namespace.
289 namespace {
290 
TEST(GetRandomSeedFromFlagTest,HandlesZero)291 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
292   const int seed = GetRandomSeedFromFlag(0);
293   EXPECT_LE(1, seed);
294   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
295 }
296 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)297 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
298   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
299   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
300   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
301   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
302             GetRandomSeedFromFlag(kMaxRandomSeed));
303 }
304 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)305 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
306   const int seed1 = GetRandomSeedFromFlag(-1);
307   EXPECT_LE(1, seed1);
308   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
309 
310   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
311   EXPECT_LE(1, seed2);
312   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
313 }
314 
TEST(GetNextRandomSeedTest,WorksForValidInput)315 TEST(GetNextRandomSeedTest, WorksForValidInput) {
316   EXPECT_EQ(2, GetNextRandomSeed(1));
317   EXPECT_EQ(3, GetNextRandomSeed(2));
318   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
319             GetNextRandomSeed(kMaxRandomSeed - 1));
320   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
321 
322   // We deliberately don't test GetNextRandomSeed() with invalid
323   // inputs, as that requires death tests, which are expensive.  This
324   // is fine as GetNextRandomSeed() is internal and has a
325   // straightforward definition.
326 }
327 
ClearCurrentTestPartResults()328 static void ClearCurrentTestPartResults() {
329   TestResultAccessor::ClearTestPartResults(
330       GetUnitTestImpl()->current_test_result());
331 }
332 
333 // Tests GetTypeId.
334 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)335 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
336   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
337   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
338 }
339 
340 class SubClassOfTest : public Test {};
341 class AnotherSubClassOfTest : public Test {};
342 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)343 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
344   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
345   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
346   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
347   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
348   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
349   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
350 }
351 
352 // Verifies that GetTestTypeId() returns the same value, no matter it
353 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)354 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
355   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
356 }
357 
358 // Tests CanonicalizeForStdLibVersioning.
359 
360 using ::testing::internal::CanonicalizeForStdLibVersioning;
361 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)362 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
363   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
364   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
365   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
366   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
367   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
368   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
369 }
370 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)371 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
372   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
373   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
374 
375   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
376   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
377 
378   EXPECT_EQ("std::bind",
379             CanonicalizeForStdLibVersioning("std::__google::bind"));
380   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
381 }
382 
383 // Tests FormatTimeInMillisAsSeconds().
384 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)385 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
386   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
387 }
388 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)389 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
390   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
391   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
392   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
393   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
394   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
395 }
396 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)397 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
398   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
399   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
400   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
401   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
402   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
403 }
404 
405 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
406 // for particular dates below was verified in Python using
407 // datetime.datetime.fromutctimestamp(<timestamp>/1000).
408 
409 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
410 // have to set up a particular timezone to obtain predictable results.
411 class FormatEpochTimeInMillisAsIso8601Test : public Test {
412  public:
413   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
414   // 32 bits, even when 64-bit integer types are available.  We have to
415   // force the constants to have a 64-bit type here.
416   static const TimeInMillis kMillisPerSec = 1000;
417 
418  private:
SetUp()419   void SetUp() override {
420     saved_tz_ = nullptr;
421 
422     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
423     if (getenv("TZ"))
424       saved_tz_ = strdup(getenv("TZ"));
425     GTEST_DISABLE_MSC_DEPRECATED_POP_()
426 
427     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
428     // cannot use the local time zone because the function's output depends
429     // on the time zone.
430     SetTimeZone("UTC+00");
431   }
432 
TearDown()433   void TearDown() override {
434     SetTimeZone(saved_tz_);
435     free(const_cast<char*>(saved_tz_));
436     saved_tz_ = nullptr;
437   }
438 
SetTimeZone(const char * time_zone)439   static void SetTimeZone(const char* time_zone) {
440     // tzset() distinguishes between the TZ variable being present and empty
441     // and not being present, so we have to consider the case of time_zone
442     // being NULL.
443 #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
444     // ...Unless it's MSVC, whose standard library's _putenv doesn't
445     // distinguish between an empty and a missing variable.
446     const std::string env_var =
447         std::string("TZ=") + (time_zone ? time_zone : "");
448     _putenv(env_var.c_str());
449     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
450     tzset();
451     GTEST_DISABLE_MSC_WARNINGS_POP_()
452 #else
453 #if GTEST_OS_LINUX_ANDROID && __ANDROID_API__ < 21
454     // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
455     // See https://github.com/android/ndk/issues/1604.
456     setenv("TZ", "UTC", 1);
457     tzset();
458 #endif
459     if (time_zone) {
460       setenv(("TZ"), time_zone, 1);
461     } else {
462       unsetenv("TZ");
463     }
464     tzset();
465 #endif
466   }
467 
468   const char* saved_tz_;
469 };
470 
471 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
472 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)473 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
474   EXPECT_EQ("2011-10-31T18:52:42.000",
475             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
476 }
477 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)478 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
479   EXPECT_EQ(
480       "2011-10-31T18:52:42.234",
481       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
482 }
483 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)484 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
485   EXPECT_EQ("2011-09-03T05:07:02.000",
486             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
487 }
488 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)489 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
490   EXPECT_EQ("2011-09-28T17:08:22.000",
491             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
492 }
493 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)494 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
495   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
496 }
497 
498 # ifdef __BORLANDC__
499 // Silences warnings: "Condition is always true", "Unreachable code"
500 #  pragma option push -w-ccc -w-rch
501 # endif
502 
503 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
504 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)505 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
506   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
507   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
508   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
509   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
510   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
511   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
512 
513   const int* const p = nullptr;
514   EXPECT_EQ(0, p);     // NOLINT
515   ASSERT_EQ(0, p);     // NOLINT
516   EXPECT_EQ(NULL, p);  // NOLINT
517   ASSERT_EQ(NULL, p);  // NOLINT
518   EXPECT_EQ(nullptr, p);
519   ASSERT_EQ(nullptr, p);
520 }
521 
522 struct ConvertToAll {
523   template <typename T>
operator T__anonbb4b4fd70111::ConvertToAll524   operator T() const {  // NOLINT
525     return T();
526   }
527 };
528 
529 struct ConvertToPointer {
530   template <class T>
operator T*__anonbb4b4fd70111::ConvertToPointer531   operator T*() const {  // NOLINT
532     return nullptr;
533   }
534 };
535 
536 struct ConvertToAllButNoPointers {
537   template <typename T,
538             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anonbb4b4fd70111::ConvertToAllButNoPointers539   operator T() const {  // NOLINT
540     return T();
541   }
542 };
543 
544 struct MyType {};
operator ==(MyType const &,MyType const &)545 inline bool operator==(MyType const&, MyType const&) { return true; }
546 
TEST(NullLiteralTest,ImplicitConversion)547 TEST(NullLiteralTest, ImplicitConversion) {
548   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
549 #if !defined(__GNUC__) || defined(__clang__)
550   // Disabled due to GCC bug gcc.gnu.org/PR89580
551   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
552 #endif
553   EXPECT_EQ(ConvertToAll{}, MyType{});
554   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
555 }
556 
557 #ifdef __clang__
558 #pragma clang diagnostic push
559 #if __has_warning("-Wzero-as-null-pointer-constant")
560 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
561 #endif
562 #endif
563 
TEST(NullLiteralTest,NoConversionNoWarning)564 TEST(NullLiteralTest, NoConversionNoWarning) {
565   // Test that gtests detection and handling of null pointer constants
566   // doesn't trigger a warning when '0' isn't actually used as null.
567   EXPECT_EQ(0, 0);
568   ASSERT_EQ(0, 0);
569 }
570 
571 #ifdef __clang__
572 #pragma clang diagnostic pop
573 #endif
574 
575 # ifdef __BORLANDC__
576 // Restores warnings after previous "#pragma option push" suppressed them.
577 #  pragma option pop
578 # endif
579 
580 //
581 // Tests CodePointToUtf8().
582 
583 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)584 TEST(CodePointToUtf8Test, CanEncodeNul) {
585   EXPECT_EQ("", CodePointToUtf8(L'\0'));
586 }
587 
588 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)589 TEST(CodePointToUtf8Test, CanEncodeAscii) {
590   EXPECT_EQ("a", CodePointToUtf8(L'a'));
591   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
592   EXPECT_EQ("&", CodePointToUtf8(L'&'));
593   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
594 }
595 
596 // Tests that Unicode code-points that have 8 to 11 bits are encoded
597 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)598 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
599   // 000 1101 0011 => 110-00011 10-010011
600   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
601 
602   // 101 0111 0110 => 110-10101 10-110110
603   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
604   // in wide strings and wide chars. In order to accommodate them, we have to
605   // introduce such character constants as integers.
606   EXPECT_EQ("\xD5\xB6",
607             CodePointToUtf8(static_cast<wchar_t>(0x576)));
608 }
609 
610 // Tests that Unicode code-points that have 12 to 16 bits are encoded
611 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)612 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
613   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
614   EXPECT_EQ("\xE0\xA3\x93",
615             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
616 
617   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
618   EXPECT_EQ("\xEC\x9D\x8D",
619             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
620 }
621 
622 #if !GTEST_WIDE_STRING_USES_UTF16_
623 // Tests in this group require a wchar_t to hold > 16 bits, and thus
624 // are skipped on Windows, and Cygwin, where a wchar_t is
625 // 16-bit wide. This code may not compile on those systems.
626 
627 // Tests that Unicode code-points that have 17 to 21 bits are encoded
628 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)629 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
630   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
631   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
632 
633   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
634   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
635 
636   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
637   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
638 }
639 
640 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)641 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
642   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
643 }
644 
645 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
646 
647 // Tests WideStringToUtf8().
648 
649 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)650 TEST(WideStringToUtf8Test, CanEncodeNul) {
651   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
652   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
653 }
654 
655 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)656 TEST(WideStringToUtf8Test, CanEncodeAscii) {
657   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
658   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
659   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
660   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
661 }
662 
663 // Tests that Unicode code-points that have 8 to 11 bits are encoded
664 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)665 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
666   // 000 1101 0011 => 110-00011 10-010011
667   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
668   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
669 
670   // 101 0111 0110 => 110-10101 10-110110
671   const wchar_t s[] = { 0x576, '\0' };
672   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
673   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
674 }
675 
676 // Tests that Unicode code-points that have 12 to 16 bits are encoded
677 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)678 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
679   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
680   const wchar_t s1[] = { 0x8D3, '\0' };
681   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
682   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
683 
684   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
685   const wchar_t s2[] = { 0xC74D, '\0' };
686   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
687   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
688 }
689 
690 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)691 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
692   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
693 }
694 
695 // Tests that the conversion stops when the function reaches the limit
696 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)697 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
698   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
699 }
700 
701 #if !GTEST_WIDE_STRING_USES_UTF16_
702 // Tests that Unicode code-points that have 17 to 21 bits are encoded
703 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
704 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)705 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
706   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
707   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
708   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
709 
710   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
711   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
712   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
713 }
714 
715 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)716 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
717   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
718                WideStringToUtf8(L"\xABCDFF", -1).c_str());
719 }
720 #else  // !GTEST_WIDE_STRING_USES_UTF16_
721 // Tests that surrogate pairs are encoded correctly on the systems using
722 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)723 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
724   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
725   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
726 }
727 
728 // Tests that encoding an invalid UTF-16 surrogate pair
729 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)730 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
731   // Leading surrogate is at the end of the string.
732   const wchar_t s1[] = { 0xD800, '\0' };
733   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
734   // Leading surrogate is not followed by the trailing surrogate.
735   const wchar_t s2[] = { 0xD800, 'M', '\0' };
736   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
737   // Trailing surrogate appearas without a leading surrogate.
738   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
739   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
740 }
741 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
742 
743 // Tests that codepoint concatenation works correctly.
744 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)745 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
746   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
747   EXPECT_STREQ(
748       "\xF4\x88\x98\xB4"
749           "\xEC\x9D\x8D"
750           "\n"
751           "\xD5\xB6"
752           "\xE0\xA3\x93"
753           "\xF4\x88\x98\xB4",
754       WideStringToUtf8(s, -1).c_str());
755 }
756 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)757 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
758   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
759   EXPECT_STREQ(
760       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
761       WideStringToUtf8(s, -1).c_str());
762 }
763 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
764 
765 // Tests the Random class.
766 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)767 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
768   testing::internal::Random random(42);
769   EXPECT_DEATH_IF_SUPPORTED(
770       random.Generate(0),
771       "Cannot generate a number in the range \\[0, 0\\)");
772   EXPECT_DEATH_IF_SUPPORTED(
773       random.Generate(testing::internal::Random::kMaxRange + 1),
774       "Generation of a number in \\[0, 2147483649\\) was requested, "
775       "but this can only generate numbers in \\[0, 2147483648\\)");
776 }
777 
TEST(RandomTest,GeneratesNumbersWithinRange)778 TEST(RandomTest, GeneratesNumbersWithinRange) {
779   constexpr uint32_t kRange = 10000;
780   testing::internal::Random random(12345);
781   for (int i = 0; i < 10; i++) {
782     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
783   }
784 
785   testing::internal::Random random2(testing::internal::Random::kMaxRange);
786   for (int i = 0; i < 10; i++) {
787     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
788   }
789 }
790 
TEST(RandomTest,RepeatsWhenReseeded)791 TEST(RandomTest, RepeatsWhenReseeded) {
792   constexpr int kSeed = 123;
793   constexpr int kArraySize = 10;
794   constexpr uint32_t kRange = 10000;
795   uint32_t values[kArraySize];
796 
797   testing::internal::Random random(kSeed);
798   for (int i = 0; i < kArraySize; i++) {
799     values[i] = random.Generate(kRange);
800   }
801 
802   random.Reseed(kSeed);
803   for (int i = 0; i < kArraySize; i++) {
804     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
805   }
806 }
807 
808 // Tests STL container utilities.
809 
810 // Tests CountIf().
811 
IsPositive(int n)812 static bool IsPositive(int n) { return n > 0; }
813 
TEST(ContainerUtilityTest,CountIf)814 TEST(ContainerUtilityTest, CountIf) {
815   std::vector<int> v;
816   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
817 
818   v.push_back(-1);
819   v.push_back(0);
820   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
821 
822   v.push_back(2);
823   v.push_back(-10);
824   v.push_back(10);
825   EXPECT_EQ(2, CountIf(v, IsPositive));
826 }
827 
828 // Tests ForEach().
829 
830 static int g_sum = 0;
Accumulate(int n)831 static void Accumulate(int n) { g_sum += n; }
832 
TEST(ContainerUtilityTest,ForEach)833 TEST(ContainerUtilityTest, ForEach) {
834   std::vector<int> v;
835   g_sum = 0;
836   ForEach(v, Accumulate);
837   EXPECT_EQ(0, g_sum);  // Works for an empty container;
838 
839   g_sum = 0;
840   v.push_back(1);
841   ForEach(v, Accumulate);
842   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
843 
844   g_sum = 0;
845   v.push_back(20);
846   v.push_back(300);
847   ForEach(v, Accumulate);
848   EXPECT_EQ(321, g_sum);
849 }
850 
851 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)852 TEST(ContainerUtilityTest, GetElementOr) {
853   std::vector<char> a;
854   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
855 
856   a.push_back('a');
857   a.push_back('b');
858   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
859   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
860   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
861   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
862 }
863 
TEST(ContainerUtilityDeathTest,ShuffleRange)864 TEST(ContainerUtilityDeathTest, ShuffleRange) {
865   std::vector<int> a;
866   a.push_back(0);
867   a.push_back(1);
868   a.push_back(2);
869   testing::internal::Random random(1);
870 
871   EXPECT_DEATH_IF_SUPPORTED(
872       ShuffleRange(&random, -1, 1, &a),
873       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
874   EXPECT_DEATH_IF_SUPPORTED(
875       ShuffleRange(&random, 4, 4, &a),
876       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
877   EXPECT_DEATH_IF_SUPPORTED(
878       ShuffleRange(&random, 3, 2, &a),
879       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
880   EXPECT_DEATH_IF_SUPPORTED(
881       ShuffleRange(&random, 3, 4, &a),
882       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
883 }
884 
885 class VectorShuffleTest : public Test {
886  protected:
887   static const size_t kVectorSize = 20;
888 
VectorShuffleTest()889   VectorShuffleTest() : random_(1) {
890     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
891       vector_.push_back(i);
892     }
893   }
894 
VectorIsCorrupt(const TestingVector & vector)895   static bool VectorIsCorrupt(const TestingVector& vector) {
896     if (kVectorSize != vector.size()) {
897       return true;
898     }
899 
900     bool found_in_vector[kVectorSize] = { false };
901     for (size_t i = 0; i < vector.size(); i++) {
902       const int e = vector[i];
903       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
904         return true;
905       }
906       found_in_vector[e] = true;
907     }
908 
909     // Vector size is correct, elements' range is correct, no
910     // duplicate elements.  Therefore no corruption has occurred.
911     return false;
912   }
913 
VectorIsNotCorrupt(const TestingVector & vector)914   static bool VectorIsNotCorrupt(const TestingVector& vector) {
915     return !VectorIsCorrupt(vector);
916   }
917 
RangeIsShuffled(const TestingVector & vector,int begin,int end)918   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
919     for (int i = begin; i < end; i++) {
920       if (i != vector[static_cast<size_t>(i)]) {
921         return true;
922       }
923     }
924     return false;
925   }
926 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)927   static bool RangeIsUnshuffled(
928       const TestingVector& vector, int begin, int end) {
929     return !RangeIsShuffled(vector, begin, end);
930   }
931 
VectorIsShuffled(const TestingVector & vector)932   static bool VectorIsShuffled(const TestingVector& vector) {
933     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
934   }
935 
VectorIsUnshuffled(const TestingVector & vector)936   static bool VectorIsUnshuffled(const TestingVector& vector) {
937     return !VectorIsShuffled(vector);
938   }
939 
940   testing::internal::Random random_;
941   TestingVector vector_;
942 };  // class VectorShuffleTest
943 
944 const size_t VectorShuffleTest::kVectorSize;
945 
TEST_F(VectorShuffleTest,HandlesEmptyRange)946 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
947   // Tests an empty range at the beginning...
948   ShuffleRange(&random_, 0, 0, &vector_);
949   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
950   ASSERT_PRED1(VectorIsUnshuffled, vector_);
951 
952   // ...in the middle...
953   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
954   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
955   ASSERT_PRED1(VectorIsUnshuffled, vector_);
956 
957   // ...at the end...
958   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
959   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
960   ASSERT_PRED1(VectorIsUnshuffled, vector_);
961 
962   // ...and past the end.
963   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
964   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
965   ASSERT_PRED1(VectorIsUnshuffled, vector_);
966 }
967 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)968 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
969   // Tests a size one range at the beginning...
970   ShuffleRange(&random_, 0, 1, &vector_);
971   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
972   ASSERT_PRED1(VectorIsUnshuffled, vector_);
973 
974   // ...in the middle...
975   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
976   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
977   ASSERT_PRED1(VectorIsUnshuffled, vector_);
978 
979   // ...and at the end.
980   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
981   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
982   ASSERT_PRED1(VectorIsUnshuffled, vector_);
983 }
984 
985 // Because we use our own random number generator and a fixed seed,
986 // we can guarantee that the following "random" tests will succeed.
987 
TEST_F(VectorShuffleTest,ShufflesEntireVector)988 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
989   Shuffle(&random_, &vector_);
990   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
991   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
992 
993   // Tests the first and last elements in particular to ensure that
994   // there are no off-by-one problems in our shuffle algorithm.
995   EXPECT_NE(0, vector_[0]);
996   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
997 }
998 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)999 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1000   const int kRangeSize = kVectorSize/2;
1001 
1002   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1003 
1004   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1005   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1006   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1007                static_cast<int>(kVectorSize));
1008 }
1009 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1010 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1011   const int kRangeSize = kVectorSize / 2;
1012   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1013 
1014   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1015   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1016   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1017                static_cast<int>(kVectorSize));
1018 }
1019 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1020 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1021   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1022   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
1023 
1024   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1025   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1026   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
1027   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1028                static_cast<int>(kVectorSize));
1029 }
1030 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1031 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1032   TestingVector vector2;
1033   for (size_t i = 0; i < kVectorSize; i++) {
1034     vector2.push_back(static_cast<int>(i));
1035   }
1036 
1037   random_.Reseed(1234);
1038   Shuffle(&random_, &vector_);
1039   random_.Reseed(1234);
1040   Shuffle(&random_, &vector2);
1041 
1042   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1043   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1044 
1045   for (size_t i = 0; i < kVectorSize; i++) {
1046     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1047   }
1048 }
1049 
1050 // Tests the size of the AssertHelper class.
1051 
TEST(AssertHelperTest,AssertHelperIsSmall)1052 TEST(AssertHelperTest, AssertHelperIsSmall) {
1053   // To avoid breaking clients that use lots of assertions in one
1054   // function, we cannot grow the size of AssertHelper.
1055   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1056 }
1057 
1058 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1059 TEST(StringTest, EndsWithCaseInsensitive) {
1060   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1061   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1062   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1063   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1064 
1065   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1066   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1067   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1068 }
1069 
1070 // C++Builder's preprocessor is buggy; it fails to expand macros that
1071 // appear in macro parameters after wide char literals.  Provide an alias
1072 // for NULL as a workaround.
1073 static const wchar_t* const kNull = nullptr;
1074 
1075 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1076 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1077   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1078   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1079   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1080   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1081   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1082   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1083   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1084   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1085 }
1086 
1087 #if GTEST_OS_WINDOWS
1088 
1089 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1090 TEST(StringTest, ShowWideCString) {
1091   EXPECT_STREQ("(null)",
1092                String::ShowWideCString(NULL).c_str());
1093   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1094   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1095 }
1096 
1097 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1098 TEST(StringTest, AnsiAndUtf16Null) {
1099   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1100   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1101 }
1102 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1103 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1104   const char* ansi = String::Utf16ToAnsi(L"str");
1105   EXPECT_STREQ("str", ansi);
1106   delete [] ansi;
1107   const WCHAR* utf16 = String::AnsiToUtf16("str");
1108   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1109   delete [] utf16;
1110 }
1111 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1112 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1113   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1114   EXPECT_STREQ(".:\\ \"*?", ansi);
1115   delete [] ansi;
1116   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1117   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1118   delete [] utf16;
1119 }
1120 # endif  // GTEST_OS_WINDOWS_MOBILE
1121 
1122 #endif  // GTEST_OS_WINDOWS
1123 
1124 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1125 TEST(TestPropertyTest, StringValue) {
1126   TestProperty property("key", "1");
1127   EXPECT_STREQ("key", property.key());
1128   EXPECT_STREQ("1", property.value());
1129 }
1130 
1131 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1132 TEST(TestPropertyTest, ReplaceStringValue) {
1133   TestProperty property("key", "1");
1134   EXPECT_STREQ("1", property.value());
1135   property.SetValue("2");
1136   EXPECT_STREQ("2", property.value());
1137 }
1138 
1139 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1140 // functions (i.e. their definitions cannot be inlined at the call
1141 // sites), or C++Builder won't compile the code.
AddFatalFailure()1142 static void AddFatalFailure() {
1143   FAIL() << "Expected fatal failure.";
1144 }
1145 
AddNonfatalFailure()1146 static void AddNonfatalFailure() {
1147   ADD_FAILURE() << "Expected non-fatal failure.";
1148 }
1149 
1150 class ScopedFakeTestPartResultReporterTest : public Test {
1151  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1152   enum FailureMode {
1153     FATAL_FAILURE,
1154     NONFATAL_FAILURE
1155   };
AddFailure(FailureMode failure)1156   static void AddFailure(FailureMode failure) {
1157     if (failure == FATAL_FAILURE) {
1158       AddFatalFailure();
1159     } else {
1160       AddNonfatalFailure();
1161     }
1162   }
1163 };
1164 
1165 // Tests that ScopedFakeTestPartResultReporter intercepts test
1166 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1167 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1168   TestPartResultArray results;
1169   {
1170     ScopedFakeTestPartResultReporter reporter(
1171         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1172         &results);
1173     AddFailure(NONFATAL_FAILURE);
1174     AddFailure(FATAL_FAILURE);
1175   }
1176 
1177   EXPECT_EQ(2, results.size());
1178   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1179   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1180 }
1181 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1182 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1183   TestPartResultArray results;
1184   {
1185     // Tests, that the deprecated constructor still works.
1186     ScopedFakeTestPartResultReporter reporter(&results);
1187     AddFailure(NONFATAL_FAILURE);
1188   }
1189   EXPECT_EQ(1, results.size());
1190 }
1191 
1192 #if GTEST_IS_THREADSAFE
1193 
1194 class ScopedFakeTestPartResultReporterWithThreadsTest
1195   : public ScopedFakeTestPartResultReporterTest {
1196  protected:
AddFailureInOtherThread(FailureMode failure)1197   static void AddFailureInOtherThread(FailureMode failure) {
1198     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1199     thread.Join();
1200   }
1201 };
1202 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1203 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1204        InterceptsTestFailuresInAllThreads) {
1205   TestPartResultArray results;
1206   {
1207     ScopedFakeTestPartResultReporter reporter(
1208         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1209     AddFailure(NONFATAL_FAILURE);
1210     AddFailure(FATAL_FAILURE);
1211     AddFailureInOtherThread(NONFATAL_FAILURE);
1212     AddFailureInOtherThread(FATAL_FAILURE);
1213   }
1214 
1215   EXPECT_EQ(4, results.size());
1216   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1217   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1218   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1219   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1220 }
1221 
1222 #endif  // GTEST_IS_THREADSAFE
1223 
1224 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1225 // work even if the failure is generated in a called function rather than
1226 // the current context.
1227 
1228 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1229 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1230 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1231   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1232 }
1233 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1234 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1235   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1236                        ::std::string("Expected fatal failure."));
1237 }
1238 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1239 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1240   // We have another test below to verify that the macro catches fatal
1241   // failures generated on another thread.
1242   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1243                                       "Expected fatal failure.");
1244 }
1245 
1246 #ifdef __BORLANDC__
1247 // Silences warnings: "Condition is always true"
1248 # pragma option push -w-ccc
1249 #endif
1250 
1251 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1252 // function even when the statement in it contains ASSERT_*.
1253 
NonVoidFunction()1254 int NonVoidFunction() {
1255   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1256   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1257   return 0;
1258 }
1259 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1260 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1261   NonVoidFunction();
1262 }
1263 
1264 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1265 // current function even though 'statement' generates a fatal failure.
1266 
DoesNotAbortHelper(bool * aborted)1267 void DoesNotAbortHelper(bool* aborted) {
1268   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1269   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1270 
1271   *aborted = false;
1272 }
1273 
1274 #ifdef __BORLANDC__
1275 // Restores warnings after previous "#pragma option push" suppressed them.
1276 # pragma option pop
1277 #endif
1278 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1279 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1280   bool aborted = true;
1281   DoesNotAbortHelper(&aborted);
1282   EXPECT_FALSE(aborted);
1283 }
1284 
1285 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1286 // statement that contains a macro which expands to code containing an
1287 // unprotected comma.
1288 
1289 static int global_var = 0;
1290 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1291 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1292 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1293 #ifndef __BORLANDC__
1294   // ICE's in C++Builder.
1295   EXPECT_FATAL_FAILURE({
1296     GTEST_USE_UNPROTECTED_COMMA_;
1297     AddFatalFailure();
1298   }, "");
1299 #endif
1300 
1301   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1302     GTEST_USE_UNPROTECTED_COMMA_;
1303     AddFatalFailure();
1304   }, "");
1305 }
1306 
1307 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1308 
1309 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1310 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1311 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1312   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1313                           "Expected non-fatal failure.");
1314 }
1315 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1316 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1317   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1318                           ::std::string("Expected non-fatal failure."));
1319 }
1320 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1321 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1322   // We have another test below to verify that the macro catches
1323   // non-fatal failures generated on another thread.
1324   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1325                                          "Expected non-fatal failure.");
1326 }
1327 
1328 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1329 // statement that contains a macro which expands to code containing an
1330 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1331 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1332   EXPECT_NONFATAL_FAILURE({
1333     GTEST_USE_UNPROTECTED_COMMA_;
1334     AddNonfatalFailure();
1335   }, "");
1336 
1337   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1338     GTEST_USE_UNPROTECTED_COMMA_;
1339     AddNonfatalFailure();
1340   }, "");
1341 }
1342 
1343 #if GTEST_IS_THREADSAFE
1344 
1345 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1346     ExpectFailureWithThreadsTest;
1347 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1348 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1349   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1350                                       "Expected fatal failure.");
1351 }
1352 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1353 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1354   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1355       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1356 }
1357 
1358 #endif  // GTEST_IS_THREADSAFE
1359 
1360 // Tests the TestProperty class.
1361 
TEST(TestPropertyTest,ConstructorWorks)1362 TEST(TestPropertyTest, ConstructorWorks) {
1363   const TestProperty property("key", "value");
1364   EXPECT_STREQ("key", property.key());
1365   EXPECT_STREQ("value", property.value());
1366 }
1367 
TEST(TestPropertyTest,SetValue)1368 TEST(TestPropertyTest, SetValue) {
1369   TestProperty property("key", "value_1");
1370   EXPECT_STREQ("key", property.key());
1371   property.SetValue("value_2");
1372   EXPECT_STREQ("key", property.key());
1373   EXPECT_STREQ("value_2", property.value());
1374 }
1375 
1376 // Tests the TestResult class
1377 
1378 // The test fixture for testing TestResult.
1379 class TestResultTest : public Test {
1380  protected:
1381   typedef std::vector<TestPartResult> TPRVector;
1382 
1383   // We make use of 2 TestPartResult objects,
1384   TestPartResult * pr1, * pr2;
1385 
1386   // ... and 3 TestResult objects.
1387   TestResult * r0, * r1, * r2;
1388 
SetUp()1389   void SetUp() override {
1390     // pr1 is for success.
1391     pr1 = new TestPartResult(TestPartResult::kSuccess,
1392                              "foo/bar.cc",
1393                              10,
1394                              "Success!");
1395 
1396     // pr2 is for fatal failure.
1397     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1398                              "foo/bar.cc",
1399                              -1,  // This line number means "unknown"
1400                              "Failure!");
1401 
1402     // Creates the TestResult objects.
1403     r0 = new TestResult();
1404     r1 = new TestResult();
1405     r2 = new TestResult();
1406 
1407     // In order to test TestResult, we need to modify its internal
1408     // state, in particular the TestPartResult vector it holds.
1409     // test_part_results() returns a const reference to this vector.
1410     // We cast it to a non-const object s.t. it can be modified
1411     TPRVector* results1 = const_cast<TPRVector*>(
1412         &TestResultAccessor::test_part_results(*r1));
1413     TPRVector* results2 = const_cast<TPRVector*>(
1414         &TestResultAccessor::test_part_results(*r2));
1415 
1416     // r0 is an empty TestResult.
1417 
1418     // r1 contains a single SUCCESS TestPartResult.
1419     results1->push_back(*pr1);
1420 
1421     // r2 contains a SUCCESS, and a FAILURE.
1422     results2->push_back(*pr1);
1423     results2->push_back(*pr2);
1424   }
1425 
TearDown()1426   void TearDown() override {
1427     delete pr1;
1428     delete pr2;
1429 
1430     delete r0;
1431     delete r1;
1432     delete r2;
1433   }
1434 
1435   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1436   static void CompareTestPartResult(const TestPartResult& expected,
1437                                     const TestPartResult& actual) {
1438     EXPECT_EQ(expected.type(), actual.type());
1439     EXPECT_STREQ(expected.file_name(), actual.file_name());
1440     EXPECT_EQ(expected.line_number(), actual.line_number());
1441     EXPECT_STREQ(expected.summary(), actual.summary());
1442     EXPECT_STREQ(expected.message(), actual.message());
1443     EXPECT_EQ(expected.passed(), actual.passed());
1444     EXPECT_EQ(expected.failed(), actual.failed());
1445     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1446     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1447   }
1448 };
1449 
1450 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1451 TEST_F(TestResultTest, total_part_count) {
1452   ASSERT_EQ(0, r0->total_part_count());
1453   ASSERT_EQ(1, r1->total_part_count());
1454   ASSERT_EQ(2, r2->total_part_count());
1455 }
1456 
1457 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1458 TEST_F(TestResultTest, Passed) {
1459   ASSERT_TRUE(r0->Passed());
1460   ASSERT_TRUE(r1->Passed());
1461   ASSERT_FALSE(r2->Passed());
1462 }
1463 
1464 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1465 TEST_F(TestResultTest, Failed) {
1466   ASSERT_FALSE(r0->Failed());
1467   ASSERT_FALSE(r1->Failed());
1468   ASSERT_TRUE(r2->Failed());
1469 }
1470 
1471 // Tests TestResult::GetTestPartResult().
1472 
1473 typedef TestResultTest TestResultDeathTest;
1474 
TEST_F(TestResultDeathTest,GetTestPartResult)1475 TEST_F(TestResultDeathTest, GetTestPartResult) {
1476   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1477   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1478   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1479   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1480 }
1481 
1482 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1483 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1484   TestResult test_result;
1485   ASSERT_EQ(0, test_result.test_property_count());
1486 }
1487 
1488 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1489 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1490   TestResult test_result;
1491   TestProperty property("key_1", "1");
1492   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1493   ASSERT_EQ(1, test_result.test_property_count());
1494   const TestProperty& actual_property = test_result.GetTestProperty(0);
1495   EXPECT_STREQ("key_1", actual_property.key());
1496   EXPECT_STREQ("1", actual_property.value());
1497 }
1498 
1499 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1500 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1501   TestResult test_result;
1502   TestProperty property_1("key_1", "1");
1503   TestProperty property_2("key_2", "2");
1504   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1505   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1506   ASSERT_EQ(2, test_result.test_property_count());
1507   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1508   EXPECT_STREQ("key_1", actual_property_1.key());
1509   EXPECT_STREQ("1", actual_property_1.value());
1510 
1511   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1512   EXPECT_STREQ("key_2", actual_property_2.key());
1513   EXPECT_STREQ("2", actual_property_2.value());
1514 }
1515 
1516 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1517 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1518   TestResult test_result;
1519   TestProperty property_1_1("key_1", "1");
1520   TestProperty property_2_1("key_2", "2");
1521   TestProperty property_1_2("key_1", "12");
1522   TestProperty property_2_2("key_2", "22");
1523   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1524   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1525   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1526   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1527 
1528   ASSERT_EQ(2, test_result.test_property_count());
1529   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1530   EXPECT_STREQ("key_1", actual_property_1.key());
1531   EXPECT_STREQ("12", actual_property_1.value());
1532 
1533   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1534   EXPECT_STREQ("key_2", actual_property_2.key());
1535   EXPECT_STREQ("22", actual_property_2.value());
1536 }
1537 
1538 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1539 TEST(TestResultPropertyTest, GetTestProperty) {
1540   TestResult test_result;
1541   TestProperty property_1("key_1", "1");
1542   TestProperty property_2("key_2", "2");
1543   TestProperty property_3("key_3", "3");
1544   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1545   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1546   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1547 
1548   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1549   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1550   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1551 
1552   EXPECT_STREQ("key_1", fetched_property_1.key());
1553   EXPECT_STREQ("1", fetched_property_1.value());
1554 
1555   EXPECT_STREQ("key_2", fetched_property_2.key());
1556   EXPECT_STREQ("2", fetched_property_2.value());
1557 
1558   EXPECT_STREQ("key_3", fetched_property_3.key());
1559   EXPECT_STREQ("3", fetched_property_3.value());
1560 
1561   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1562   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1563 }
1564 
1565 // Tests the Test class.
1566 //
1567 // It's difficult to test every public method of this class (we are
1568 // already stretching the limit of Google Test by using it to test itself!).
1569 // Fortunately, we don't have to do that, as we are already testing
1570 // the functionalities of the Test class extensively by using Google Test
1571 // alone.
1572 //
1573 // Therefore, this section only contains one test.
1574 
1575 // Tests that GTestFlagSaver works on Windows and Mac.
1576 
1577 class GTestFlagSaverTest : public Test {
1578  protected:
1579   // Saves the Google Test flags such that we can restore them later, and
1580   // then sets them to their default values.  This will be called
1581   // before the first test in this test case is run.
SetUpTestSuite()1582   static void SetUpTestSuite() {
1583     saver_ = new GTestFlagSaver;
1584 
1585     GTEST_FLAG_SET(also_run_disabled_tests, false);
1586     GTEST_FLAG_SET(break_on_failure, false);
1587     GTEST_FLAG_SET(catch_exceptions, false);
1588     GTEST_FLAG_SET(death_test_use_fork, false);
1589     GTEST_FLAG_SET(color, "auto");
1590     GTEST_FLAG_SET(fail_fast, false);
1591     GTEST_FLAG_SET(filter, "");
1592     GTEST_FLAG_SET(list_tests, false);
1593     GTEST_FLAG_SET(output, "");
1594     GTEST_FLAG_SET(brief, false);
1595     GTEST_FLAG_SET(print_time, true);
1596     GTEST_FLAG_SET(random_seed, 0);
1597     GTEST_FLAG_SET(repeat, 1);
1598     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1599     GTEST_FLAG_SET(shuffle, false);
1600     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1601     GTEST_FLAG_SET(stream_result_to, "");
1602     GTEST_FLAG_SET(throw_on_failure, false);
1603   }
1604 
1605   // Restores the Google Test flags that the tests have modified.  This will
1606   // be called after the last test in this test case is run.
TearDownTestSuite()1607   static void TearDownTestSuite() {
1608     delete saver_;
1609     saver_ = nullptr;
1610   }
1611 
1612   // Verifies that the Google Test flags have their default values, and then
1613   // modifies each of them.
VerifyAndModifyFlags()1614   void VerifyAndModifyFlags() {
1615     EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1616     EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1617     EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1618     EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1619     EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1620     EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1621     EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1622     EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1623     EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1624     EXPECT_FALSE(GTEST_FLAG_GET(brief));
1625     EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1626     EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1627     EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1628     EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1629     EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1630     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1631     EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1632     EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1633 
1634     GTEST_FLAG_SET(also_run_disabled_tests, true);
1635     GTEST_FLAG_SET(break_on_failure, true);
1636     GTEST_FLAG_SET(catch_exceptions, true);
1637     GTEST_FLAG_SET(color, "no");
1638     GTEST_FLAG_SET(death_test_use_fork, true);
1639     GTEST_FLAG_SET(fail_fast, true);
1640     GTEST_FLAG_SET(filter, "abc");
1641     GTEST_FLAG_SET(list_tests, true);
1642     GTEST_FLAG_SET(output, "xml:foo.xml");
1643     GTEST_FLAG_SET(brief, true);
1644     GTEST_FLAG_SET(print_time, false);
1645     GTEST_FLAG_SET(random_seed, 1);
1646     GTEST_FLAG_SET(repeat, 100);
1647     GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1648     GTEST_FLAG_SET(shuffle, true);
1649     GTEST_FLAG_SET(stack_trace_depth, 1);
1650     GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1651     GTEST_FLAG_SET(throw_on_failure, true);
1652   }
1653 
1654  private:
1655   // For saving Google Test flags during this test case.
1656   static GTestFlagSaver* saver_;
1657 };
1658 
1659 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1660 
1661 // Google Test doesn't guarantee the order of tests.  The following two
1662 // tests are designed to work regardless of their order.
1663 
1664 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1665 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1666   VerifyAndModifyFlags();
1667 }
1668 
1669 // Verifies that the Google Test flags in the body of the previous test were
1670 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1671 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1672   VerifyAndModifyFlags();
1673 }
1674 
1675 // Sets an environment variable with the given name to the given
1676 // value.  If the value argument is "", unsets the environment
1677 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1678 static void SetEnv(const char* name, const char* value) {
1679 #if GTEST_OS_WINDOWS_MOBILE
1680   // Environment variables are not supported on Windows CE.
1681   return;
1682 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1683   // C++Builder's putenv only stores a pointer to its parameter; we have to
1684   // ensure that the string remains valid as long as it might be needed.
1685   // We use an std::map to do so.
1686   static std::map<std::string, std::string*> added_env;
1687 
1688   // Because putenv stores a pointer to the string buffer, we can't delete the
1689   // previous string (if present) until after it's replaced.
1690   std::string *prev_env = NULL;
1691   if (added_env.find(name) != added_env.end()) {
1692     prev_env = added_env[name];
1693   }
1694   added_env[name] = new std::string(
1695       (Message() << name << "=" << value).GetString());
1696 
1697   // The standard signature of putenv accepts a 'char*' argument. Other
1698   // implementations, like C++Builder's, accept a 'const char*'.
1699   // We cast away the 'const' since that would work for both variants.
1700   putenv(const_cast<char*>(added_env[name]->c_str()));
1701   delete prev_env;
1702 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1703   _putenv((Message() << name << "=" << value).GetString().c_str());
1704 #else
1705   if (*value == '\0') {
1706     unsetenv(name);
1707   } else {
1708     setenv(name, value, 1);
1709   }
1710 #endif  // GTEST_OS_WINDOWS_MOBILE
1711 }
1712 
1713 #if !GTEST_OS_WINDOWS_MOBILE
1714 // Environment variables are not supported on Windows CE.
1715 
1716 using testing::internal::Int32FromGTestEnv;
1717 
1718 // Tests Int32FromGTestEnv().
1719 
1720 // Tests that Int32FromGTestEnv() returns the default value when the
1721 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1722 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1723   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1724   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1725 }
1726 
1727 # if !defined(GTEST_GET_INT32_FROM_ENV_)
1728 
1729 // Tests that Int32FromGTestEnv() returns the default value when the
1730 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1731 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1732   printf("(expecting 2 warnings)\n");
1733 
1734   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1735   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1736 
1737   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1738   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1739 }
1740 
1741 // Tests that Int32FromGTestEnv() returns the default value when the
1742 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1743 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1744   printf("(expecting 2 warnings)\n");
1745 
1746   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1747   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1748 
1749   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1750   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1751 }
1752 
1753 # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1754 
1755 // Tests that Int32FromGTestEnv() parses and returns the value of the
1756 // environment variable when it represents a valid decimal integer in
1757 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1758 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1759   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1760   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1761 
1762   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1763   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1764 }
1765 #endif  // !GTEST_OS_WINDOWS_MOBILE
1766 
1767 // Tests ParseFlag().
1768 
1769 // Tests that ParseInt32Flag() returns false and doesn't change the
1770 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1771 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1772   int32_t value = 123;
1773   EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1774   EXPECT_EQ(123, value);
1775 
1776   EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1777   EXPECT_EQ(123, value);
1778 }
1779 
1780 // Tests that ParseFlag() returns false and doesn't change the
1781 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1782 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1783   printf("(expecting 2 warnings)\n");
1784 
1785   int32_t value = 123;
1786   EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1787   EXPECT_EQ(123, value);
1788 
1789   EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1790   EXPECT_EQ(123, value);
1791 }
1792 
1793 // Tests that ParseInt32Flag() returns false and doesn't change the
1794 // output value when the flag does not represent a valid decimal
1795 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1796 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1797   printf("(expecting 2 warnings)\n");
1798 
1799   int32_t value = 123;
1800   EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1801   EXPECT_EQ(123, value);
1802 
1803   EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1804   EXPECT_EQ(123, value);
1805 }
1806 
1807 // Tests that ParseInt32Flag() parses the value of the flag and
1808 // returns true when the flag represents a valid decimal integer in
1809 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1810 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1811   int32_t value = 123;
1812   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1813   EXPECT_EQ(456, value);
1814 
1815   EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1816   EXPECT_EQ(-789, value);
1817 }
1818 
1819 // Tests that Int32FromEnvOrDie() parses the value of the var or
1820 // returns the correct default.
1821 // Environment variables are not supported on Windows CE.
1822 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1823 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1824   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1825   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1826   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1827   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1828   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1829 }
1830 #endif  // !GTEST_OS_WINDOWS_MOBILE
1831 
1832 // Tests that Int32FromEnvOrDie() aborts with an error message
1833 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1834 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1835   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1836   EXPECT_DEATH_IF_SUPPORTED(
1837       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1838       ".*");
1839 }
1840 
1841 // Tests that Int32FromEnvOrDie() aborts with an error message
1842 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1843 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1844   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1845   EXPECT_DEATH_IF_SUPPORTED(
1846       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1847       ".*");
1848 }
1849 
1850 // Tests that ShouldRunTestOnShard() selects all tests
1851 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1852 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1853   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1854   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1855   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1856   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1857   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1858 }
1859 
1860 class ShouldShardTest : public testing::Test {
1861  protected:
SetUp()1862   void SetUp() override {
1863     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1864     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1865   }
1866 
TearDown()1867   void TearDown() override {
1868     SetEnv(index_var_, "");
1869     SetEnv(total_var_, "");
1870   }
1871 
1872   const char* index_var_;
1873   const char* total_var_;
1874 };
1875 
1876 // Tests that sharding is disabled if neither of the environment variables
1877 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1878 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1879   SetEnv(index_var_, "");
1880   SetEnv(total_var_, "");
1881 
1882   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1883   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1884 }
1885 
1886 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1887 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1888   SetEnv(index_var_, "0");
1889   SetEnv(total_var_, "1");
1890   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1891   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1892 }
1893 
1894 // Tests that sharding is enabled if total_shards > 1 and
1895 // we are not in a death test subprocess.
1896 // Environment variables are not supported on Windows CE.
1897 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1898 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1899   SetEnv(index_var_, "4");
1900   SetEnv(total_var_, "22");
1901   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1902   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1903 
1904   SetEnv(index_var_, "8");
1905   SetEnv(total_var_, "9");
1906   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1907   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1908 
1909   SetEnv(index_var_, "0");
1910   SetEnv(total_var_, "9");
1911   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1912   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1913 }
1914 #endif  // !GTEST_OS_WINDOWS_MOBILE
1915 
1916 // Tests that we exit in error if the sharding values are not valid.
1917 
1918 typedef ShouldShardTest ShouldShardDeathTest;
1919 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1920 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1921   SetEnv(index_var_, "4");
1922   SetEnv(total_var_, "4");
1923   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1924 
1925   SetEnv(index_var_, "4");
1926   SetEnv(total_var_, "-2");
1927   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1928 
1929   SetEnv(index_var_, "5");
1930   SetEnv(total_var_, "");
1931   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1932 
1933   SetEnv(index_var_, "");
1934   SetEnv(total_var_, "5");
1935   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1936 }
1937 
1938 // Tests that ShouldRunTestOnShard is a partition when 5
1939 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1940 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1941   // Choose an arbitrary number of tests and shards.
1942   const int num_tests = 17;
1943   const int num_shards = 5;
1944 
1945   // Check partitioning: each test should be on exactly 1 shard.
1946   for (int test_id = 0; test_id < num_tests; test_id++) {
1947     int prev_selected_shard_index = -1;
1948     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1949       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1950         if (prev_selected_shard_index < 0) {
1951           prev_selected_shard_index = shard_index;
1952         } else {
1953           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1954             << shard_index << " are both selected to run test " << test_id;
1955         }
1956       }
1957     }
1958   }
1959 
1960   // Check balance: This is not required by the sharding protocol, but is a
1961   // desirable property for performance.
1962   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1963     int num_tests_on_shard = 0;
1964     for (int test_id = 0; test_id < num_tests; test_id++) {
1965       num_tests_on_shard +=
1966         ShouldRunTestOnShard(num_shards, shard_index, test_id);
1967     }
1968     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1969   }
1970 }
1971 
1972 // For the same reason we are not explicitly testing everything in the
1973 // Test class, there are no separate tests for the following classes
1974 // (except for some trivial cases):
1975 //
1976 //   TestSuite, UnitTest, UnitTestResultPrinter.
1977 //
1978 // Similarly, there are no separate tests for the following macros:
1979 //
1980 //   TEST, TEST_F, RUN_ALL_TESTS
1981 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1982 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1983   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1984   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1985 }
1986 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)1987 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1988   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1989   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1990 }
1991 
1992 // When a property using a reserved key is supplied to this function, it
1993 // tests that a non-fatal failure is added, a fatal failure is not added,
1994 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)1995 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1996     const TestResult& test_result, const char* key) {
1997   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1998   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1999                                                   << "' recorded unexpectedly.";
2000 }
2001 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2002 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2003     const char* key) {
2004   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2005   ASSERT_TRUE(test_info != nullptr);
2006   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2007                                                         key);
2008 }
2009 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2010 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2011     const char* key) {
2012   const testing::TestSuite* test_suite =
2013       UnitTest::GetInstance()->current_test_suite();
2014   ASSERT_TRUE(test_suite != nullptr);
2015   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2016       test_suite->ad_hoc_test_result(), key);
2017 }
2018 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2019 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2020     const char* key) {
2021   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2022       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2023 }
2024 
2025 // Tests that property recording functions in UnitTest outside of tests
2026 // functions correctly.  Creating a separate instance of UnitTest ensures it
2027 // is in a state similar to the UnitTest's singleton's between tests.
2028 class UnitTestRecordPropertyTest :
2029     public testing::internal::UnitTestRecordPropertyTestHelper {
2030  public:
SetUpTestSuite()2031   static void SetUpTestSuite() {
2032     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2033         "disabled");
2034     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2035         "errors");
2036     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2037         "failures");
2038     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2039         "name");
2040     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2041         "tests");
2042     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2043         "time");
2044 
2045     Test::RecordProperty("test_case_key_1", "1");
2046 
2047     const testing::TestSuite* test_suite =
2048         UnitTest::GetInstance()->current_test_suite();
2049 
2050     ASSERT_TRUE(test_suite != nullptr);
2051 
2052     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2053     EXPECT_STREQ("test_case_key_1",
2054                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2055     EXPECT_STREQ("1",
2056                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2057   }
2058 };
2059 
2060 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2061 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2062   UnitTestRecordProperty("key_1", "1");
2063 
2064   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2065 
2066   EXPECT_STREQ("key_1",
2067                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2068   EXPECT_STREQ("1",
2069                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2070 }
2071 
2072 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2073 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2074   UnitTestRecordProperty("key_1", "1");
2075   UnitTestRecordProperty("key_2", "2");
2076 
2077   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2078 
2079   EXPECT_STREQ("key_1",
2080                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2081   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2082 
2083   EXPECT_STREQ("key_2",
2084                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2085   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2086 }
2087 
2088 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2089 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2090   UnitTestRecordProperty("key_1", "1");
2091   UnitTestRecordProperty("key_2", "2");
2092   UnitTestRecordProperty("key_1", "12");
2093   UnitTestRecordProperty("key_2", "22");
2094 
2095   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2096 
2097   EXPECT_STREQ("key_1",
2098                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2099   EXPECT_STREQ("12",
2100                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2101 
2102   EXPECT_STREQ("key_2",
2103                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2104   EXPECT_STREQ("22",
2105                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2106 }
2107 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2108 TEST_F(UnitTestRecordPropertyTest,
2109        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2110   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2111       "name");
2112   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2113       "value_param");
2114   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2115       "type_param");
2116   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2117       "status");
2118   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2119       "time");
2120   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2121       "classname");
2122 }
2123 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2124 TEST_F(UnitTestRecordPropertyTest,
2125        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2126   EXPECT_NONFATAL_FAILURE(
2127       Test::RecordProperty("name", "1"),
2128       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2129       " 'file', and 'line' are reserved");
2130 }
2131 
2132 class UnitTestRecordPropertyTestEnvironment : public Environment {
2133  public:
TearDown()2134   void TearDown() override {
2135     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2136         "tests");
2137     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2138         "failures");
2139     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2140         "disabled");
2141     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2142         "errors");
2143     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2144         "name");
2145     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2146         "timestamp");
2147     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2148         "time");
2149     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2150         "random_seed");
2151   }
2152 };
2153 
2154 // This will test property recording outside of any test or test case.
2155 static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2156     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2157 
2158 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2159 // of various arities.  They do not attempt to be exhaustive.  Rather,
2160 // view them as smoke tests that can be easily reviewed and verified.
2161 // A more complete set of tests for predicate assertions can be found
2162 // in gtest_pred_impl_unittest.cc.
2163 
2164 // First, some predicates and predicate-formatters needed by the tests.
2165 
2166 // Returns true if and only if the argument is an even number.
IsEven(int n)2167 bool IsEven(int n) {
2168   return (n % 2) == 0;
2169 }
2170 
2171 // A functor that returns true if and only if the argument is an even number.
2172 struct IsEvenFunctor {
operator ()__anonbb4b4fd70111::IsEvenFunctor2173   bool operator()(int n) { return IsEven(n); }
2174 };
2175 
2176 // A predicate-formatter function that asserts the argument is an even
2177 // number.
AssertIsEven(const char * expr,int n)2178 AssertionResult AssertIsEven(const char* expr, int n) {
2179   if (IsEven(n)) {
2180     return AssertionSuccess();
2181   }
2182 
2183   Message msg;
2184   msg << expr << " evaluates to " << n << ", which is not even.";
2185   return AssertionFailure(msg);
2186 }
2187 
2188 // A predicate function that returns AssertionResult for use in
2189 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2190 AssertionResult ResultIsEven(int n) {
2191   if (IsEven(n))
2192     return AssertionSuccess() << n << " is even";
2193   else
2194     return AssertionFailure() << n << " is odd";
2195 }
2196 
2197 // A predicate function that returns AssertionResult but gives no
2198 // explanation why it succeeds. Needed for testing that
2199 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2200 AssertionResult ResultIsEvenNoExplanation(int n) {
2201   if (IsEven(n))
2202     return AssertionSuccess();
2203   else
2204     return AssertionFailure() << n << " is odd";
2205 }
2206 
2207 // A predicate-formatter functor that asserts the argument is an even
2208 // number.
2209 struct AssertIsEvenFunctor {
operator ()__anonbb4b4fd70111::AssertIsEvenFunctor2210   AssertionResult operator()(const char* expr, int n) {
2211     return AssertIsEven(expr, n);
2212   }
2213 };
2214 
2215 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2216 bool SumIsEven2(int n1, int n2) {
2217   return IsEven(n1 + n2);
2218 }
2219 
2220 // A functor that returns true if and only if the sum of the arguments is an
2221 // even number.
2222 struct SumIsEven3Functor {
operator ()__anonbb4b4fd70111::SumIsEven3Functor2223   bool operator()(int n1, int n2, int n3) {
2224     return IsEven(n1 + n2 + n3);
2225   }
2226 };
2227 
2228 // A predicate-formatter function that asserts the sum of the
2229 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2230 AssertionResult AssertSumIsEven4(
2231     const char* e1, const char* e2, const char* e3, const char* e4,
2232     int n1, int n2, int n3, int n4) {
2233   const int sum = n1 + n2 + n3 + n4;
2234   if (IsEven(sum)) {
2235     return AssertionSuccess();
2236   }
2237 
2238   Message msg;
2239   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2240       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2241       << ") evaluates to " << sum << ", which is not even.";
2242   return AssertionFailure(msg);
2243 }
2244 
2245 // A predicate-formatter functor that asserts the sum of the arguments
2246 // is an even number.
2247 struct AssertSumIsEven5Functor {
operator ()__anonbb4b4fd70111::AssertSumIsEven5Functor2248   AssertionResult operator()(
2249       const char* e1, const char* e2, const char* e3, const char* e4,
2250       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2251     const int sum = n1 + n2 + n3 + n4 + n5;
2252     if (IsEven(sum)) {
2253       return AssertionSuccess();
2254     }
2255 
2256     Message msg;
2257     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2258         << " ("
2259         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2260         << ") evaluates to " << sum << ", which is not even.";
2261     return AssertionFailure(msg);
2262   }
2263 };
2264 
2265 
2266 // Tests unary predicate assertions.
2267 
2268 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2269 TEST(Pred1Test, WithoutFormat) {
2270   // Success cases.
2271   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2272   ASSERT_PRED1(IsEven, 4);
2273 
2274   // Failure cases.
2275   EXPECT_NONFATAL_FAILURE({  // NOLINT
2276     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2277   }, "This failure is expected.");
2278   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2279                        "evaluates to false");
2280 }
2281 
2282 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2283 TEST(Pred1Test, WithFormat) {
2284   // Success cases.
2285   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2286   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2287     << "This failure is UNEXPECTED!";
2288 
2289   // Failure cases.
2290   const int n = 5;
2291   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2292                           "n evaluates to 5, which is not even.");
2293   EXPECT_FATAL_FAILURE({  // NOLINT
2294     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2295   }, "This failure is expected.");
2296 }
2297 
2298 // Tests that unary predicate assertions evaluates their arguments
2299 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2300 TEST(Pred1Test, SingleEvaluationOnFailure) {
2301   // A success case.
2302   static int n = 0;
2303   EXPECT_PRED1(IsEven, n++);
2304   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2305 
2306   // A failure case.
2307   EXPECT_FATAL_FAILURE({  // NOLINT
2308     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2309         << "This failure is expected.";
2310   }, "This failure is expected.");
2311   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2312 }
2313 
2314 
2315 // Tests predicate assertions whose arity is >= 2.
2316 
2317 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2318 TEST(PredTest, WithoutFormat) {
2319   // Success cases.
2320   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2321   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2322 
2323   // Failure cases.
2324   const int n1 = 1;
2325   const int n2 = 2;
2326   EXPECT_NONFATAL_FAILURE({  // NOLINT
2327     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2328   }, "This failure is expected.");
2329   EXPECT_FATAL_FAILURE({  // NOLINT
2330     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2331   }, "evaluates to false");
2332 }
2333 
2334 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2335 TEST(PredTest, WithFormat) {
2336   // Success cases.
2337   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2338     "This failure is UNEXPECTED!";
2339   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2340 
2341   // Failure cases.
2342   const int n1 = 1;
2343   const int n2 = 2;
2344   const int n3 = 4;
2345   const int n4 = 6;
2346   EXPECT_NONFATAL_FAILURE({  // NOLINT
2347     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2348   }, "evaluates to 13, which is not even.");
2349   EXPECT_FATAL_FAILURE({  // NOLINT
2350     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2351         << "This failure is expected.";
2352   }, "This failure is expected.");
2353 }
2354 
2355 // Tests that predicate assertions evaluates their arguments
2356 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2357 TEST(PredTest, SingleEvaluationOnFailure) {
2358   // A success case.
2359   int n1 = 0;
2360   int n2 = 0;
2361   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2362   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2363   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2364 
2365   // Another success case.
2366   n1 = n2 = 0;
2367   int n3 = 0;
2368   int n4 = 0;
2369   int n5 = 0;
2370   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2371                       n1++, n2++, n3++, n4++, n5++)
2372                         << "This failure is UNEXPECTED!";
2373   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2374   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2375   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2376   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2377   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2378 
2379   // A failure case.
2380   n1 = n2 = n3 = 0;
2381   EXPECT_NONFATAL_FAILURE({  // NOLINT
2382     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2383         << "This failure is expected.";
2384   }, "This failure is expected.");
2385   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2386   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2387   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2388 
2389   // Another failure case.
2390   n1 = n2 = n3 = n4 = 0;
2391   EXPECT_NONFATAL_FAILURE({  // NOLINT
2392     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2393   }, "evaluates to 1, which is not even.");
2394   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2395   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2396   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2397   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2398 }
2399 
2400 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2401 TEST(PredTest, ExpectPredEvalFailure) {
2402   std::set<int> set_a = {2, 1, 3, 4, 5};
2403   std::set<int> set_b = {0, 4, 8};
2404   const auto compare_sets = [] (std::set<int>, std::set<int>) { return false; };
2405   EXPECT_NONFATAL_FAILURE(
2406       EXPECT_PRED2(compare_sets, set_a, set_b),
2407       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2408       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2409 }
2410 
2411 // Some helper functions for testing using overloaded/template
2412 // functions with ASSERT_PREDn and EXPECT_PREDn.
2413 
IsPositive(double x)2414 bool IsPositive(double x) {
2415   return x > 0;
2416 }
2417 
2418 template <typename T>
IsNegative(T x)2419 bool IsNegative(T x) {
2420   return x < 0;
2421 }
2422 
2423 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2424 bool GreaterThan(T1 x1, T2 x2) {
2425   return x1 > x2;
2426 }
2427 
2428 // Tests that overloaded functions can be used in *_PRED* as long as
2429 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2430 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2431   // C++Builder requires C-style casts rather than static_cast.
2432   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2433   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2434 }
2435 
2436 // Tests that template functions can be used in *_PRED* as long as
2437 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2438 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2439   EXPECT_PRED1(IsNegative<int>, -5);
2440   // Makes sure that we can handle templates with more than one
2441   // parameter.
2442   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2443 }
2444 
2445 
2446 // Some helper functions for testing using overloaded/template
2447 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2448 
IsPositiveFormat(const char *,int n)2449 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2450   return n > 0 ? AssertionSuccess() :
2451       AssertionFailure(Message() << "Failure");
2452 }
2453 
IsPositiveFormat(const char *,double x)2454 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2455   return x > 0 ? AssertionSuccess() :
2456       AssertionFailure(Message() << "Failure");
2457 }
2458 
2459 template <typename T>
IsNegativeFormat(const char *,T x)2460 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2461   return x < 0 ? AssertionSuccess() :
2462       AssertionFailure(Message() << "Failure");
2463 }
2464 
2465 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2466 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2467                              const T1& x1, const T2& x2) {
2468   return x1 == x2 ? AssertionSuccess() :
2469       AssertionFailure(Message() << "Failure");
2470 }
2471 
2472 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2473 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2474 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2475   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2476   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2477 }
2478 
2479 // Tests that template functions can be used in *_PRED_FORMAT* without
2480 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2481 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2482   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2483   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2484 }
2485 
2486 
2487 // Tests string assertions.
2488 
2489 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2490 TEST(StringAssertionTest, ASSERT_STREQ) {
2491   const char * const p1 = "good";
2492   ASSERT_STREQ(p1, p1);
2493 
2494   // Let p2 have the same content as p1, but be at a different address.
2495   const char p2[] = "good";
2496   ASSERT_STREQ(p1, p2);
2497 
2498   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2499                        "  \"bad\"\n  \"good\"");
2500 }
2501 
2502 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2503 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2504   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2505   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2506 }
2507 
2508 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2509 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2510   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2511 }
2512 
2513 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2514 TEST(StringAssertionTest, ASSERT_STRNE) {
2515   ASSERT_STRNE("hi", "Hi");
2516   ASSERT_STRNE("Hi", nullptr);
2517   ASSERT_STRNE(nullptr, "Hi");
2518   ASSERT_STRNE("", nullptr);
2519   ASSERT_STRNE(nullptr, "");
2520   ASSERT_STRNE("", "Hi");
2521   ASSERT_STRNE("Hi", "");
2522   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2523                        "\"Hi\" vs \"Hi\"");
2524 }
2525 
2526 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2527 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2528   ASSERT_STRCASEEQ("hi", "Hi");
2529   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2530 
2531   ASSERT_STRCASEEQ("", "");
2532   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2533                        "Ignoring case");
2534 }
2535 
2536 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2537 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2538   ASSERT_STRCASENE("hi1", "Hi2");
2539   ASSERT_STRCASENE("Hi", nullptr);
2540   ASSERT_STRCASENE(nullptr, "Hi");
2541   ASSERT_STRCASENE("", nullptr);
2542   ASSERT_STRCASENE(nullptr, "");
2543   ASSERT_STRCASENE("", "Hi");
2544   ASSERT_STRCASENE("Hi", "");
2545   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2546                        "(ignoring case)");
2547 }
2548 
2549 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2550 TEST(StringAssertionTest, STREQ_Wide) {
2551   // NULL strings.
2552   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2553 
2554   // Empty strings.
2555   ASSERT_STREQ(L"", L"");
2556 
2557   // Non-null vs NULL.
2558   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2559 
2560   // Equal strings.
2561   EXPECT_STREQ(L"Hi", L"Hi");
2562 
2563   // Unequal strings.
2564   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2565                           "Abc");
2566 
2567   // Strings containing wide characters.
2568   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2569                           "abc");
2570 
2571   // The streaming variation.
2572   EXPECT_NONFATAL_FAILURE({  // NOLINT
2573     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2574   }, "Expected failure");
2575 }
2576 
2577 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2578 TEST(StringAssertionTest, STRNE_Wide) {
2579   // NULL strings.
2580   EXPECT_NONFATAL_FAILURE(
2581       {  // NOLINT
2582         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2583       },
2584       "");
2585 
2586   // Empty strings.
2587   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2588                           "L\"\"");
2589 
2590   // Non-null vs NULL.
2591   ASSERT_STRNE(L"non-null", nullptr);
2592 
2593   // Equal strings.
2594   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2595                           "L\"Hi\"");
2596 
2597   // Unequal strings.
2598   EXPECT_STRNE(L"abc", L"Abc");
2599 
2600   // Strings containing wide characters.
2601   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2602                           "abc");
2603 
2604   // The streaming variation.
2605   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2606 }
2607 
2608 // Tests for ::testing::IsSubstring().
2609 
2610 // Tests that IsSubstring() returns the correct result when the input
2611 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2612 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2613   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2614   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2615   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2616 
2617   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2618   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2619 }
2620 
2621 // Tests that IsSubstring() returns the correct result when the input
2622 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2623 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2624   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2625   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2626   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2627 
2628   EXPECT_TRUE(
2629       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2630   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2631 }
2632 
2633 // Tests that IsSubstring() generates the correct message when the input
2634 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2635 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2636   EXPECT_STREQ("Value of: needle_expr\n"
2637                "  Actual: \"needle\"\n"
2638                "Expected: a substring of haystack_expr\n"
2639                "Which is: \"haystack\"",
2640                IsSubstring("needle_expr", "haystack_expr",
2641                            "needle", "haystack").failure_message());
2642 }
2643 
2644 // Tests that IsSubstring returns the correct result when the input
2645 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2646 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2647   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2648   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2649 }
2650 
2651 #if GTEST_HAS_STD_WSTRING
2652 // Tests that IsSubstring returns the correct result when the input
2653 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2654 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2655   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2656   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2657 }
2658 
2659 // Tests that IsSubstring() generates the correct message when the input
2660 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2661 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2662   EXPECT_STREQ("Value of: needle_expr\n"
2663                "  Actual: L\"needle\"\n"
2664                "Expected: a substring of haystack_expr\n"
2665                "Which is: L\"haystack\"",
2666                IsSubstring(
2667                    "needle_expr", "haystack_expr",
2668                    ::std::wstring(L"needle"), L"haystack").failure_message());
2669 }
2670 
2671 #endif  // GTEST_HAS_STD_WSTRING
2672 
2673 // Tests for ::testing::IsNotSubstring().
2674 
2675 // Tests that IsNotSubstring() returns the correct result when the input
2676 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2677 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2678   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2679   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2680 }
2681 
2682 // Tests that IsNotSubstring() returns the correct result when the input
2683 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2684 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2685   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2686   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2687 }
2688 
2689 // Tests that IsNotSubstring() generates the correct message when the input
2690 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2691 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2692   EXPECT_STREQ("Value of: needle_expr\n"
2693                "  Actual: L\"needle\"\n"
2694                "Expected: not a substring of haystack_expr\n"
2695                "Which is: L\"two needles\"",
2696                IsNotSubstring(
2697                    "needle_expr", "haystack_expr",
2698                    L"needle", L"two needles").failure_message());
2699 }
2700 
2701 // Tests that IsNotSubstring returns the correct result when the input
2702 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2703 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2704   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2705   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2706 }
2707 
2708 // Tests that IsNotSubstring() generates the correct message when the input
2709 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2710 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2711   EXPECT_STREQ("Value of: needle_expr\n"
2712                "  Actual: \"needle\"\n"
2713                "Expected: not a substring of haystack_expr\n"
2714                "Which is: \"two needles\"",
2715                IsNotSubstring(
2716                    "needle_expr", "haystack_expr",
2717                    ::std::string("needle"), "two needles").failure_message());
2718 }
2719 
2720 #if GTEST_HAS_STD_WSTRING
2721 
2722 // Tests that IsNotSubstring returns the correct result when the input
2723 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2724 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2725   EXPECT_FALSE(
2726       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2727   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2728 }
2729 
2730 #endif  // GTEST_HAS_STD_WSTRING
2731 
2732 // Tests floating-point assertions.
2733 
2734 template <typename RawType>
2735 class FloatingPointTest : public Test {
2736  protected:
2737   // Pre-calculated numbers to be used by the tests.
2738   struct TestValues {
2739     RawType close_to_positive_zero;
2740     RawType close_to_negative_zero;
2741     RawType further_from_negative_zero;
2742 
2743     RawType close_to_one;
2744     RawType further_from_one;
2745 
2746     RawType infinity;
2747     RawType close_to_infinity;
2748     RawType further_from_infinity;
2749 
2750     RawType nan1;
2751     RawType nan2;
2752   };
2753 
2754   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2755   typedef typename Floating::Bits Bits;
2756 
SetUp()2757   void SetUp() override {
2758     const uint32_t max_ulps = Floating::kMaxUlps;
2759 
2760     // The bits that represent 0.0.
2761     const Bits zero_bits = Floating(0).bits();
2762 
2763     // Makes some numbers close to 0.0.
2764     values_.close_to_positive_zero = Floating::ReinterpretBits(
2765         zero_bits + max_ulps/2);
2766     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2767         zero_bits + max_ulps - max_ulps/2);
2768     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2769         zero_bits + max_ulps + 1 - max_ulps/2);
2770 
2771     // The bits that represent 1.0.
2772     const Bits one_bits = Floating(1).bits();
2773 
2774     // Makes some numbers close to 1.0.
2775     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2776     values_.further_from_one = Floating::ReinterpretBits(
2777         one_bits + max_ulps + 1);
2778 
2779     // +infinity.
2780     values_.infinity = Floating::Infinity();
2781 
2782     // The bits that represent +infinity.
2783     const Bits infinity_bits = Floating(values_.infinity).bits();
2784 
2785     // Makes some numbers close to infinity.
2786     values_.close_to_infinity = Floating::ReinterpretBits(
2787         infinity_bits - max_ulps);
2788     values_.further_from_infinity = Floating::ReinterpretBits(
2789         infinity_bits - max_ulps - 1);
2790 
2791     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2792     // our NaN's are quiet; trying to process a signaling NaN would raise an
2793     // exception if our environment enables floating point exceptions.
2794     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2795         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2796     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2797         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2798   }
2799 
TestSize()2800   void TestSize() {
2801     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2802   }
2803 
2804   static TestValues values_;
2805 };
2806 
2807 template <typename RawType>
2808 typename FloatingPointTest<RawType>::TestValues
2809     FloatingPointTest<RawType>::values_;
2810 
2811 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2812 typedef FloatingPointTest<float> FloatTest;
2813 
2814 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2815 TEST_F(FloatTest, Size) {
2816   TestSize();
2817 }
2818 
2819 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2820 TEST_F(FloatTest, Zeros) {
2821   EXPECT_FLOAT_EQ(0.0, -0.0);
2822   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2823                           "1.0");
2824   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2825                        "1.5");
2826 }
2827 
2828 // Tests comparing numbers close to 0.
2829 //
2830 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2831 // overflow occurs when comparing numbers whose absolute value is very
2832 // small.
TEST_F(FloatTest,AlmostZeros)2833 TEST_F(FloatTest, AlmostZeros) {
2834   // In C++Builder, names within local classes (such as used by
2835   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2836   // scoping class.  Use a static local alias as a workaround.
2837   // We use the assignment syntax since some compilers, like Sun Studio,
2838   // don't allow initializing references using construction syntax
2839   // (parentheses).
2840   static const FloatTest::TestValues& v = this->values_;
2841 
2842   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2843   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2844   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2845 
2846   EXPECT_FATAL_FAILURE({  // NOLINT
2847     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2848                     v.further_from_negative_zero);
2849   }, "v.further_from_negative_zero");
2850 }
2851 
2852 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2853 TEST_F(FloatTest, SmallDiff) {
2854   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2855   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2856                           "values_.further_from_one");
2857 }
2858 
2859 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2860 TEST_F(FloatTest, LargeDiff) {
2861   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2862                           "3.0");
2863 }
2864 
2865 // Tests comparing with infinity.
2866 //
2867 // This ensures that no overflow occurs when comparing numbers whose
2868 // absolute value is very large.
TEST_F(FloatTest,Infinity)2869 TEST_F(FloatTest, Infinity) {
2870   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2871   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2872   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2873                           "-values_.infinity");
2874 
2875   // This is interesting as the representations of infinity and nan1
2876   // are only 1 DLP apart.
2877   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2878                           "values_.nan1");
2879 }
2880 
2881 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2882 TEST_F(FloatTest, NaN) {
2883   // In C++Builder, names within local classes (such as used by
2884   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2885   // scoping class.  Use a static local alias as a workaround.
2886   // We use the assignment syntax since some compilers, like Sun Studio,
2887   // don't allow initializing references using construction syntax
2888   // (parentheses).
2889   static const FloatTest::TestValues& v = this->values_;
2890 
2891   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2892                           "v.nan1");
2893   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2894                           "v.nan2");
2895   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2896                           "v.nan1");
2897 
2898   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2899                        "v.infinity");
2900 }
2901 
2902 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2903 TEST_F(FloatTest, Reflexive) {
2904   EXPECT_FLOAT_EQ(0.0, 0.0);
2905   EXPECT_FLOAT_EQ(1.0, 1.0);
2906   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2907 }
2908 
2909 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2910 TEST_F(FloatTest, Commutative) {
2911   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2912   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2913 
2914   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2915   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2916                           "1.0");
2917 }
2918 
2919 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2920 TEST_F(FloatTest, EXPECT_NEAR) {
2921   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2922   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2923   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2924                           "The difference between 1.0f and 1.5f is 0.5, "
2925                           "which exceeds 0.25f");
2926 }
2927 
2928 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2929 TEST_F(FloatTest, ASSERT_NEAR) {
2930   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2931   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2932   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2933                        "The difference between 1.0f and 1.5f is 0.5, "
2934                        "which exceeds 0.25f");
2935 }
2936 
2937 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2938 TEST_F(FloatTest, FloatLESucceeds) {
2939   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2940   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2941 
2942   // or when val1 is greater than, but almost equals to, val2.
2943   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2944 }
2945 
2946 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2947 TEST_F(FloatTest, FloatLEFails) {
2948   // When val1 is greater than val2 by a large margin,
2949   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2950                           "(2.0f) <= (1.0f)");
2951 
2952   // or by a small yet non-negligible margin,
2953   EXPECT_NONFATAL_FAILURE({  // NOLINT
2954     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2955   }, "(values_.further_from_one) <= (1.0f)");
2956 
2957   EXPECT_NONFATAL_FAILURE({  // NOLINT
2958     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2959   }, "(values_.nan1) <= (values_.infinity)");
2960   EXPECT_NONFATAL_FAILURE({  // NOLINT
2961     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2962   }, "(-values_.infinity) <= (values_.nan1)");
2963   EXPECT_FATAL_FAILURE({  // NOLINT
2964     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2965   }, "(values_.nan1) <= (values_.nan1)");
2966 }
2967 
2968 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2969 typedef FloatingPointTest<double> DoubleTest;
2970 
2971 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2972 TEST_F(DoubleTest, Size) {
2973   TestSize();
2974 }
2975 
2976 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2977 TEST_F(DoubleTest, Zeros) {
2978   EXPECT_DOUBLE_EQ(0.0, -0.0);
2979   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2980                           "1.0");
2981   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2982                        "1.0");
2983 }
2984 
2985 // Tests comparing numbers close to 0.
2986 //
2987 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2988 // overflow occurs when comparing numbers whose absolute value is very
2989 // small.
TEST_F(DoubleTest,AlmostZeros)2990 TEST_F(DoubleTest, AlmostZeros) {
2991   // In C++Builder, names within local classes (such as used by
2992   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2993   // scoping class.  Use a static local alias as a workaround.
2994   // We use the assignment syntax since some compilers, like Sun Studio,
2995   // don't allow initializing references using construction syntax
2996   // (parentheses).
2997   static const DoubleTest::TestValues& v = this->values_;
2998 
2999   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3000   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3001   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3002 
3003   EXPECT_FATAL_FAILURE({  // NOLINT
3004     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3005                      v.further_from_negative_zero);
3006   }, "v.further_from_negative_zero");
3007 }
3008 
3009 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3010 TEST_F(DoubleTest, SmallDiff) {
3011   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3012   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3013                           "values_.further_from_one");
3014 }
3015 
3016 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3017 TEST_F(DoubleTest, LargeDiff) {
3018   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
3019                           "3.0");
3020 }
3021 
3022 // Tests comparing with infinity.
3023 //
3024 // This ensures that no overflow occurs when comparing numbers whose
3025 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3026 TEST_F(DoubleTest, Infinity) {
3027   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3028   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3029   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3030                           "-values_.infinity");
3031 
3032   // This is interesting as the representations of infinity_ and nan1_
3033   // are only 1 DLP apart.
3034   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3035                           "values_.nan1");
3036 }
3037 
3038 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3039 TEST_F(DoubleTest, NaN) {
3040   static const DoubleTest::TestValues& v = this->values_;
3041 
3042   // Nokia's STLport crashes if we try to output infinity or NaN.
3043   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3044                           "v.nan1");
3045   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3046   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3047   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3048                        "v.infinity");
3049 }
3050 
3051 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3052 TEST_F(DoubleTest, Reflexive) {
3053   EXPECT_DOUBLE_EQ(0.0, 0.0);
3054   EXPECT_DOUBLE_EQ(1.0, 1.0);
3055   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3056 }
3057 
3058 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3059 TEST_F(DoubleTest, Commutative) {
3060   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3061   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3062 
3063   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3064   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3065                           "1.0");
3066 }
3067 
3068 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3069 TEST_F(DoubleTest, EXPECT_NEAR) {
3070   EXPECT_NEAR(-1.0, -1.1, 0.2);
3071   EXPECT_NEAR(2.0, 3.0, 1.0);
3072   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3073                           "The difference between 1.0 and 1.5 is 0.5, "
3074                           "which exceeds 0.25");
3075   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3076   // slightly different failure reporting path.
3077   EXPECT_NONFATAL_FAILURE(
3078       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3079       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3080       "minimum distance between doubles for numbers of this magnitude which is "
3081       "512");
3082 }
3083 
3084 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3085 TEST_F(DoubleTest, ASSERT_NEAR) {
3086   ASSERT_NEAR(-1.0, -1.1, 0.2);
3087   ASSERT_NEAR(2.0, 3.0, 1.0);
3088   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3089                        "The difference between 1.0 and 1.5 is 0.5, "
3090                        "which exceeds 0.25");
3091 }
3092 
3093 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3094 TEST_F(DoubleTest, DoubleLESucceeds) {
3095   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3096   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3097 
3098   // or when val1 is greater than, but almost equals to, val2.
3099   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3100 }
3101 
3102 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3103 TEST_F(DoubleTest, DoubleLEFails) {
3104   // When val1 is greater than val2 by a large margin,
3105   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3106                           "(2.0) <= (1.0)");
3107 
3108   // or by a small yet non-negligible margin,
3109   EXPECT_NONFATAL_FAILURE({  // NOLINT
3110     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3111   }, "(values_.further_from_one) <= (1.0)");
3112 
3113   EXPECT_NONFATAL_FAILURE({  // NOLINT
3114     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3115   }, "(values_.nan1) <= (values_.infinity)");
3116   EXPECT_NONFATAL_FAILURE({  // NOLINT
3117     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3118   }, " (-values_.infinity) <= (values_.nan1)");
3119   EXPECT_FATAL_FAILURE({  // NOLINT
3120     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3121   }, "(values_.nan1) <= (values_.nan1)");
3122 }
3123 
3124 
3125 // Verifies that a test or test case whose name starts with DISABLED_ is
3126 // not run.
3127 
3128 // A test whose name starts with DISABLED_.
3129 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3130 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3131   FAIL() << "Unexpected failure: Disabled test should not be run.";
3132 }
3133 
3134 // A test whose name does not start with DISABLED_.
3135 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3136 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3137   EXPECT_EQ(1, 1);
3138 }
3139 
3140 // A test case whose name starts with DISABLED_.
3141 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3142 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3143   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3144 }
3145 
3146 // A test case and test whose names start with DISABLED_.
3147 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3148 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3149   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3150 }
3151 
3152 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3153 // TearDownTestSuite() are not called.
3154 class DisabledTestsTest : public Test {
3155  protected:
SetUpTestSuite()3156   static void SetUpTestSuite() {
3157     FAIL() << "Unexpected failure: All tests disabled in test case. "
3158               "SetUpTestSuite() should not be called.";
3159   }
3160 
TearDownTestSuite()3161   static void TearDownTestSuite() {
3162     FAIL() << "Unexpected failure: All tests disabled in test case. "
3163               "TearDownTestSuite() should not be called.";
3164   }
3165 };
3166 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3167 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3168   FAIL() << "Unexpected failure: Disabled test should not be run.";
3169 }
3170 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3171 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3172   FAIL() << "Unexpected failure: Disabled test should not be run.";
3173 }
3174 
3175 // Tests that disabled typed tests aren't run.
3176 
3177 template <typename T>
3178 class TypedTest : public Test {
3179 };
3180 
3181 typedef testing::Types<int, double> NumericTypes;
3182 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3183 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3184 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3185   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3186 }
3187 
3188 template <typename T>
3189 class DISABLED_TypedTest : public Test {
3190 };
3191 
3192 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3193 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3194 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3195   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3196 }
3197 
3198 // Tests that disabled type-parameterized tests aren't run.
3199 
3200 template <typename T>
3201 class TypedTestP : public Test {
3202 };
3203 
3204 TYPED_TEST_SUITE_P(TypedTestP);
3205 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3206 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3207   FAIL() << "Unexpected failure: "
3208          << "Disabled type-parameterized test should not run.";
3209 }
3210 
3211 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3212 
3213 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3214 
3215 template <typename T>
3216 class DISABLED_TypedTestP : public Test {
3217 };
3218 
3219 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3220 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3221 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3222   FAIL() << "Unexpected failure: "
3223          << "Disabled type-parameterized test should not run.";
3224 }
3225 
3226 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3227 
3228 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3229 
3230 // Tests that assertion macros evaluate their arguments exactly once.
3231 
3232 class SingleEvaluationTest : public Test {
3233  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3234   // This helper function is needed by the FailedASSERT_STREQ test
3235   // below.  It's public to work around C++Builder's bug with scoping local
3236   // classes.
CompareAndIncrementCharPtrs()3237   static void CompareAndIncrementCharPtrs() {
3238     ASSERT_STREQ(p1_++, p2_++);
3239   }
3240 
3241   // This helper function is needed by the FailedASSERT_NE test below.  It's
3242   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3243   static void CompareAndIncrementInts() {
3244     ASSERT_NE(a_++, b_++);
3245   }
3246 
3247  protected:
SingleEvaluationTest()3248   SingleEvaluationTest() {
3249     p1_ = s1_;
3250     p2_ = s2_;
3251     a_ = 0;
3252     b_ = 0;
3253   }
3254 
3255   static const char* const s1_;
3256   static const char* const s2_;
3257   static const char* p1_;
3258   static const char* p2_;
3259 
3260   static int a_;
3261   static int b_;
3262 };
3263 
3264 const char* const SingleEvaluationTest::s1_ = "01234";
3265 const char* const SingleEvaluationTest::s2_ = "abcde";
3266 const char* SingleEvaluationTest::p1_;
3267 const char* SingleEvaluationTest::p2_;
3268 int SingleEvaluationTest::a_;
3269 int SingleEvaluationTest::b_;
3270 
3271 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3272 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3273 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3274   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3275                        "p2_++");
3276   EXPECT_EQ(s1_ + 1, p1_);
3277   EXPECT_EQ(s2_ + 1, p2_);
3278 }
3279 
3280 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3281 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3282   // successful EXPECT_STRNE
3283   EXPECT_STRNE(p1_++, p2_++);
3284   EXPECT_EQ(s1_ + 1, p1_);
3285   EXPECT_EQ(s2_ + 1, p2_);
3286 
3287   // failed EXPECT_STRCASEEQ
3288   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3289                           "Ignoring case");
3290   EXPECT_EQ(s1_ + 2, p1_);
3291   EXPECT_EQ(s2_ + 2, p2_);
3292 }
3293 
3294 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3295 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3296 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3297   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3298                        "(a_++) != (b_++)");
3299   EXPECT_EQ(1, a_);
3300   EXPECT_EQ(1, b_);
3301 }
3302 
3303 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3304 TEST_F(SingleEvaluationTest, OtherCases) {
3305   // successful EXPECT_TRUE
3306   EXPECT_TRUE(0 == a_++);  // NOLINT
3307   EXPECT_EQ(1, a_);
3308 
3309   // failed EXPECT_TRUE
3310   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3311   EXPECT_EQ(2, a_);
3312 
3313   // successful EXPECT_GT
3314   EXPECT_GT(a_++, b_++);
3315   EXPECT_EQ(3, a_);
3316   EXPECT_EQ(1, b_);
3317 
3318   // failed EXPECT_LT
3319   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3320   EXPECT_EQ(4, a_);
3321   EXPECT_EQ(2, b_);
3322 
3323   // successful ASSERT_TRUE
3324   ASSERT_TRUE(0 < a_++);  // NOLINT
3325   EXPECT_EQ(5, a_);
3326 
3327   // successful ASSERT_GT
3328   ASSERT_GT(a_++, b_++);
3329   EXPECT_EQ(6, a_);
3330   EXPECT_EQ(3, b_);
3331 }
3332 
3333 #if GTEST_HAS_EXCEPTIONS
3334 
3335 #if GTEST_HAS_RTTI
3336 
3337 #ifdef _MSC_VER
3338 #define ERROR_DESC "class std::runtime_error"
3339 #else
3340 #define ERROR_DESC "std::runtime_error"
3341 #endif
3342 
3343 #else  // GTEST_HAS_RTTI
3344 
3345 #define ERROR_DESC "an std::exception-derived error"
3346 
3347 #endif  // GTEST_HAS_RTTI
3348 
ThrowAnInteger()3349 void ThrowAnInteger() {
3350   throw 1;
3351 }
ThrowRuntimeError(const char * what)3352 void ThrowRuntimeError(const char* what) {
3353   throw std::runtime_error(what);
3354 }
3355 
3356 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3357 TEST_F(SingleEvaluationTest, ExceptionTests) {
3358   // successful EXPECT_THROW
3359   EXPECT_THROW({  // NOLINT
3360     a_++;
3361     ThrowAnInteger();
3362   }, int);
3363   EXPECT_EQ(1, a_);
3364 
3365   // failed EXPECT_THROW, throws different
3366   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3367     a_++;
3368     ThrowAnInteger();
3369   }, bool), "throws a different type");
3370   EXPECT_EQ(2, a_);
3371 
3372   // failed EXPECT_THROW, throws runtime error
3373   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3374     a_++;
3375     ThrowRuntimeError("A description");
3376   }, bool), "throws " ERROR_DESC " with description \"A description\"");
3377   EXPECT_EQ(3, a_);
3378 
3379   // failed EXPECT_THROW, throws nothing
3380   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3381   EXPECT_EQ(4, a_);
3382 
3383   // successful EXPECT_NO_THROW
3384   EXPECT_NO_THROW(a_++);
3385   EXPECT_EQ(5, a_);
3386 
3387   // failed EXPECT_NO_THROW
3388   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3389     a_++;
3390     ThrowAnInteger();
3391   }), "it throws");
3392   EXPECT_EQ(6, a_);
3393 
3394   // successful EXPECT_ANY_THROW
3395   EXPECT_ANY_THROW({  // NOLINT
3396     a_++;
3397     ThrowAnInteger();
3398   });
3399   EXPECT_EQ(7, a_);
3400 
3401   // failed EXPECT_ANY_THROW
3402   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3403   EXPECT_EQ(8, a_);
3404 }
3405 
3406 #endif  // GTEST_HAS_EXCEPTIONS
3407 
3408 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3409 class NoFatalFailureTest : public Test {
3410  protected:
Succeeds()3411   void Succeeds() {}
FailsNonFatal()3412   void FailsNonFatal() {
3413     ADD_FAILURE() << "some non-fatal failure";
3414   }
Fails()3415   void Fails() {
3416     FAIL() << "some fatal failure";
3417   }
3418 
DoAssertNoFatalFailureOnFails()3419   void DoAssertNoFatalFailureOnFails() {
3420     ASSERT_NO_FATAL_FAILURE(Fails());
3421     ADD_FAILURE() << "should not reach here.";
3422   }
3423 
DoExpectNoFatalFailureOnFails()3424   void DoExpectNoFatalFailureOnFails() {
3425     EXPECT_NO_FATAL_FAILURE(Fails());
3426     ADD_FAILURE() << "other failure";
3427   }
3428 };
3429 
TEST_F(NoFatalFailureTest,NoFailure)3430 TEST_F(NoFatalFailureTest, NoFailure) {
3431   EXPECT_NO_FATAL_FAILURE(Succeeds());
3432   ASSERT_NO_FATAL_FAILURE(Succeeds());
3433 }
3434 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3435 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3436   EXPECT_NONFATAL_FAILURE(
3437       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3438       "some non-fatal failure");
3439   EXPECT_NONFATAL_FAILURE(
3440       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3441       "some non-fatal failure");
3442 }
3443 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3444 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3445   TestPartResultArray gtest_failures;
3446   {
3447     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3448     DoAssertNoFatalFailureOnFails();
3449   }
3450   ASSERT_EQ(2, gtest_failures.size());
3451   EXPECT_EQ(TestPartResult::kFatalFailure,
3452             gtest_failures.GetTestPartResult(0).type());
3453   EXPECT_EQ(TestPartResult::kFatalFailure,
3454             gtest_failures.GetTestPartResult(1).type());
3455   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3456                       gtest_failures.GetTestPartResult(0).message());
3457   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3458                       gtest_failures.GetTestPartResult(1).message());
3459 }
3460 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3461 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3462   TestPartResultArray gtest_failures;
3463   {
3464     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3465     DoExpectNoFatalFailureOnFails();
3466   }
3467   ASSERT_EQ(3, gtest_failures.size());
3468   EXPECT_EQ(TestPartResult::kFatalFailure,
3469             gtest_failures.GetTestPartResult(0).type());
3470   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3471             gtest_failures.GetTestPartResult(1).type());
3472   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3473             gtest_failures.GetTestPartResult(2).type());
3474   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3475                       gtest_failures.GetTestPartResult(0).message());
3476   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3477                       gtest_failures.GetTestPartResult(1).message());
3478   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3479                       gtest_failures.GetTestPartResult(2).message());
3480 }
3481 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3482 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3483   TestPartResultArray gtest_failures;
3484   {
3485     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3486     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3487   }
3488   ASSERT_EQ(2, gtest_failures.size());
3489   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3490             gtest_failures.GetTestPartResult(0).type());
3491   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3492             gtest_failures.GetTestPartResult(1).type());
3493   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3494                       gtest_failures.GetTestPartResult(0).message());
3495   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3496                       gtest_failures.GetTestPartResult(1).message());
3497 }
3498 
3499 // Tests non-string assertions.
3500 
EditsToString(const std::vector<EditType> & edits)3501 std::string EditsToString(const std::vector<EditType>& edits) {
3502   std::string out;
3503   for (size_t i = 0; i < edits.size(); ++i) {
3504     static const char kEdits[] = " +-/";
3505     out.append(1, kEdits[edits[i]]);
3506   }
3507   return out;
3508 }
3509 
CharsToIndices(const std::string & str)3510 std::vector<size_t> CharsToIndices(const std::string& str) {
3511   std::vector<size_t> out;
3512   for (size_t i = 0; i < str.size(); ++i) {
3513     out.push_back(static_cast<size_t>(str[i]));
3514   }
3515   return out;
3516 }
3517 
CharsToLines(const std::string & str)3518 std::vector<std::string> CharsToLines(const std::string& str) {
3519   std::vector<std::string> out;
3520   for (size_t i = 0; i < str.size(); ++i) {
3521     out.push_back(str.substr(i, 1));
3522   }
3523   return out;
3524 }
3525 
TEST(EditDistance,TestSuites)3526 TEST(EditDistance, TestSuites) {
3527   struct Case {
3528     int line;
3529     const char* left;
3530     const char* right;
3531     const char* expected_edits;
3532     const char* expected_diff;
3533   };
3534   static const Case kCases[] = {
3535       // No change.
3536       {__LINE__, "A", "A", " ", ""},
3537       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3538       // Simple adds.
3539       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3540       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3541       // Simple removes.
3542       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3543       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3544       // Simple replaces.
3545       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3546       {__LINE__, "ABCD", "abcd", "////",
3547        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3548       // Path finding.
3549       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3550        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3551       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3552        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3553       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3554        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3555       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3556        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3557        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3558       {}};
3559   for (const Case* c = kCases; c->left; ++c) {
3560     EXPECT_TRUE(c->expected_edits ==
3561                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3562                                                     CharsToIndices(c->right))))
3563         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3564         << EditsToString(CalculateOptimalEdits(
3565                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3566     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3567                                                       CharsToLines(c->right)))
3568         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3569         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3570         << ">";
3571   }
3572 }
3573 
3574 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3575 TEST(AssertionTest, EqFailure) {
3576   const std::string foo_val("5"), bar_val("6");
3577   const std::string msg1(
3578       EqFailure("foo", "bar", foo_val, bar_val, false)
3579       .failure_message());
3580   EXPECT_STREQ(
3581       "Expected equality of these values:\n"
3582       "  foo\n"
3583       "    Which is: 5\n"
3584       "  bar\n"
3585       "    Which is: 6",
3586       msg1.c_str());
3587 
3588   const std::string msg2(
3589       EqFailure("foo", "6", foo_val, bar_val, false)
3590       .failure_message());
3591   EXPECT_STREQ(
3592       "Expected equality of these values:\n"
3593       "  foo\n"
3594       "    Which is: 5\n"
3595       "  6",
3596       msg2.c_str());
3597 
3598   const std::string msg3(
3599       EqFailure("5", "bar", foo_val, bar_val, false)
3600       .failure_message());
3601   EXPECT_STREQ(
3602       "Expected equality of these values:\n"
3603       "  5\n"
3604       "  bar\n"
3605       "    Which is: 6",
3606       msg3.c_str());
3607 
3608   const std::string msg4(
3609       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3610   EXPECT_STREQ(
3611       "Expected equality of these values:\n"
3612       "  5\n"
3613       "  6",
3614       msg4.c_str());
3615 
3616   const std::string msg5(
3617       EqFailure("foo", "bar",
3618                 std::string("\"x\""), std::string("\"y\""),
3619                 true).failure_message());
3620   EXPECT_STREQ(
3621       "Expected equality of these values:\n"
3622       "  foo\n"
3623       "    Which is: \"x\"\n"
3624       "  bar\n"
3625       "    Which is: \"y\"\n"
3626       "Ignoring case",
3627       msg5.c_str());
3628 }
3629 
TEST(AssertionTest,EqFailureWithDiff)3630 TEST(AssertionTest, EqFailureWithDiff) {
3631   const std::string left(
3632       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3633   const std::string right(
3634       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3635   const std::string msg1(
3636       EqFailure("left", "right", left, right, false).failure_message());
3637   EXPECT_STREQ(
3638       "Expected equality of these values:\n"
3639       "  left\n"
3640       "    Which is: "
3641       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3642       "  right\n"
3643       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3644       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3645       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3646       msg1.c_str());
3647 }
3648 
3649 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3650 TEST(AssertionTest, AppendUserMessage) {
3651   const std::string foo("foo");
3652 
3653   Message msg;
3654   EXPECT_STREQ("foo",
3655                AppendUserMessage(foo, msg).c_str());
3656 
3657   msg << "bar";
3658   EXPECT_STREQ("foo\nbar",
3659                AppendUserMessage(foo, msg).c_str());
3660 }
3661 
3662 #ifdef __BORLANDC__
3663 // Silences warnings: "Condition is always true", "Unreachable code"
3664 # pragma option push -w-ccc -w-rch
3665 #endif
3666 
3667 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3668 TEST(AssertionTest, ASSERT_TRUE) {
3669   ASSERT_TRUE(2 > 1);  // NOLINT
3670   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3671                        "2 < 1");
3672 }
3673 
3674 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3675 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3676   ASSERT_TRUE(ResultIsEven(2));
3677 #ifndef __BORLANDC__
3678   // ICE's in C++Builder.
3679   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3680                        "Value of: ResultIsEven(3)\n"
3681                        "  Actual: false (3 is odd)\n"
3682                        "Expected: true");
3683 #endif
3684   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3685   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3686                        "Value of: ResultIsEvenNoExplanation(3)\n"
3687                        "  Actual: false (3 is odd)\n"
3688                        "Expected: true");
3689 }
3690 
3691 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3692 TEST(AssertionTest, ASSERT_FALSE) {
3693   ASSERT_FALSE(2 < 1);  // NOLINT
3694   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3695                        "Value of: 2 > 1\n"
3696                        "  Actual: true\n"
3697                        "Expected: false");
3698 }
3699 
3700 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3701 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3702   ASSERT_FALSE(ResultIsEven(3));
3703 #ifndef __BORLANDC__
3704   // ICE's in C++Builder.
3705   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3706                        "Value of: ResultIsEven(2)\n"
3707                        "  Actual: true (2 is even)\n"
3708                        "Expected: false");
3709 #endif
3710   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3711   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3712                        "Value of: ResultIsEvenNoExplanation(2)\n"
3713                        "  Actual: true\n"
3714                        "Expected: false");
3715 }
3716 
3717 #ifdef __BORLANDC__
3718 // Restores warnings after previous "#pragma option push" suppressed them
3719 # pragma option pop
3720 #endif
3721 
3722 // Tests using ASSERT_EQ on double values.  The purpose is to make
3723 // sure that the specialization we did for integer and anonymous enums
3724 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3725 TEST(ExpectTest, ASSERT_EQ_Double) {
3726   // A success.
3727   ASSERT_EQ(5.6, 5.6);
3728 
3729   // A failure.
3730   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3731                        "5.1");
3732 }
3733 
3734 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3735 TEST(AssertionTest, ASSERT_EQ) {
3736   ASSERT_EQ(5, 2 + 3);
3737   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3738                        "Expected equality of these values:\n"
3739                        "  5\n"
3740                        "  2*3\n"
3741                        "    Which is: 6");
3742 }
3743 
3744 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3745 TEST(AssertionTest, ASSERT_EQ_NULL) {
3746   // A success.
3747   const char* p = nullptr;
3748   ASSERT_EQ(nullptr, p);
3749 
3750   // A failure.
3751   static int n = 0;
3752   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3753 }
3754 
3755 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3756 // treated as a null pointer by the compiler, we need to make sure
3757 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3758 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3759 TEST(ExpectTest, ASSERT_EQ_0) {
3760   int n = 0;
3761 
3762   // A success.
3763   ASSERT_EQ(0, n);
3764 
3765   // A failure.
3766   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3767                        "  0\n  5.6");
3768 }
3769 
3770 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3771 TEST(AssertionTest, ASSERT_NE) {
3772   ASSERT_NE(6, 7);
3773   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3774                        "Expected: ('a') != ('a'), "
3775                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3776 }
3777 
3778 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3779 TEST(AssertionTest, ASSERT_LE) {
3780   ASSERT_LE(2, 3);
3781   ASSERT_LE(2, 2);
3782   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3783                        "Expected: (2) <= (0), actual: 2 vs 0");
3784 }
3785 
3786 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3787 TEST(AssertionTest, ASSERT_LT) {
3788   ASSERT_LT(2, 3);
3789   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3790                        "Expected: (2) < (2), actual: 2 vs 2");
3791 }
3792 
3793 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3794 TEST(AssertionTest, ASSERT_GE) {
3795   ASSERT_GE(2, 1);
3796   ASSERT_GE(2, 2);
3797   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3798                        "Expected: (2) >= (3), actual: 2 vs 3");
3799 }
3800 
3801 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3802 TEST(AssertionTest, ASSERT_GT) {
3803   ASSERT_GT(2, 1);
3804   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3805                        "Expected: (2) > (2), actual: 2 vs 2");
3806 }
3807 
3808 #if GTEST_HAS_EXCEPTIONS
3809 
ThrowNothing()3810 void ThrowNothing() {}
3811 
3812 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3813 TEST(AssertionTest, ASSERT_THROW) {
3814   ASSERT_THROW(ThrowAnInteger(), int);
3815 
3816 # ifndef __BORLANDC__
3817 
3818   // ICE's in C++Builder 2007 and 2009.
3819   EXPECT_FATAL_FAILURE(
3820       ASSERT_THROW(ThrowAnInteger(), bool),
3821       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3822       "  Actual: it throws a different type.");
3823   EXPECT_FATAL_FAILURE(
3824       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3825       "Expected: ThrowRuntimeError(\"A description\") "
3826       "throws an exception of type std::logic_error.\n  "
3827       "Actual: it throws " ERROR_DESC " "
3828       "with description \"A description\".");
3829 # endif
3830 
3831   EXPECT_FATAL_FAILURE(
3832       ASSERT_THROW(ThrowNothing(), bool),
3833       "Expected: ThrowNothing() throws an exception of type bool.\n"
3834       "  Actual: it throws nothing.");
3835 }
3836 
3837 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3838 TEST(AssertionTest, ASSERT_NO_THROW) {
3839   ASSERT_NO_THROW(ThrowNothing());
3840   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3841                        "Expected: ThrowAnInteger() doesn't throw an exception."
3842                        "\n  Actual: it throws.");
3843   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3844                        "Expected: ThrowRuntimeError(\"A description\") "
3845                        "doesn't throw an exception.\n  "
3846                        "Actual: it throws " ERROR_DESC " "
3847                        "with description \"A description\".");
3848 }
3849 
3850 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3851 TEST(AssertionTest, ASSERT_ANY_THROW) {
3852   ASSERT_ANY_THROW(ThrowAnInteger());
3853   EXPECT_FATAL_FAILURE(
3854       ASSERT_ANY_THROW(ThrowNothing()),
3855       "Expected: ThrowNothing() throws an exception.\n"
3856       "  Actual: it doesn't.");
3857 }
3858 
3859 #endif  // GTEST_HAS_EXCEPTIONS
3860 
3861 // Makes sure we deal with the precedence of <<.  This test should
3862 // compile.
TEST(AssertionTest,AssertPrecedence)3863 TEST(AssertionTest, AssertPrecedence) {
3864   ASSERT_EQ(1 < 2, true);
3865   bool false_value = false;
3866   ASSERT_EQ(true && false_value, false);
3867 }
3868 
3869 // A subroutine used by the following test.
TestEq1(int x)3870 void TestEq1(int x) {
3871   ASSERT_EQ(1, x);
3872 }
3873 
3874 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3875 TEST(AssertionTest, NonFixtureSubroutine) {
3876   EXPECT_FATAL_FAILURE(TestEq1(2),
3877                        "  x\n    Which is: 2");
3878 }
3879 
3880 // An uncopyable class.
3881 class Uncopyable {
3882  public:
Uncopyable(int a_value)3883   explicit Uncopyable(int a_value) : value_(a_value) {}
3884 
value() const3885   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3886   bool operator==(const Uncopyable& rhs) const {
3887     return value() == rhs.value();
3888   }
3889  private:
3890   // This constructor deliberately has no implementation, as we don't
3891   // want this class to be copyable.
3892   Uncopyable(const Uncopyable&);  // NOLINT
3893 
3894   int value_;
3895 };
3896 
operator <<(::std::ostream & os,const Uncopyable & value)3897 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3898   return os << value.value();
3899 }
3900 
3901 
IsPositiveUncopyable(const Uncopyable & x)3902 bool IsPositiveUncopyable(const Uncopyable& x) {
3903   return x.value() > 0;
3904 }
3905 
3906 // A subroutine used by the following test.
TestAssertNonPositive()3907 void TestAssertNonPositive() {
3908   Uncopyable y(-1);
3909   ASSERT_PRED1(IsPositiveUncopyable, y);
3910 }
3911 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3912 void TestAssertEqualsUncopyable() {
3913   Uncopyable x(5);
3914   Uncopyable y(-1);
3915   ASSERT_EQ(x, y);
3916 }
3917 
3918 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3919 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3920   Uncopyable x(5);
3921   ASSERT_PRED1(IsPositiveUncopyable, x);
3922   ASSERT_EQ(x, x);
3923   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3924     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3925   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3926                        "Expected equality of these values:\n"
3927                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3928 }
3929 
3930 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3931 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3932   Uncopyable x(5);
3933   EXPECT_PRED1(IsPositiveUncopyable, x);
3934   Uncopyable y(-1);
3935   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3936     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3937   EXPECT_EQ(x, x);
3938   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3939                           "Expected equality of these values:\n"
3940                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3941 }
3942 
3943 enum NamedEnum {
3944   kE1 = 0,
3945   kE2 = 1
3946 };
3947 
TEST(AssertionTest,NamedEnum)3948 TEST(AssertionTest, NamedEnum) {
3949   EXPECT_EQ(kE1, kE1);
3950   EXPECT_LT(kE1, kE2);
3951   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3952   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3953 }
3954 
3955 // Sun Studio and HP aCC2reject this code.
3956 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3957 
3958 // Tests using assertions with anonymous enums.
3959 enum {
3960   kCaseA = -1,
3961 
3962 # if GTEST_OS_LINUX
3963 
3964   // We want to test the case where the size of the anonymous enum is
3965   // larger than sizeof(int), to make sure our implementation of the
3966   // assertions doesn't truncate the enums.  However, MSVC
3967   // (incorrectly) doesn't allow an enum value to exceed the range of
3968   // an int, so this has to be conditionally compiled.
3969   //
3970   // On Linux, kCaseB and kCaseA have the same value when truncated to
3971   // int size.  We want to test whether this will confuse the
3972   // assertions.
3973   kCaseB = testing::internal::kMaxBiggestInt,
3974 
3975 # else
3976 
3977   kCaseB = INT_MAX,
3978 
3979 # endif  // GTEST_OS_LINUX
3980 
3981   kCaseC = 42
3982 };
3983 
TEST(AssertionTest,AnonymousEnum)3984 TEST(AssertionTest, AnonymousEnum) {
3985 # if GTEST_OS_LINUX
3986 
3987   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3988 
3989 # endif  // GTEST_OS_LINUX
3990 
3991   EXPECT_EQ(kCaseA, kCaseA);
3992   EXPECT_NE(kCaseA, kCaseB);
3993   EXPECT_LT(kCaseA, kCaseB);
3994   EXPECT_LE(kCaseA, kCaseB);
3995   EXPECT_GT(kCaseB, kCaseA);
3996   EXPECT_GE(kCaseA, kCaseA);
3997   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3998                           "(kCaseA) >= (kCaseB)");
3999   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
4000                           "-1 vs 42");
4001 
4002   ASSERT_EQ(kCaseA, kCaseA);
4003   ASSERT_NE(kCaseA, kCaseB);
4004   ASSERT_LT(kCaseA, kCaseB);
4005   ASSERT_LE(kCaseA, kCaseB);
4006   ASSERT_GT(kCaseB, kCaseA);
4007   ASSERT_GE(kCaseA, kCaseA);
4008 
4009 # ifndef __BORLANDC__
4010 
4011   // ICE's in C++Builder.
4012   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
4013                        "  kCaseB\n    Which is: ");
4014   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4015                        "\n    Which is: 42");
4016 # endif
4017 
4018   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4019                        "\n    Which is: -1");
4020 }
4021 
4022 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4023 
4024 #if GTEST_OS_WINDOWS
4025 
UnexpectedHRESULTFailure()4026 static HRESULT UnexpectedHRESULTFailure() {
4027   return E_UNEXPECTED;
4028 }
4029 
OkHRESULTSuccess()4030 static HRESULT OkHRESULTSuccess() {
4031   return S_OK;
4032 }
4033 
FalseHRESULTSuccess()4034 static HRESULT FalseHRESULTSuccess() {
4035   return S_FALSE;
4036 }
4037 
4038 // HRESULT assertion tests test both zero and non-zero
4039 // success codes as well as failure message for each.
4040 //
4041 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4042 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4043   EXPECT_HRESULT_SUCCEEDED(S_OK);
4044   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4045 
4046   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4047     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4048     "  Actual: 0x8000FFFF");
4049 }
4050 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4051 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4052   ASSERT_HRESULT_SUCCEEDED(S_OK);
4053   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4054 
4055   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4056     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4057     "  Actual: 0x8000FFFF");
4058 }
4059 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4060 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4061   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4062 
4063   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4064     "Expected: (OkHRESULTSuccess()) fails.\n"
4065     "  Actual: 0x0");
4066   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4067     "Expected: (FalseHRESULTSuccess()) fails.\n"
4068     "  Actual: 0x1");
4069 }
4070 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4071 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4072   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4073 
4074 # ifndef __BORLANDC__
4075 
4076   // ICE's in C++Builder 2007 and 2009.
4077   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4078     "Expected: (OkHRESULTSuccess()) fails.\n"
4079     "  Actual: 0x0");
4080 # endif
4081 
4082   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4083     "Expected: (FalseHRESULTSuccess()) fails.\n"
4084     "  Actual: 0x1");
4085 }
4086 
4087 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4088 TEST(HRESULTAssertionTest, Streaming) {
4089   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4090   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4091   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4092   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4093 
4094   EXPECT_NONFATAL_FAILURE(
4095       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4096       "expected failure");
4097 
4098 # ifndef __BORLANDC__
4099 
4100   // ICE's in C++Builder 2007 and 2009.
4101   EXPECT_FATAL_FAILURE(
4102       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4103       "expected failure");
4104 # endif
4105 
4106   EXPECT_NONFATAL_FAILURE(
4107       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4108       "expected failure");
4109 
4110   EXPECT_FATAL_FAILURE(
4111       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4112       "expected failure");
4113 }
4114 
4115 #endif  // GTEST_OS_WINDOWS
4116 
4117 // The following code intentionally tests a suboptimal syntax.
4118 #ifdef __GNUC__
4119 #pragma GCC diagnostic push
4120 #pragma GCC diagnostic ignored "-Wdangling-else"
4121 #pragma GCC diagnostic ignored "-Wempty-body"
4122 #pragma GCC diagnostic ignored "-Wpragmas"
4123 #endif
4124 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4125 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4126   if (AlwaysFalse())
4127     ASSERT_TRUE(false) << "This should never be executed; "
4128                           "It's a compilation test only.";
4129 
4130   if (AlwaysTrue())
4131     EXPECT_FALSE(false);
4132   else
4133     ;  // NOLINT
4134 
4135   if (AlwaysFalse())
4136     ASSERT_LT(1, 3);
4137 
4138   if (AlwaysFalse())
4139     ;  // NOLINT
4140   else
4141     EXPECT_GT(3, 2) << "";
4142 }
4143 #ifdef __GNUC__
4144 #pragma GCC diagnostic pop
4145 #endif
4146 
4147 #if GTEST_HAS_EXCEPTIONS
4148 // Tests that the compiler will not complain about unreachable code in the
4149 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4150 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4151   int n = 0;
4152 
4153   EXPECT_THROW(throw 1, int);
4154   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4155   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4156   EXPECT_NO_THROW(n++);
4157   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4158   EXPECT_ANY_THROW(throw 1);
4159   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4160 }
4161 
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4162 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4163   EXPECT_THROW(throw std::exception(), std::exception);
4164 }
4165 
4166 // The following code intentionally tests a suboptimal syntax.
4167 #ifdef __GNUC__
4168 #pragma GCC diagnostic push
4169 #pragma GCC diagnostic ignored "-Wdangling-else"
4170 #pragma GCC diagnostic ignored "-Wempty-body"
4171 #pragma GCC diagnostic ignored "-Wpragmas"
4172 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4173 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4174   if (AlwaysFalse())
4175     EXPECT_THROW(ThrowNothing(), bool);
4176 
4177   if (AlwaysTrue())
4178     EXPECT_THROW(ThrowAnInteger(), int);
4179   else
4180     ;  // NOLINT
4181 
4182   if (AlwaysFalse())
4183     EXPECT_NO_THROW(ThrowAnInteger());
4184 
4185   if (AlwaysTrue())
4186     EXPECT_NO_THROW(ThrowNothing());
4187   else
4188     ;  // NOLINT
4189 
4190   if (AlwaysFalse())
4191     EXPECT_ANY_THROW(ThrowNothing());
4192 
4193   if (AlwaysTrue())
4194     EXPECT_ANY_THROW(ThrowAnInteger());
4195   else
4196     ;  // NOLINT
4197 }
4198 #ifdef __GNUC__
4199 #pragma GCC diagnostic pop
4200 #endif
4201 
4202 #endif  // GTEST_HAS_EXCEPTIONS
4203 
4204 // The following code intentionally tests a suboptimal syntax.
4205 #ifdef __GNUC__
4206 #pragma GCC diagnostic push
4207 #pragma GCC diagnostic ignored "-Wdangling-else"
4208 #pragma GCC diagnostic ignored "-Wempty-body"
4209 #pragma GCC diagnostic ignored "-Wpragmas"
4210 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4211 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4212   if (AlwaysFalse())
4213     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4214                                     << "It's a compilation test only.";
4215   else
4216     ;  // NOLINT
4217 
4218   if (AlwaysFalse())
4219     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4220   else
4221     ;  // NOLINT
4222 
4223   if (AlwaysTrue())
4224     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4225   else
4226     ;  // NOLINT
4227 
4228   if (AlwaysFalse())
4229     ;  // NOLINT
4230   else
4231     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4232 }
4233 #ifdef __GNUC__
4234 #pragma GCC diagnostic pop
4235 #endif
4236 
4237 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4238 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4239   switch (0) {
4240     case 1:
4241       break;
4242     default:
4243       ASSERT_TRUE(true);
4244   }
4245 
4246   switch (0)
4247     case 0:
4248       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4249 
4250   // Binary assertions are implemented using a different code path
4251   // than the Boolean assertions.  Hence we test them separately.
4252   switch (0) {
4253     case 1:
4254     default:
4255       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4256   }
4257 
4258   switch (0)
4259     case 0:
4260       EXPECT_NE(1, 2);
4261 }
4262 
4263 #if GTEST_HAS_EXCEPTIONS
4264 
ThrowAString()4265 void ThrowAString() {
4266     throw "std::string";
4267 }
4268 
4269 // Test that the exception assertion macros compile and work with const
4270 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4271 TEST(AssertionSyntaxTest, WorksWithConst) {
4272     ASSERT_THROW(ThrowAString(), const char*);
4273 
4274     EXPECT_THROW(ThrowAString(), const char*);
4275 }
4276 
4277 #endif  // GTEST_HAS_EXCEPTIONS
4278 
4279 }  // namespace
4280 
4281 namespace testing {
4282 
4283 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4284 TEST(SuccessfulAssertionTest, SUCCEED) {
4285   SUCCEED();
4286   SUCCEED() << "OK";
4287   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4288 }
4289 
4290 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4291 TEST(SuccessfulAssertionTest, EXPECT) {
4292   EXPECT_TRUE(true);
4293   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4294 }
4295 
4296 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4297 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4298   EXPECT_STREQ("", "");
4299   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4300 }
4301 
4302 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4303 TEST(SuccessfulAssertionTest, ASSERT) {
4304   ASSERT_TRUE(true);
4305   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4306 }
4307 
4308 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4309 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4310   ASSERT_STREQ("", "");
4311   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4312 }
4313 
4314 }  // namespace testing
4315 
4316 namespace {
4317 
4318 // Tests the message streaming variation of assertions.
4319 
TEST(AssertionWithMessageTest,EXPECT)4320 TEST(AssertionWithMessageTest, EXPECT) {
4321   EXPECT_EQ(1, 1) << "This should succeed.";
4322   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4323                           "Expected failure #1");
4324   EXPECT_LE(1, 2) << "This should succeed.";
4325   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4326                           "Expected failure #2.");
4327   EXPECT_GE(1, 0) << "This should succeed.";
4328   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4329                           "Expected failure #3.");
4330 
4331   EXPECT_STREQ("1", "1") << "This should succeed.";
4332   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4333                           "Expected failure #4.");
4334   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4335   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4336                           "Expected failure #5.");
4337 
4338   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4339   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4340                           "Expected failure #6.");
4341   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4342 }
4343 
TEST(AssertionWithMessageTest,ASSERT)4344 TEST(AssertionWithMessageTest, ASSERT) {
4345   ASSERT_EQ(1, 1) << "This should succeed.";
4346   ASSERT_NE(1, 2) << "This should succeed.";
4347   ASSERT_LE(1, 2) << "This should succeed.";
4348   ASSERT_LT(1, 2) << "This should succeed.";
4349   ASSERT_GE(1, 0) << "This should succeed.";
4350   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4351                        "Expected failure.");
4352 }
4353 
TEST(AssertionWithMessageTest,ASSERT_STR)4354 TEST(AssertionWithMessageTest, ASSERT_STR) {
4355   ASSERT_STREQ("1", "1") << "This should succeed.";
4356   ASSERT_STRNE("1", "2") << "This should succeed.";
4357   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4358   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4359                        "Expected failure.");
4360 }
4361 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4362 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4363   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4364   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4365   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4366                        "Expect failure.");
4367 }
4368 
4369 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4370 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4371   ASSERT_FALSE(false) << "This shouldn't fail.";
4372   EXPECT_FATAL_FAILURE({  // NOLINT
4373     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4374                        << " evaluates to " << true;
4375   }, "Expected failure");
4376 }
4377 
4378 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4379 TEST(AssertionWithMessageTest, FAIL) {
4380   EXPECT_FATAL_FAILURE(FAIL() << 0,
4381                        "0");
4382 }
4383 
4384 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4385 TEST(AssertionWithMessageTest, SUCCEED) {
4386   SUCCEED() << "Success == " << 1;
4387 }
4388 
4389 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4390 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4391   ASSERT_TRUE(true) << "This should succeed.";
4392   ASSERT_TRUE(true) << true;
4393   EXPECT_FATAL_FAILURE(
4394       {  // NOLINT
4395         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4396                            << static_cast<char*>(nullptr);
4397       },
4398       "(null)(null)");
4399 }
4400 
4401 #if GTEST_OS_WINDOWS
4402 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4403 TEST(AssertionWithMessageTest, WideStringMessage) {
4404   EXPECT_NONFATAL_FAILURE({  // NOLINT
4405     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4406   }, "This failure is expected.");
4407   EXPECT_FATAL_FAILURE({  // NOLINT
4408     ASSERT_EQ(1, 2) << "This failure is "
4409                     << L"expected too.\x8120";
4410   }, "This failure is expected too.");
4411 }
4412 #endif  // GTEST_OS_WINDOWS
4413 
4414 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4415 TEST(ExpectTest, EXPECT_TRUE) {
4416   EXPECT_TRUE(true) << "Intentional success";
4417   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4418                           "Intentional failure #1.");
4419   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4420                           "Intentional failure #2.");
4421   EXPECT_TRUE(2 > 1);  // NOLINT
4422   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4423                           "Value of: 2 < 1\n"
4424                           "  Actual: false\n"
4425                           "Expected: true");
4426   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4427                           "2 > 3");
4428 }
4429 
4430 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4431 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4432   EXPECT_TRUE(ResultIsEven(2));
4433   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4434                           "Value of: ResultIsEven(3)\n"
4435                           "  Actual: false (3 is odd)\n"
4436                           "Expected: true");
4437   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4438   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4439                           "Value of: ResultIsEvenNoExplanation(3)\n"
4440                           "  Actual: false (3 is odd)\n"
4441                           "Expected: true");
4442 }
4443 
4444 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4445 TEST(ExpectTest, EXPECT_FALSE) {
4446   EXPECT_FALSE(2 < 1);  // NOLINT
4447   EXPECT_FALSE(false) << "Intentional success";
4448   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4449                           "Intentional failure #1.");
4450   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4451                           "Intentional failure #2.");
4452   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4453                           "Value of: 2 > 1\n"
4454                           "  Actual: true\n"
4455                           "Expected: false");
4456   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4457                           "2 < 3");
4458 }
4459 
4460 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4461 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4462   EXPECT_FALSE(ResultIsEven(3));
4463   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4464                           "Value of: ResultIsEven(2)\n"
4465                           "  Actual: true (2 is even)\n"
4466                           "Expected: false");
4467   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4468   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4469                           "Value of: ResultIsEvenNoExplanation(2)\n"
4470                           "  Actual: true\n"
4471                           "Expected: false");
4472 }
4473 
4474 #ifdef __BORLANDC__
4475 // Restores warnings after previous "#pragma option push" suppressed them
4476 # pragma option pop
4477 #endif
4478 
4479 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4480 TEST(ExpectTest, EXPECT_EQ) {
4481   EXPECT_EQ(5, 2 + 3);
4482   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4483                           "Expected equality of these values:\n"
4484                           "  5\n"
4485                           "  2*3\n"
4486                           "    Which is: 6");
4487   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4488                           "2 - 3");
4489 }
4490 
4491 // Tests using EXPECT_EQ on double values.  The purpose is to make
4492 // sure that the specialization we did for integer and anonymous enums
4493 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4494 TEST(ExpectTest, EXPECT_EQ_Double) {
4495   // A success.
4496   EXPECT_EQ(5.6, 5.6);
4497 
4498   // A failure.
4499   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4500                           "5.1");
4501 }
4502 
4503 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4504 TEST(ExpectTest, EXPECT_EQ_NULL) {
4505   // A success.
4506   const char* p = nullptr;
4507   EXPECT_EQ(nullptr, p);
4508 
4509   // A failure.
4510   int n = 0;
4511   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4512 }
4513 
4514 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4515 // treated as a null pointer by the compiler, we need to make sure
4516 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4517 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4518 TEST(ExpectTest, EXPECT_EQ_0) {
4519   int n = 0;
4520 
4521   // A success.
4522   EXPECT_EQ(0, n);
4523 
4524   // A failure.
4525   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4526                           "  0\n  5.6");
4527 }
4528 
4529 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4530 TEST(ExpectTest, EXPECT_NE) {
4531   EXPECT_NE(6, 7);
4532 
4533   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4534                           "Expected: ('a') != ('a'), "
4535                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4536   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4537                           "2");
4538   char* const p0 = nullptr;
4539   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4540                           "p0");
4541   // Only way to get the Nokia compiler to compile the cast
4542   // is to have a separate void* variable first. Putting
4543   // the two casts on the same line doesn't work, neither does
4544   // a direct C-style to char*.
4545   void* pv1 = (void*)0x1234;  // NOLINT
4546   char* const p1 = reinterpret_cast<char*>(pv1);
4547   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4548                           "p1");
4549 }
4550 
4551 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4552 TEST(ExpectTest, EXPECT_LE) {
4553   EXPECT_LE(2, 3);
4554   EXPECT_LE(2, 2);
4555   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4556                           "Expected: (2) <= (0), actual: 2 vs 0");
4557   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4558                           "(1.1) <= (0.9)");
4559 }
4560 
4561 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4562 TEST(ExpectTest, EXPECT_LT) {
4563   EXPECT_LT(2, 3);
4564   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4565                           "Expected: (2) < (2), actual: 2 vs 2");
4566   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4567                           "(2) < (1)");
4568 }
4569 
4570 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4571 TEST(ExpectTest, EXPECT_GE) {
4572   EXPECT_GE(2, 1);
4573   EXPECT_GE(2, 2);
4574   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4575                           "Expected: (2) >= (3), actual: 2 vs 3");
4576   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4577                           "(0.9) >= (1.1)");
4578 }
4579 
4580 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4581 TEST(ExpectTest, EXPECT_GT) {
4582   EXPECT_GT(2, 1);
4583   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4584                           "Expected: (2) > (2), actual: 2 vs 2");
4585   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4586                           "(2) > (3)");
4587 }
4588 
4589 #if GTEST_HAS_EXCEPTIONS
4590 
4591 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4592 TEST(ExpectTest, EXPECT_THROW) {
4593   EXPECT_THROW(ThrowAnInteger(), int);
4594   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4595                           "Expected: ThrowAnInteger() throws an exception of "
4596                           "type bool.\n  Actual: it throws a different type.");
4597   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowRuntimeError("A description"),
4598                                        std::logic_error),
4599                           "Expected: ThrowRuntimeError(\"A description\") "
4600                           "throws an exception of type std::logic_error.\n  "
4601                           "Actual: it throws " ERROR_DESC " "
4602                           "with description \"A description\".");
4603   EXPECT_NONFATAL_FAILURE(
4604       EXPECT_THROW(ThrowNothing(), bool),
4605       "Expected: ThrowNothing() throws an exception of type bool.\n"
4606       "  Actual: it throws nothing.");
4607 }
4608 
4609 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4610 TEST(ExpectTest, EXPECT_NO_THROW) {
4611   EXPECT_NO_THROW(ThrowNothing());
4612   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4613                           "Expected: ThrowAnInteger() doesn't throw an "
4614                           "exception.\n  Actual: it throws.");
4615   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4616                           "Expected: ThrowRuntimeError(\"A description\") "
4617                           "doesn't throw an exception.\n  "
4618                           "Actual: it throws " ERROR_DESC " "
4619                           "with description \"A description\".");
4620 }
4621 
4622 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4623 TEST(ExpectTest, EXPECT_ANY_THROW) {
4624   EXPECT_ANY_THROW(ThrowAnInteger());
4625   EXPECT_NONFATAL_FAILURE(
4626       EXPECT_ANY_THROW(ThrowNothing()),
4627       "Expected: ThrowNothing() throws an exception.\n"
4628       "  Actual: it doesn't.");
4629 }
4630 
4631 #endif  // GTEST_HAS_EXCEPTIONS
4632 
4633 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4634 TEST(ExpectTest, ExpectPrecedence) {
4635   EXPECT_EQ(1 < 2, true);
4636   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4637                           "  true && false\n    Which is: false");
4638 }
4639 
4640 
4641 // Tests the StreamableToString() function.
4642 
4643 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4644 TEST(StreamableToStringTest, Scalar) {
4645   EXPECT_STREQ("5", StreamableToString(5).c_str());
4646 }
4647 
4648 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4649 TEST(StreamableToStringTest, Pointer) {
4650   int n = 0;
4651   int* p = &n;
4652   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4653 }
4654 
4655 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4656 TEST(StreamableToStringTest, NullPointer) {
4657   int* p = nullptr;
4658   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4659 }
4660 
4661 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4662 TEST(StreamableToStringTest, CString) {
4663   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4664 }
4665 
4666 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4667 TEST(StreamableToStringTest, NullCString) {
4668   char* p = nullptr;
4669   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4670 }
4671 
4672 // Tests using streamable values as assertion messages.
4673 
4674 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4675 TEST(StreamableTest, string) {
4676   static const std::string str(
4677       "This failure message is a std::string, and is expected.");
4678   EXPECT_FATAL_FAILURE(FAIL() << str,
4679                        str.c_str());
4680 }
4681 
4682 // Tests that we can output strings containing embedded NULs.
4683 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4684 TEST(StreamableTest, stringWithEmbeddedNUL) {
4685   static const char char_array_with_nul[] =
4686       "Here's a NUL\0 and some more string";
4687   static const std::string string_with_nul(char_array_with_nul,
4688                                            sizeof(char_array_with_nul)
4689                                            - 1);  // drops the trailing NUL
4690   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4691                        "Here's a NUL\\0 and some more string");
4692 }
4693 
4694 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4695 TEST(StreamableTest, NULChar) {
4696   EXPECT_FATAL_FAILURE({  // NOLINT
4697     FAIL() << "A NUL" << '\0' << " and some more string";
4698   }, "A NUL\\0 and some more string");
4699 }
4700 
4701 // Tests using int as an assertion message.
TEST(StreamableTest,int)4702 TEST(StreamableTest, int) {
4703   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4704                        "900913");
4705 }
4706 
4707 // Tests using NULL char pointer as an assertion message.
4708 //
4709 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4710 // implemented a workaround (substituting "(null)" for NULL).  This
4711 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4712 TEST(StreamableTest, NullCharPtr) {
4713   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4714 }
4715 
4716 // Tests that basic IO manipulators (endl, ends, and flush) can be
4717 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4718 TEST(StreamableTest, BasicIoManip) {
4719   EXPECT_FATAL_FAILURE({  // NOLINT
4720     FAIL() << "Line 1." << std::endl
4721            << "A NUL char " << std::ends << std::flush << " in line 2.";
4722   }, "Line 1.\nA NUL char \\0 in line 2.");
4723 }
4724 
4725 // Tests the macros that haven't been covered so far.
4726 
AddFailureHelper(bool * aborted)4727 void AddFailureHelper(bool* aborted) {
4728   *aborted = true;
4729   ADD_FAILURE() << "Intentional failure.";
4730   *aborted = false;
4731 }
4732 
4733 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4734 TEST(MacroTest, ADD_FAILURE) {
4735   bool aborted = true;
4736   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4737                           "Intentional failure.");
4738   EXPECT_FALSE(aborted);
4739 }
4740 
4741 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4742 TEST(MacroTest, ADD_FAILURE_AT) {
4743   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4744   // the failure message contains the user-streamed part.
4745   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4746 
4747   // Verifies that the user-streamed part is optional.
4748   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4749 
4750   // Unfortunately, we cannot verify that the failure message contains
4751   // the right file path and line number the same way, as
4752   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4753   // line number.  Instead, we do that in googletest-output-test_.cc.
4754 }
4755 
4756 // Tests FAIL.
TEST(MacroTest,FAIL)4757 TEST(MacroTest, FAIL) {
4758   EXPECT_FATAL_FAILURE(FAIL(),
4759                        "Failed");
4760   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4761                        "Intentional failure.");
4762 }
4763 
4764 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4765 TEST(MacroTest, GTEST_FAIL_AT) {
4766   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4767   // the failure message contains the user-streamed part.
4768   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4769 
4770   // Verifies that the user-streamed part is optional.
4771   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4772 
4773   // See the ADD_FAIL_AT test above to see how we test that the failure message
4774   // contains the right filename and line number -- the same applies here.
4775 }
4776 
4777 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4778 TEST(MacroTest, SUCCEED) {
4779   SUCCEED();
4780   SUCCEED() << "Explicit success.";
4781 }
4782 
4783 // Tests for EXPECT_EQ() and ASSERT_EQ().
4784 //
4785 // These tests fail *intentionally*, s.t. the failure messages can be
4786 // generated and tested.
4787 //
4788 // We have different tests for different argument types.
4789 
4790 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4791 TEST(EqAssertionTest, Bool) {
4792   EXPECT_EQ(true,  true);
4793   EXPECT_FATAL_FAILURE({
4794       bool false_value = false;
4795       ASSERT_EQ(false_value, true);
4796     }, "  false_value\n    Which is: false\n  true");
4797 }
4798 
4799 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4800 TEST(EqAssertionTest, Int) {
4801   ASSERT_EQ(32, 32);
4802   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4803                           "  32\n  33");
4804 }
4805 
4806 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4807 TEST(EqAssertionTest, Time_T) {
4808   EXPECT_EQ(static_cast<time_t>(0),
4809             static_cast<time_t>(0));
4810   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4811                                  static_cast<time_t>(1234)),
4812                        "1234");
4813 }
4814 
4815 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4816 TEST(EqAssertionTest, Char) {
4817   ASSERT_EQ('z', 'z');
4818   const char ch = 'b';
4819   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4820                           "  ch\n    Which is: 'b'");
4821   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4822                           "  ch\n    Which is: 'b'");
4823 }
4824 
4825 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4826 TEST(EqAssertionTest, WideChar) {
4827   EXPECT_EQ(L'b', L'b');
4828 
4829   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4830                           "Expected equality of these values:\n"
4831                           "  L'\0'\n"
4832                           "    Which is: L'\0' (0, 0x0)\n"
4833                           "  L'x'\n"
4834                           "    Which is: L'x' (120, 0x78)");
4835 
4836   static wchar_t wchar;
4837   wchar = L'b';
4838   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4839                           "wchar");
4840   wchar = 0x8119;
4841   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4842                        "  wchar\n    Which is: L'");
4843 }
4844 
4845 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4846 TEST(EqAssertionTest, StdString) {
4847   // Compares a const char* to an std::string that has identical
4848   // content.
4849   ASSERT_EQ("Test", ::std::string("Test"));
4850 
4851   // Compares two identical std::strings.
4852   static const ::std::string str1("A * in the middle");
4853   static const ::std::string str2(str1);
4854   EXPECT_EQ(str1, str2);
4855 
4856   // Compares a const char* to an std::string that has different
4857   // content
4858   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4859                           "\"test\"");
4860 
4861   // Compares an std::string to a char* that has different content.
4862   char* const p1 = const_cast<char*>("foo");
4863   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4864                           "p1");
4865 
4866   // Compares two std::strings that have different contents, one of
4867   // which having a NUL character in the middle.  This should fail.
4868   static ::std::string str3(str1);
4869   str3.at(2) = '\0';
4870   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4871                        "  str3\n    Which is: \"A \\0 in the middle\"");
4872 }
4873 
4874 #if GTEST_HAS_STD_WSTRING
4875 
4876 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4877 TEST(EqAssertionTest, StdWideString) {
4878   // Compares two identical std::wstrings.
4879   const ::std::wstring wstr1(L"A * in the middle");
4880   const ::std::wstring wstr2(wstr1);
4881   ASSERT_EQ(wstr1, wstr2);
4882 
4883   // Compares an std::wstring to a const wchar_t* that has identical
4884   // content.
4885   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4886   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4887 
4888   // Compares an std::wstring to a const wchar_t* that has different
4889   // content.
4890   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4891   EXPECT_NONFATAL_FAILURE({  // NOLINT
4892     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4893   }, "kTestX8120");
4894 
4895   // Compares two std::wstrings that have different contents, one of
4896   // which having a NUL character in the middle.
4897   ::std::wstring wstr3(wstr1);
4898   wstr3.at(2) = L'\0';
4899   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4900                           "wstr3");
4901 
4902   // Compares a wchar_t* to an std::wstring that has different
4903   // content.
4904   EXPECT_FATAL_FAILURE({  // NOLINT
4905     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4906   }, "");
4907 }
4908 
4909 #endif  // GTEST_HAS_STD_WSTRING
4910 
4911 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4912 TEST(EqAssertionTest, CharPointer) {
4913   char* const p0 = nullptr;
4914   // Only way to get the Nokia compiler to compile the cast
4915   // is to have a separate void* variable first. Putting
4916   // the two casts on the same line doesn't work, neither does
4917   // a direct C-style to char*.
4918   void* pv1 = (void*)0x1234;  // NOLINT
4919   void* pv2 = (void*)0xABC0;  // NOLINT
4920   char* const p1 = reinterpret_cast<char*>(pv1);
4921   char* const p2 = reinterpret_cast<char*>(pv2);
4922   ASSERT_EQ(p1, p1);
4923 
4924   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4925                           "  p2\n    Which is:");
4926   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4927                           "  p2\n    Which is:");
4928   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4929                                  reinterpret_cast<char*>(0xABC0)),
4930                        "ABC0");
4931 }
4932 
4933 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4934 TEST(EqAssertionTest, WideCharPointer) {
4935   wchar_t* const p0 = nullptr;
4936   // Only way to get the Nokia compiler to compile the cast
4937   // is to have a separate void* variable first. Putting
4938   // the two casts on the same line doesn't work, neither does
4939   // a direct C-style to char*.
4940   void* pv1 = (void*)0x1234;  // NOLINT
4941   void* pv2 = (void*)0xABC0;  // NOLINT
4942   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4943   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4944   EXPECT_EQ(p0, p0);
4945 
4946   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4947                           "  p2\n    Which is:");
4948   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4949                           "  p2\n    Which is:");
4950   void* pv3 = (void*)0x1234;  // NOLINT
4951   void* pv4 = (void*)0xABC0;  // NOLINT
4952   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4953   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4954   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4955                           "p4");
4956 }
4957 
4958 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4959 TEST(EqAssertionTest, OtherPointer) {
4960   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4961   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4962                                  reinterpret_cast<const int*>(0x1234)),
4963                        "0x1234");
4964 }
4965 
4966 // A class that supports binary comparison operators but not streaming.
4967 class UnprintableChar {
4968  public:
UnprintableChar(char ch)4969   explicit UnprintableChar(char ch) : char_(ch) {}
4970 
operator ==(const UnprintableChar & rhs) const4971   bool operator==(const UnprintableChar& rhs) const {
4972     return char_ == rhs.char_;
4973   }
operator !=(const UnprintableChar & rhs) const4974   bool operator!=(const UnprintableChar& rhs) const {
4975     return char_ != rhs.char_;
4976   }
operator <(const UnprintableChar & rhs) const4977   bool operator<(const UnprintableChar& rhs) const {
4978     return char_ < rhs.char_;
4979   }
operator <=(const UnprintableChar & rhs) const4980   bool operator<=(const UnprintableChar& rhs) const {
4981     return char_ <= rhs.char_;
4982   }
operator >(const UnprintableChar & rhs) const4983   bool operator>(const UnprintableChar& rhs) const {
4984     return char_ > rhs.char_;
4985   }
operator >=(const UnprintableChar & rhs) const4986   bool operator>=(const UnprintableChar& rhs) const {
4987     return char_ >= rhs.char_;
4988   }
4989 
4990  private:
4991   char char_;
4992 };
4993 
4994 // Tests that ASSERT_EQ() and friends don't require the arguments to
4995 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4996 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4997   const UnprintableChar x('x'), y('y');
4998   ASSERT_EQ(x, x);
4999   EXPECT_NE(x, y);
5000   ASSERT_LT(x, y);
5001   EXPECT_LE(x, y);
5002   ASSERT_GT(y, x);
5003   EXPECT_GE(x, x);
5004 
5005   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
5006   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
5007   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
5008   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
5009   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
5010 
5011   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
5012   // variables, so we have to write UnprintableChar('x') instead of x.
5013 #ifndef __BORLANDC__
5014   // ICE's in C++Builder.
5015   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5016                        "1-byte object <78>");
5017   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5018                        "1-byte object <78>");
5019 #endif
5020   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5021                        "1-byte object <79>");
5022   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5023                        "1-byte object <78>");
5024   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5025                        "1-byte object <79>");
5026 }
5027 
5028 // Tests the FRIEND_TEST macro.
5029 
5030 // This class has a private member we want to test.  We will test it
5031 // both in a TEST and in a TEST_F.
5032 class Foo {
5033  public:
Foo()5034   Foo() {}
5035 
5036  private:
Bar() const5037   int Bar() const { return 1; }
5038 
5039   // Declares the friend tests that can access the private member
5040   // Bar().
5041   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5042   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5043 };
5044 
5045 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5046 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5047 TEST(FRIEND_TEST_Test, TEST) {
5048   ASSERT_EQ(1, Foo().Bar());
5049 }
5050 
5051 // The fixture needed to test using FRIEND_TEST with TEST_F.
5052 class FRIEND_TEST_Test2 : public Test {
5053  protected:
5054   Foo foo;
5055 };
5056 
5057 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5058 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5059 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5060   ASSERT_EQ(1, foo.Bar());
5061 }
5062 
5063 // Tests the life cycle of Test objects.
5064 
5065 // The test fixture for testing the life cycle of Test objects.
5066 //
5067 // This class counts the number of live test objects that uses this
5068 // fixture.
5069 class TestLifeCycleTest : public Test {
5070  protected:
5071   // Constructor.  Increments the number of test objects that uses
5072   // this fixture.
TestLifeCycleTest()5073   TestLifeCycleTest() { count_++; }
5074 
5075   // Destructor.  Decrements the number of test objects that uses this
5076   // fixture.
~TestLifeCycleTest()5077   ~TestLifeCycleTest() override { count_--; }
5078 
5079   // Returns the number of live test objects that uses this fixture.
count() const5080   int count() const { return count_; }
5081 
5082  private:
5083   static int count_;
5084 };
5085 
5086 int TestLifeCycleTest::count_ = 0;
5087 
5088 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5089 TEST_F(TestLifeCycleTest, Test1) {
5090   // There should be only one test object in this test case that's
5091   // currently alive.
5092   ASSERT_EQ(1, count());
5093 }
5094 
5095 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5096 TEST_F(TestLifeCycleTest, Test2) {
5097   // After Test1 is done and Test2 is started, there should still be
5098   // only one live test object, as the object for Test1 should've been
5099   // deleted.
5100   ASSERT_EQ(1, count());
5101 }
5102 
5103 }  // namespace
5104 
5105 // Tests that the copy constructor works when it is NOT optimized away by
5106 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5107 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5108   // Checks that the copy constructor doesn't try to dereference NULL pointers
5109   // in the source object.
5110   AssertionResult r1 = AssertionSuccess();
5111   AssertionResult r2 = r1;
5112   // The following line is added to prevent the compiler from optimizing
5113   // away the constructor call.
5114   r1 << "abc";
5115 
5116   AssertionResult r3 = r1;
5117   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5118   EXPECT_STREQ("abc", r1.message());
5119 }
5120 
5121 // Tests that AssertionSuccess and AssertionFailure construct
5122 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5123 TEST(AssertionResultTest, ConstructionWorks) {
5124   AssertionResult r1 = AssertionSuccess();
5125   EXPECT_TRUE(r1);
5126   EXPECT_STREQ("", r1.message());
5127 
5128   AssertionResult r2 = AssertionSuccess() << "abc";
5129   EXPECT_TRUE(r2);
5130   EXPECT_STREQ("abc", r2.message());
5131 
5132   AssertionResult r3 = AssertionFailure();
5133   EXPECT_FALSE(r3);
5134   EXPECT_STREQ("", r3.message());
5135 
5136   AssertionResult r4 = AssertionFailure() << "def";
5137   EXPECT_FALSE(r4);
5138   EXPECT_STREQ("def", r4.message());
5139 
5140   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5141   EXPECT_FALSE(r5);
5142   EXPECT_STREQ("ghi", r5.message());
5143 }
5144 
5145 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5146 TEST(AssertionResultTest, NegationWorks) {
5147   AssertionResult r1 = AssertionSuccess() << "abc";
5148   EXPECT_FALSE(!r1);
5149   EXPECT_STREQ("abc", (!r1).message());
5150 
5151   AssertionResult r2 = AssertionFailure() << "def";
5152   EXPECT_TRUE(!r2);
5153   EXPECT_STREQ("def", (!r2).message());
5154 }
5155 
TEST(AssertionResultTest,StreamingWorks)5156 TEST(AssertionResultTest, StreamingWorks) {
5157   AssertionResult r = AssertionSuccess();
5158   r << "abc" << 'd' << 0 << true;
5159   EXPECT_STREQ("abcd0true", r.message());
5160 }
5161 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5162 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5163   AssertionResult r = AssertionSuccess();
5164   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5165   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5166 }
5167 
5168 // The next test uses explicit conversion operators
5169 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5170 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5171   struct ExplicitlyConvertibleToBool {
5172     explicit operator bool() const { return value; }
5173     bool value;
5174   };
5175   ExplicitlyConvertibleToBool v1 = {false};
5176   ExplicitlyConvertibleToBool v2 = {true};
5177   EXPECT_FALSE(v1);
5178   EXPECT_TRUE(v2);
5179 }
5180 
5181 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5182   operator AssertionResult() const { return AssertionResult(true); }
5183 };
5184 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5185 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5186   ConvertibleToAssertionResult obj;
5187   EXPECT_TRUE(obj);
5188 }
5189 
5190 // Tests streaming a user type whose definition and operator << are
5191 // both in the global namespace.
5192 class Base {
5193  public:
Base(int an_x)5194   explicit Base(int an_x) : x_(an_x) {}
x() const5195   int x() const { return x_; }
5196  private:
5197   int x_;
5198 };
operator <<(std::ostream & os,const Base & val)5199 std::ostream& operator<<(std::ostream& os,
5200                          const Base& val) {
5201   return os << val.x();
5202 }
operator <<(std::ostream & os,const Base * pointer)5203 std::ostream& operator<<(std::ostream& os,
5204                          const Base* pointer) {
5205   return os << "(" << pointer->x() << ")";
5206 }
5207 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5208 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5209   Message msg;
5210   Base a(1);
5211 
5212   msg << a << &a;  // Uses ::operator<<.
5213   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5214 }
5215 
5216 // Tests streaming a user type whose definition and operator<< are
5217 // both in an unnamed namespace.
5218 namespace {
5219 class MyTypeInUnnamedNameSpace : public Base {
5220  public:
MyTypeInUnnamedNameSpace(int an_x)5221   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5222 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5223 std::ostream& operator<<(std::ostream& os,
5224                          const MyTypeInUnnamedNameSpace& val) {
5225   return os << val.x();
5226 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5227 std::ostream& operator<<(std::ostream& os,
5228                          const MyTypeInUnnamedNameSpace* pointer) {
5229   return os << "(" << pointer->x() << ")";
5230 }
5231 }  // namespace
5232 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5233 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5234   Message msg;
5235   MyTypeInUnnamedNameSpace a(1);
5236 
5237   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5238   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5239 }
5240 
5241 // Tests streaming a user type whose definition and operator<< are
5242 // both in a user namespace.
5243 namespace namespace1 {
5244 class MyTypeInNameSpace1 : public Base {
5245  public:
MyTypeInNameSpace1(int an_x)5246   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5247 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5248 std::ostream& operator<<(std::ostream& os,
5249                          const MyTypeInNameSpace1& val) {
5250   return os << val.x();
5251 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5252 std::ostream& operator<<(std::ostream& os,
5253                          const MyTypeInNameSpace1* pointer) {
5254   return os << "(" << pointer->x() << ")";
5255 }
5256 }  // namespace namespace1
5257 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5258 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5259   Message msg;
5260   namespace1::MyTypeInNameSpace1 a(1);
5261 
5262   msg << a << &a;  // Uses namespace1::operator<<.
5263   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5264 }
5265 
5266 // Tests streaming a user type whose definition is in a user namespace
5267 // but whose operator<< is in the global namespace.
5268 namespace namespace2 {
5269 class MyTypeInNameSpace2 : public ::Base {
5270  public:
MyTypeInNameSpace2(int an_x)5271   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5272 };
5273 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5274 std::ostream& operator<<(std::ostream& os,
5275                          const namespace2::MyTypeInNameSpace2& val) {
5276   return os << val.x();
5277 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5278 std::ostream& operator<<(std::ostream& os,
5279                          const namespace2::MyTypeInNameSpace2* pointer) {
5280   return os << "(" << pointer->x() << ")";
5281 }
5282 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5283 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5284   Message msg;
5285   namespace2::MyTypeInNameSpace2 a(1);
5286 
5287   msg << a << &a;  // Uses ::operator<<.
5288   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5289 }
5290 
5291 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5292 TEST(MessageTest, NullPointers) {
5293   Message msg;
5294   char* const p1 = nullptr;
5295   unsigned char* const p2 = nullptr;
5296   int* p3 = nullptr;
5297   double* p4 = nullptr;
5298   bool* p5 = nullptr;
5299   Message* p6 = nullptr;
5300 
5301   msg << p1 << p2 << p3 << p4 << p5 << p6;
5302   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5303                msg.GetString().c_str());
5304 }
5305 
5306 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5307 TEST(MessageTest, WideStrings) {
5308   // Streams a NULL of type const wchar_t*.
5309   const wchar_t* const_wstr = nullptr;
5310   EXPECT_STREQ("(null)",
5311                (Message() << const_wstr).GetString().c_str());
5312 
5313   // Streams a NULL of type wchar_t*.
5314   wchar_t* wstr = nullptr;
5315   EXPECT_STREQ("(null)",
5316                (Message() << wstr).GetString().c_str());
5317 
5318   // Streams a non-NULL of type const wchar_t*.
5319   const_wstr = L"abc\x8119";
5320   EXPECT_STREQ("abc\xe8\x84\x99",
5321                (Message() << const_wstr).GetString().c_str());
5322 
5323   // Streams a non-NULL of type wchar_t*.
5324   wstr = const_cast<wchar_t*>(const_wstr);
5325   EXPECT_STREQ("abc\xe8\x84\x99",
5326                (Message() << wstr).GetString().c_str());
5327 }
5328 
5329 
5330 // This line tests that we can define tests in the testing namespace.
5331 namespace testing {
5332 
5333 // Tests the TestInfo class.
5334 
5335 class TestInfoTest : public Test {
5336  protected:
GetTestInfo(const char * test_name)5337   static const TestInfo* GetTestInfo(const char* test_name) {
5338     const TestSuite* const test_suite =
5339         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5340 
5341     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5342       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5343       if (strcmp(test_name, test_info->name()) == 0)
5344         return test_info;
5345     }
5346     return nullptr;
5347   }
5348 
GetTestResult(const TestInfo * test_info)5349   static const TestResult* GetTestResult(
5350       const TestInfo* test_info) {
5351     return test_info->result();
5352   }
5353 };
5354 
5355 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5356 TEST_F(TestInfoTest, Names) {
5357   const TestInfo* const test_info = GetTestInfo("Names");
5358 
5359   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5360   ASSERT_STREQ("Names", test_info->name());
5361 }
5362 
5363 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5364 TEST_F(TestInfoTest, result) {
5365   const TestInfo* const test_info = GetTestInfo("result");
5366 
5367   // Initially, there is no TestPartResult for this test.
5368   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5369 
5370   // After the previous assertion, there is still none.
5371   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5372 }
5373 
5374 #define VERIFY_CODE_LOCATION \
5375   const int expected_line = __LINE__ - 1; \
5376   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5377   ASSERT_TRUE(test_info); \
5378   EXPECT_STREQ(__FILE__, test_info->file()); \
5379   EXPECT_EQ(expected_line, test_info->line())
5380 
TEST(CodeLocationForTEST,Verify)5381 TEST(CodeLocationForTEST, Verify) {
5382   VERIFY_CODE_LOCATION;
5383 }
5384 
5385 class CodeLocationForTESTF : public Test {
5386 };
5387 
TEST_F(CodeLocationForTESTF,Verify)5388 TEST_F(CodeLocationForTESTF, Verify) {
5389   VERIFY_CODE_LOCATION;
5390 }
5391 
5392 class CodeLocationForTESTP : public TestWithParam<int> {
5393 };
5394 
TEST_P(CodeLocationForTESTP,Verify)5395 TEST_P(CodeLocationForTESTP, Verify) {
5396   VERIFY_CODE_LOCATION;
5397 }
5398 
5399 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5400 
5401 template <typename T>
5402 class CodeLocationForTYPEDTEST : public Test {
5403 };
5404 
5405 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5406 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5407 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5408   VERIFY_CODE_LOCATION;
5409 }
5410 
5411 template <typename T>
5412 class CodeLocationForTYPEDTESTP : public Test {
5413 };
5414 
5415 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5416 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5417 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5418   VERIFY_CODE_LOCATION;
5419 }
5420 
5421 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5422 
5423 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5424 
5425 #undef VERIFY_CODE_LOCATION
5426 
5427 // Tests setting up and tearing down a test case.
5428 // Legacy API is deprecated but still available
5429 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5430 class SetUpTestCaseTest : public Test {
5431  protected:
5432   // This will be called once before the first test in this test case
5433   // is run.
SetUpTestCase()5434   static void SetUpTestCase() {
5435     printf("Setting up the test case . . .\n");
5436 
5437     // Initializes some shared resource.  In this simple example, we
5438     // just create a C string.  More complex stuff can be done if
5439     // desired.
5440     shared_resource_ = "123";
5441 
5442     // Increments the number of test cases that have been set up.
5443     counter_++;
5444 
5445     // SetUpTestCase() should be called only once.
5446     EXPECT_EQ(1, counter_);
5447   }
5448 
5449   // This will be called once after the last test in this test case is
5450   // run.
TearDownTestCase()5451   static void TearDownTestCase() {
5452     printf("Tearing down the test case . . .\n");
5453 
5454     // Decrements the number of test cases that have been set up.
5455     counter_--;
5456 
5457     // TearDownTestCase() should be called only once.
5458     EXPECT_EQ(0, counter_);
5459 
5460     // Cleans up the shared resource.
5461     shared_resource_ = nullptr;
5462   }
5463 
5464   // This will be called before each test in this test case.
SetUp()5465   void SetUp() override {
5466     // SetUpTestCase() should be called only once, so counter_ should
5467     // always be 1.
5468     EXPECT_EQ(1, counter_);
5469   }
5470 
5471   // Number of test cases that have been set up.
5472   static int counter_;
5473 
5474   // Some resource to be shared by all tests in this test case.
5475   static const char* shared_resource_;
5476 };
5477 
5478 int SetUpTestCaseTest::counter_ = 0;
5479 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5480 
5481 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5482 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5483 
5484 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5485 TEST_F(SetUpTestCaseTest, Test2) {
5486   EXPECT_STREQ("123", shared_resource_);
5487 }
5488 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5489 
5490 // Tests SetupTestSuite/TearDown TestSuite
5491 class SetUpTestSuiteTest : public Test {
5492  protected:
5493   // This will be called once before the first test in this test case
5494   // is run.
SetUpTestSuite()5495   static void SetUpTestSuite() {
5496     printf("Setting up the test suite . . .\n");
5497 
5498     // Initializes some shared resource.  In this simple example, we
5499     // just create a C string.  More complex stuff can be done if
5500     // desired.
5501     shared_resource_ = "123";
5502 
5503     // Increments the number of test cases that have been set up.
5504     counter_++;
5505 
5506     // SetUpTestSuite() should be called only once.
5507     EXPECT_EQ(1, counter_);
5508   }
5509 
5510   // This will be called once after the last test in this test case is
5511   // run.
TearDownTestSuite()5512   static void TearDownTestSuite() {
5513     printf("Tearing down the test suite . . .\n");
5514 
5515     // Decrements the number of test suites that have been set up.
5516     counter_--;
5517 
5518     // TearDownTestSuite() should be called only once.
5519     EXPECT_EQ(0, counter_);
5520 
5521     // Cleans up the shared resource.
5522     shared_resource_ = nullptr;
5523   }
5524 
5525   // This will be called before each test in this test case.
SetUp()5526   void SetUp() override {
5527     // SetUpTestSuite() should be called only once, so counter_ should
5528     // always be 1.
5529     EXPECT_EQ(1, counter_);
5530   }
5531 
5532   // Number of test suites that have been set up.
5533   static int counter_;
5534 
5535   // Some resource to be shared by all tests in this test case.
5536   static const char* shared_resource_;
5537 };
5538 
5539 int SetUpTestSuiteTest::counter_ = 0;
5540 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5541 
5542 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5543 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5544   EXPECT_STRNE(nullptr, shared_resource_);
5545 }
5546 
5547 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5548 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5549   EXPECT_STREQ("123", shared_resource_);
5550 }
5551 
5552 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5553 
5554 // The Flags struct stores a copy of all Google Test flags.
5555 struct Flags {
5556   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5557   Flags()
5558       : also_run_disabled_tests(false),
5559         break_on_failure(false),
5560         catch_exceptions(false),
5561         death_test_use_fork(false),
5562         fail_fast(false),
5563         filter(""),
5564         list_tests(false),
5565         output(""),
5566         brief(false),
5567         print_time(true),
5568         random_seed(0),
5569         repeat(1),
5570         recreate_environments_when_repeating(true),
5571         shuffle(false),
5572         stack_trace_depth(kMaxStackTraceDepth),
5573         stream_result_to(""),
5574         throw_on_failure(false) {}
5575 
5576   // Factory methods.
5577 
5578   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5579   // the given value.
AlsoRunDisabledTeststesting::Flags5580   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5581     Flags flags;
5582     flags.also_run_disabled_tests = also_run_disabled_tests;
5583     return flags;
5584   }
5585 
5586   // Creates a Flags struct where the gtest_break_on_failure flag has
5587   // the given value.
BreakOnFailuretesting::Flags5588   static Flags BreakOnFailure(bool break_on_failure) {
5589     Flags flags;
5590     flags.break_on_failure = break_on_failure;
5591     return flags;
5592   }
5593 
5594   // Creates a Flags struct where the gtest_catch_exceptions flag has
5595   // the given value.
CatchExceptionstesting::Flags5596   static Flags CatchExceptions(bool catch_exceptions) {
5597     Flags flags;
5598     flags.catch_exceptions = catch_exceptions;
5599     return flags;
5600   }
5601 
5602   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5603   // the given value.
DeathTestUseForktesting::Flags5604   static Flags DeathTestUseFork(bool death_test_use_fork) {
5605     Flags flags;
5606     flags.death_test_use_fork = death_test_use_fork;
5607     return flags;
5608   }
5609 
5610   // Creates a Flags struct where the gtest_fail_fast flag has
5611   // the given value.
FailFasttesting::Flags5612   static Flags FailFast(bool fail_fast) {
5613     Flags flags;
5614     flags.fail_fast = fail_fast;
5615     return flags;
5616   }
5617 
5618   // Creates a Flags struct where the gtest_filter flag has the given
5619   // value.
Filtertesting::Flags5620   static Flags Filter(const char* filter) {
5621     Flags flags;
5622     flags.filter = filter;
5623     return flags;
5624   }
5625 
5626   // Creates a Flags struct where the gtest_list_tests flag has the
5627   // given value.
ListTeststesting::Flags5628   static Flags ListTests(bool list_tests) {
5629     Flags flags;
5630     flags.list_tests = list_tests;
5631     return flags;
5632   }
5633 
5634   // Creates a Flags struct where the gtest_output flag has the given
5635   // value.
Outputtesting::Flags5636   static Flags Output(const char* output) {
5637     Flags flags;
5638     flags.output = output;
5639     return flags;
5640   }
5641 
5642   // Creates a Flags struct where the gtest_brief flag has the given
5643   // value.
Brieftesting::Flags5644   static Flags Brief(bool brief) {
5645     Flags flags;
5646     flags.brief = brief;
5647     return flags;
5648   }
5649 
5650   // Creates a Flags struct where the gtest_print_time flag has the given
5651   // value.
PrintTimetesting::Flags5652   static Flags PrintTime(bool print_time) {
5653     Flags flags;
5654     flags.print_time = print_time;
5655     return flags;
5656   }
5657 
5658   // Creates a Flags struct where the gtest_random_seed flag has the given
5659   // value.
RandomSeedtesting::Flags5660   static Flags RandomSeed(int32_t random_seed) {
5661     Flags flags;
5662     flags.random_seed = random_seed;
5663     return flags;
5664   }
5665 
5666   // Creates a Flags struct where the gtest_repeat flag has the given
5667   // value.
Repeattesting::Flags5668   static Flags Repeat(int32_t repeat) {
5669     Flags flags;
5670     flags.repeat = repeat;
5671     return flags;
5672   }
5673 
5674   // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5675   // flag has the given value.
RecreateEnvironmentsWhenRepeatingtesting::Flags5676   static Flags RecreateEnvironmentsWhenRepeating(
5677       bool recreate_environments_when_repeating) {
5678     Flags flags;
5679     flags.recreate_environments_when_repeating =
5680         recreate_environments_when_repeating;
5681     return flags;
5682   }
5683 
5684   // Creates a Flags struct where the gtest_shuffle flag has the given
5685   // value.
Shuffletesting::Flags5686   static Flags Shuffle(bool shuffle) {
5687     Flags flags;
5688     flags.shuffle = shuffle;
5689     return flags;
5690   }
5691 
5692   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5693   // the given value.
StackTraceDepthtesting::Flags5694   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5695     Flags flags;
5696     flags.stack_trace_depth = stack_trace_depth;
5697     return flags;
5698   }
5699 
5700   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5701   // the given value.
StreamResultTotesting::Flags5702   static Flags StreamResultTo(const char* stream_result_to) {
5703     Flags flags;
5704     flags.stream_result_to = stream_result_to;
5705     return flags;
5706   }
5707 
5708   // Creates a Flags struct where the gtest_throw_on_failure flag has
5709   // the given value.
ThrowOnFailuretesting::Flags5710   static Flags ThrowOnFailure(bool throw_on_failure) {
5711     Flags flags;
5712     flags.throw_on_failure = throw_on_failure;
5713     return flags;
5714   }
5715 
5716   // These fields store the flag values.
5717   bool also_run_disabled_tests;
5718   bool break_on_failure;
5719   bool catch_exceptions;
5720   bool death_test_use_fork;
5721   bool fail_fast;
5722   const char* filter;
5723   bool list_tests;
5724   const char* output;
5725   bool brief;
5726   bool print_time;
5727   int32_t random_seed;
5728   int32_t repeat;
5729   bool recreate_environments_when_repeating;
5730   bool shuffle;
5731   int32_t stack_trace_depth;
5732   const char* stream_result_to;
5733   bool throw_on_failure;
5734 };
5735 
5736 // Fixture for testing ParseGoogleTestFlagsOnly().
5737 class ParseFlagsTest : public Test {
5738  protected:
5739   // Clears the flags before each test.
SetUp()5740   void SetUp() override {
5741     GTEST_FLAG_SET(also_run_disabled_tests, false);
5742     GTEST_FLAG_SET(break_on_failure, false);
5743     GTEST_FLAG_SET(catch_exceptions, false);
5744     GTEST_FLAG_SET(death_test_use_fork, false);
5745     GTEST_FLAG_SET(fail_fast, false);
5746     GTEST_FLAG_SET(filter, "");
5747     GTEST_FLAG_SET(list_tests, false);
5748     GTEST_FLAG_SET(output, "");
5749     GTEST_FLAG_SET(brief, false);
5750     GTEST_FLAG_SET(print_time, true);
5751     GTEST_FLAG_SET(random_seed, 0);
5752     GTEST_FLAG_SET(repeat, 1);
5753     GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5754     GTEST_FLAG_SET(shuffle, false);
5755     GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5756     GTEST_FLAG_SET(stream_result_to, "");
5757     GTEST_FLAG_SET(throw_on_failure, false);
5758   }
5759 
5760   // Asserts that two narrow or wide string arrays are equal.
5761   template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5762   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5763                                   CharType** array2) {
5764     ASSERT_EQ(size1, size2) << " Array sizes different.";
5765 
5766     for (int i = 0; i != size1; i++) {
5767       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5768     }
5769   }
5770 
5771   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5772   static void CheckFlags(const Flags& expected) {
5773     EXPECT_EQ(expected.also_run_disabled_tests,
5774               GTEST_FLAG_GET(also_run_disabled_tests));
5775     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5776     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5777     EXPECT_EQ(expected.death_test_use_fork,
5778               GTEST_FLAG_GET(death_test_use_fork));
5779     EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5780     EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5781     EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5782     EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5783     EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5784     EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5785     EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5786     EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5787     EXPECT_EQ(expected.recreate_environments_when_repeating,
5788               GTEST_FLAG_GET(recreate_environments_when_repeating));
5789     EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5790     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5791     EXPECT_STREQ(expected.stream_result_to,
5792                  GTEST_FLAG_GET(stream_result_to).c_str());
5793     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5794   }
5795 
5796   // Parses a command line (specified by argc1 and argv1), then
5797   // verifies that the flag values are expected and that the
5798   // recognized flags are removed from the command line.
5799   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5800   static void TestParsingFlags(int argc1, const CharType** argv1,
5801                                int argc2, const CharType** argv2,
5802                                const Flags& expected, bool should_print_help) {
5803     const bool saved_help_flag = ::testing::internal::g_help_flag;
5804     ::testing::internal::g_help_flag = false;
5805 
5806 # if GTEST_HAS_STREAM_REDIRECTION
5807     CaptureStdout();
5808 # endif
5809 
5810     // Parses the command line.
5811     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5812 
5813 # if GTEST_HAS_STREAM_REDIRECTION
5814     const std::string captured_stdout = GetCapturedStdout();
5815 # endif
5816 
5817     // Verifies the flag values.
5818     CheckFlags(expected);
5819 
5820     // Verifies that the recognized flags are removed from the command
5821     // line.
5822     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5823 
5824     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5825     // help message for the flags it recognizes.
5826     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5827 
5828 # if GTEST_HAS_STREAM_REDIRECTION
5829     const char* const expected_help_fragment =
5830         "This program contains tests written using";
5831     if (should_print_help) {
5832       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5833     } else {
5834       EXPECT_PRED_FORMAT2(IsNotSubstring,
5835                           expected_help_fragment, captured_stdout);
5836     }
5837 # endif  // GTEST_HAS_STREAM_REDIRECTION
5838 
5839     ::testing::internal::g_help_flag = saved_help_flag;
5840   }
5841 
5842   // This macro wraps TestParsingFlags s.t. the user doesn't need
5843   // to specify the array sizes.
5844 
5845 # define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5846   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5847                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5848                    expected, should_print_help)
5849 };
5850 
5851 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5852 TEST_F(ParseFlagsTest, Empty) {
5853   const char* argv[] = {nullptr};
5854 
5855   const char* argv2[] = {nullptr};
5856 
5857   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5858 }
5859 
5860 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5861 TEST_F(ParseFlagsTest, NoFlag) {
5862   const char* argv[] = {"foo.exe", nullptr};
5863 
5864   const char* argv2[] = {"foo.exe", nullptr};
5865 
5866   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5867 }
5868 
5869 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5870 TEST_F(ParseFlagsTest, FailFast) {
5871   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5872 
5873   const char* argv2[] = {"foo.exe", nullptr};
5874 
5875   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5876 }
5877 
5878 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)5879 TEST_F(ParseFlagsTest, FilterBad) {
5880   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
5881 
5882   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
5883 
5884   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5885 }
5886 
5887 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5888 TEST_F(ParseFlagsTest, FilterEmpty) {
5889   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5890 
5891   const char* argv2[] = {"foo.exe", nullptr};
5892 
5893   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5894 }
5895 
5896 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5897 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5898   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5899 
5900   const char* argv2[] = {"foo.exe", nullptr};
5901 
5902   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5903 }
5904 
5905 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5906 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5907   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5908 
5909   const char* argv2[] = {"foo.exe", nullptr};
5910 
5911   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5912 }
5913 
5914 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5915 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5916   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5917 
5918   const char* argv2[] = {"foo.exe", nullptr};
5919 
5920   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5921 }
5922 
5923 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5924 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5925   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5926 
5927   const char* argv2[] = {"foo.exe", nullptr};
5928 
5929   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5930 }
5931 
5932 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5933 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5934   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5935 
5936   const char* argv2[] = {"foo.exe", nullptr};
5937 
5938   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5939 }
5940 
5941 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5942 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5943 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5944   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5945 
5946   const char* argv2[] = {"foo.exe", nullptr};
5947 
5948   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5949 }
5950 
5951 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5952 TEST_F(ParseFlagsTest, CatchExceptions) {
5953   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5954 
5955   const char* argv2[] = {"foo.exe", nullptr};
5956 
5957   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5958 }
5959 
5960 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5961 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5962   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5963 
5964   const char* argv2[] = {"foo.exe", nullptr};
5965 
5966   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5967 }
5968 
5969 // Tests having the same flag twice with different values.  The
5970 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5971 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5972   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5973                         nullptr};
5974 
5975   const char* argv2[] = {"foo.exe", nullptr};
5976 
5977   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5978 }
5979 
5980 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5981 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5982   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5983                         "bar",  // Unrecognized by Google Test.
5984                         "--gtest_filter=b", nullptr};
5985 
5986   const char* argv2[] = {"foo.exe", "bar", nullptr};
5987 
5988   Flags flags;
5989   flags.break_on_failure = true;
5990   flags.filter = "b";
5991   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5992 }
5993 
5994 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)5995 TEST_F(ParseFlagsTest, ListTestsFlag) {
5996   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5997 
5998   const char* argv2[] = {"foo.exe", nullptr};
5999 
6000   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
6001 }
6002 
6003 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)6004 TEST_F(ParseFlagsTest, ListTestsTrue) {
6005   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
6006 
6007   const char* argv2[] = {"foo.exe", nullptr};
6008 
6009   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
6010 }
6011 
6012 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)6013 TEST_F(ParseFlagsTest, ListTestsFalse) {
6014   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
6015 
6016   const char* argv2[] = {"foo.exe", nullptr};
6017 
6018   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6019 }
6020 
6021 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)6022 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
6023   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
6024 
6025   const char* argv2[] = {"foo.exe", nullptr};
6026 
6027   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6028 }
6029 
6030 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)6031 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
6032   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
6033 
6034   const char* argv2[] = {"foo.exe", nullptr};
6035 
6036   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6037 }
6038 
6039 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6040 TEST_F(ParseFlagsTest, OutputEmpty) {
6041   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6042 
6043   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6044 
6045   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6046 }
6047 
6048 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)6049 TEST_F(ParseFlagsTest, OutputXml) {
6050   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
6051 
6052   const char* argv2[] = {"foo.exe", nullptr};
6053 
6054   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6055 }
6056 
6057 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)6058 TEST_F(ParseFlagsTest, OutputXmlFile) {
6059   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
6060 
6061   const char* argv2[] = {"foo.exe", nullptr};
6062 
6063   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6064 }
6065 
6066 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)6067 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
6068   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
6069                         nullptr};
6070 
6071   const char* argv2[] = {"foo.exe", nullptr};
6072 
6073   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6074                             Flags::Output("xml:directory/path/"), false);
6075 }
6076 
6077 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)6078 TEST_F(ParseFlagsTest, BriefFlag) {
6079   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
6080 
6081   const char* argv2[] = {"foo.exe", nullptr};
6082 
6083   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6084 }
6085 
6086 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)6087 TEST_F(ParseFlagsTest, BriefFlagTrue) {
6088   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
6089 
6090   const char* argv2[] = {"foo.exe", nullptr};
6091 
6092   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6093 }
6094 
6095 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)6096 TEST_F(ParseFlagsTest, BriefFlagFalse) {
6097   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
6098 
6099   const char* argv2[] = {"foo.exe", nullptr};
6100 
6101   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6102 }
6103 
6104 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6105 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6106   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6107 
6108   const char* argv2[] = {"foo.exe", nullptr};
6109 
6110   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6111 }
6112 
6113 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6114 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6115   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6116 
6117   const char* argv2[] = {"foo.exe", nullptr};
6118 
6119   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6120 }
6121 
6122 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6123 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6124   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6125 
6126   const char* argv2[] = {"foo.exe", nullptr};
6127 
6128   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6129 }
6130 
6131 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6132 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6133   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6134 
6135   const char* argv2[] = {"foo.exe", nullptr};
6136 
6137   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6138 }
6139 
6140 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6141 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6142   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6143 
6144   const char* argv2[] = {"foo.exe", nullptr};
6145 
6146   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6147 }
6148 
6149 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6150 TEST_F(ParseFlagsTest, RandomSeed) {
6151   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6152 
6153   const char* argv2[] = {"foo.exe", nullptr};
6154 
6155   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6156 }
6157 
6158 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6159 TEST_F(ParseFlagsTest, Repeat) {
6160   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6161 
6162   const char* argv2[] = {"foo.exe", nullptr};
6163 
6164   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6165 }
6166 
6167 // Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest,RecreateEnvironmentsWhenRepeating)6168 TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6169   const char* argv[] = {
6170       "foo.exe",
6171       "--gtest_recreate_environments_when_repeating=0",
6172       nullptr,
6173   };
6174 
6175   const char* argv2[] = {"foo.exe", nullptr};
6176 
6177   GTEST_TEST_PARSING_FLAGS_(
6178       argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6179 }
6180 
6181 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6182 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6183   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6184 
6185   const char* argv2[] = {"foo.exe", nullptr};
6186 
6187   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6188                             false);
6189 }
6190 
6191 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6192 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6193   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6194                         nullptr};
6195 
6196   const char* argv2[] = {"foo.exe", nullptr};
6197 
6198   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6199                             false);
6200 }
6201 
6202 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6203 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6204   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6205                         nullptr};
6206 
6207   const char* argv2[] = {"foo.exe", nullptr};
6208 
6209   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6210                             false);
6211 }
6212 
6213 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6214 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6215   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6216 
6217   const char* argv2[] = {"foo.exe", nullptr};
6218 
6219   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6220 }
6221 
6222 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6223 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6224   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6225 
6226   const char* argv2[] = {"foo.exe", nullptr};
6227 
6228   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6229 }
6230 
6231 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6232 TEST_F(ParseFlagsTest, ShuffleTrue) {
6233   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6234 
6235   const char* argv2[] = {"foo.exe", nullptr};
6236 
6237   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6238 }
6239 
6240 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6241 TEST_F(ParseFlagsTest, StackTraceDepth) {
6242   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6243 
6244   const char* argv2[] = {"foo.exe", nullptr};
6245 
6246   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6247 }
6248 
TEST_F(ParseFlagsTest,StreamResultTo)6249 TEST_F(ParseFlagsTest, StreamResultTo) {
6250   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6251                         nullptr};
6252 
6253   const char* argv2[] = {"foo.exe", nullptr};
6254 
6255   GTEST_TEST_PARSING_FLAGS_(
6256       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6257 }
6258 
6259 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6260 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6261   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6262 
6263   const char* argv2[] = {"foo.exe", nullptr};
6264 
6265   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6266 }
6267 
6268 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6269 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6270   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6271 
6272   const char* argv2[] = {"foo.exe", nullptr};
6273 
6274   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6275 }
6276 
6277 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6278 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6279 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6280   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6281 
6282   const char* argv2[] = {"foo.exe", nullptr};
6283 
6284   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6285 }
6286 
6287 # if GTEST_OS_WINDOWS
6288 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6289 TEST_F(ParseFlagsTest, WideStrings) {
6290   const wchar_t* argv[] = {
6291     L"foo.exe",
6292     L"--gtest_filter=Foo*",
6293     L"--gtest_list_tests=1",
6294     L"--gtest_break_on_failure",
6295     L"--non_gtest_flag",
6296     NULL
6297   };
6298 
6299   const wchar_t* argv2[] = {
6300     L"foo.exe",
6301     L"--non_gtest_flag",
6302     NULL
6303   };
6304 
6305   Flags expected_flags;
6306   expected_flags.break_on_failure = true;
6307   expected_flags.filter = "Foo*";
6308   expected_flags.list_tests = true;
6309 
6310   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6311 }
6312 # endif  // GTEST_OS_WINDOWS
6313 
6314 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6315 class FlagfileTest : public ParseFlagsTest {
6316  public:
SetUp()6317   void SetUp() override {
6318     ParseFlagsTest::SetUp();
6319 
6320     testdata_path_.Set(internal::FilePath(
6321         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6322         "_flagfile_test"));
6323     testing::internal::posix::RmDir(testdata_path_.c_str());
6324     EXPECT_TRUE(testdata_path_.CreateFolder());
6325   }
6326 
TearDown()6327   void TearDown() override {
6328     testing::internal::posix::RmDir(testdata_path_.c_str());
6329     ParseFlagsTest::TearDown();
6330   }
6331 
CreateFlagfile(const char * contents)6332   internal::FilePath CreateFlagfile(const char* contents) {
6333     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6334         testdata_path_, internal::FilePath("unique"), "txt"));
6335     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6336     fprintf(f, "%s", contents);
6337     fclose(f);
6338     return file_path;
6339   }
6340 
6341  private:
6342   internal::FilePath testdata_path_;
6343 };
6344 
6345 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6346 TEST_F(FlagfileTest, Empty) {
6347   internal::FilePath flagfile_path(CreateFlagfile(""));
6348   std::string flagfile_flag =
6349       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6350 
6351   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6352 
6353   const char* argv2[] = {"foo.exe", nullptr};
6354 
6355   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6356 }
6357 
6358 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6359 TEST_F(FlagfileTest, FilterNonEmpty) {
6360   internal::FilePath flagfile_path(CreateFlagfile(
6361       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
6362   std::string flagfile_flag =
6363       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6364 
6365   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6366 
6367   const char* argv2[] = {"foo.exe", nullptr};
6368 
6369   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6370 }
6371 
6372 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6373 TEST_F(FlagfileTest, SeveralFlags) {
6374   internal::FilePath flagfile_path(CreateFlagfile(
6375       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
6376       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
6377       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
6378   std::string flagfile_flag =
6379       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6380 
6381   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6382 
6383   const char* argv2[] = {"foo.exe", nullptr};
6384 
6385   Flags expected_flags;
6386   expected_flags.break_on_failure = true;
6387   expected_flags.filter = "abc";
6388   expected_flags.list_tests = true;
6389 
6390   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6391 }
6392 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6393 
6394 // Tests current_test_info() in UnitTest.
6395 class CurrentTestInfoTest : public Test {
6396  protected:
6397   // Tests that current_test_info() returns NULL before the first test in
6398   // the test case is run.
SetUpTestSuite()6399   static void SetUpTestSuite() {
6400     // There should be no tests running at this point.
6401     const TestInfo* test_info =
6402       UnitTest::GetInstance()->current_test_info();
6403     EXPECT_TRUE(test_info == nullptr)
6404         << "There should be no tests running at this point.";
6405   }
6406 
6407   // Tests that current_test_info() returns NULL after the last test in
6408   // the test case has run.
TearDownTestSuite()6409   static void TearDownTestSuite() {
6410     const TestInfo* test_info =
6411       UnitTest::GetInstance()->current_test_info();
6412     EXPECT_TRUE(test_info == nullptr)
6413         << "There should be no tests running at this point.";
6414   }
6415 };
6416 
6417 // Tests that current_test_info() returns TestInfo for currently running
6418 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6419 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6420   const TestInfo* test_info =
6421     UnitTest::GetInstance()->current_test_info();
6422   ASSERT_TRUE(nullptr != test_info)
6423       << "There is a test running so we should have a valid TestInfo.";
6424   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6425       << "Expected the name of the currently running test suite.";
6426   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6427       << "Expected the name of the currently running test.";
6428 }
6429 
6430 // Tests that current_test_info() returns TestInfo for currently running
6431 // test by checking the expected test name against the actual one.  We
6432 // use this test to see that the TestInfo object actually changed from
6433 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6434 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6435   const TestInfo* test_info =
6436     UnitTest::GetInstance()->current_test_info();
6437   ASSERT_TRUE(nullptr != test_info)
6438       << "There is a test running so we should have a valid TestInfo.";
6439   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6440       << "Expected the name of the currently running test suite.";
6441   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6442       << "Expected the name of the currently running test.";
6443 }
6444 
6445 }  // namespace testing
6446 
6447 
6448 // These two lines test that we can define tests in a namespace that
6449 // has the name "testing" and is nested in another namespace.
6450 namespace my_namespace {
6451 namespace testing {
6452 
6453 // Makes sure that TEST knows to use ::testing::Test instead of
6454 // ::my_namespace::testing::Test.
6455 class Test {};
6456 
6457 // Makes sure that an assertion knows to use ::testing::Message instead of
6458 // ::my_namespace::testing::Message.
6459 class Message {};
6460 
6461 // Makes sure that an assertion knows to use
6462 // ::testing::AssertionResult instead of
6463 // ::my_namespace::testing::AssertionResult.
6464 class AssertionResult {};
6465 
6466 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6467 TEST(NestedTestingNamespaceTest, Success) {
6468   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6469 }
6470 
6471 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6472 TEST(NestedTestingNamespaceTest, Failure) {
6473   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6474                        "This failure is expected.");
6475 }
6476 
6477 }  // namespace testing
6478 }  // namespace my_namespace
6479 
6480 // Tests that one can call superclass SetUp and TearDown methods--
6481 // that is, that they are not private.
6482 // No tests are based on this fixture; the test "passes" if it compiles
6483 // successfully.
6484 class ProtectedFixtureMethodsTest : public Test {
6485  protected:
SetUp()6486   void SetUp() override { Test::SetUp(); }
TearDown()6487   void TearDown() override { Test::TearDown(); }
6488 };
6489 
6490 // StreamingAssertionsTest tests the streaming versions of a representative
6491 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6492 TEST(StreamingAssertionsTest, Unconditional) {
6493   SUCCEED() << "expected success";
6494   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6495                           "expected failure");
6496   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6497                        "expected failure");
6498 }
6499 
6500 #ifdef __BORLANDC__
6501 // Silences warnings: "Condition is always true", "Unreachable code"
6502 # pragma option push -w-ccc -w-rch
6503 #endif
6504 
TEST(StreamingAssertionsTest,Truth)6505 TEST(StreamingAssertionsTest, Truth) {
6506   EXPECT_TRUE(true) << "unexpected failure";
6507   ASSERT_TRUE(true) << "unexpected failure";
6508   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6509                           "expected failure");
6510   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6511                        "expected failure");
6512 }
6513 
TEST(StreamingAssertionsTest,Truth2)6514 TEST(StreamingAssertionsTest, Truth2) {
6515   EXPECT_FALSE(false) << "unexpected failure";
6516   ASSERT_FALSE(false) << "unexpected failure";
6517   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6518                           "expected failure");
6519   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6520                        "expected failure");
6521 }
6522 
6523 #ifdef __BORLANDC__
6524 // Restores warnings after previous "#pragma option push" suppressed them
6525 # pragma option pop
6526 #endif
6527 
TEST(StreamingAssertionsTest,IntegerEquals)6528 TEST(StreamingAssertionsTest, IntegerEquals) {
6529   EXPECT_EQ(1, 1) << "unexpected failure";
6530   ASSERT_EQ(1, 1) << "unexpected failure";
6531   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6532                           "expected failure");
6533   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6534                        "expected failure");
6535 }
6536 
TEST(StreamingAssertionsTest,IntegerLessThan)6537 TEST(StreamingAssertionsTest, IntegerLessThan) {
6538   EXPECT_LT(1, 2) << "unexpected failure";
6539   ASSERT_LT(1, 2) << "unexpected failure";
6540   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6541                           "expected failure");
6542   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6543                        "expected failure");
6544 }
6545 
TEST(StreamingAssertionsTest,StringsEqual)6546 TEST(StreamingAssertionsTest, StringsEqual) {
6547   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6548   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6549   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6550                           "expected failure");
6551   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6552                        "expected failure");
6553 }
6554 
TEST(StreamingAssertionsTest,StringsNotEqual)6555 TEST(StreamingAssertionsTest, StringsNotEqual) {
6556   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6557   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6558   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6559                           "expected failure");
6560   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6561                        "expected failure");
6562 }
6563 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6564 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6565   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6566   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6567   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6568                           "expected failure");
6569   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6570                        "expected failure");
6571 }
6572 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6573 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6574   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6575   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6576   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6577                           "expected failure");
6578   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6579                        "expected failure");
6580 }
6581 
TEST(StreamingAssertionsTest,FloatingPointEquals)6582 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6583   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6584   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6585   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6586                           "expected failure");
6587   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6588                        "expected failure");
6589 }
6590 
6591 #if GTEST_HAS_EXCEPTIONS
6592 
TEST(StreamingAssertionsTest,Throw)6593 TEST(StreamingAssertionsTest, Throw) {
6594   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6595   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6596   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6597                           "expected failure", "expected failure");
6598   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6599                        "expected failure", "expected failure");
6600 }
6601 
TEST(StreamingAssertionsTest,NoThrow)6602 TEST(StreamingAssertionsTest, NoThrow) {
6603   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6604   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6605   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6606                           "expected failure", "expected failure");
6607   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6608                        "expected failure", "expected failure");
6609 }
6610 
TEST(StreamingAssertionsTest,AnyThrow)6611 TEST(StreamingAssertionsTest, AnyThrow) {
6612   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6613   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6614   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6615                           "expected failure", "expected failure");
6616   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6617                        "expected failure", "expected failure");
6618 }
6619 
6620 #endif  // GTEST_HAS_EXCEPTIONS
6621 
6622 // Tests that Google Test correctly decides whether to use colors in the output.
6623 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6624 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6625   GTEST_FLAG_SET(color, "yes");
6626 
6627   SetEnv("TERM", "xterm");  // TERM supports colors.
6628   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6629   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6630 
6631   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6632   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6633   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6634 }
6635 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6636 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6637   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6638 
6639   GTEST_FLAG_SET(color, "True");
6640   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6641 
6642   GTEST_FLAG_SET(color, "t");
6643   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6644 
6645   GTEST_FLAG_SET(color, "1");
6646   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6647 }
6648 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6649 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6650   GTEST_FLAG_SET(color, "no");
6651 
6652   SetEnv("TERM", "xterm");  // TERM supports colors.
6653   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6654   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6655 
6656   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6657   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6658   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6659 }
6660 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6661 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6662   SetEnv("TERM", "xterm");  // TERM supports colors.
6663 
6664   GTEST_FLAG_SET(color, "F");
6665   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6666 
6667   GTEST_FLAG_SET(color, "0");
6668   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6669 
6670   GTEST_FLAG_SET(color, "unknown");
6671   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6672 }
6673 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6674 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6675   GTEST_FLAG_SET(color, "auto");
6676 
6677   SetEnv("TERM", "xterm");  // TERM supports colors.
6678   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6679   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6680 }
6681 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6682 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6683   GTEST_FLAG_SET(color, "auto");
6684 
6685 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
6686   // On Windows, we ignore the TERM variable as it's usually not set.
6687 
6688   SetEnv("TERM", "dumb");
6689   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6690 
6691   SetEnv("TERM", "");
6692   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6693 
6694   SetEnv("TERM", "xterm");
6695   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6696 #else
6697   // On non-Windows platforms, we rely on TERM to determine if the
6698   // terminal supports colors.
6699 
6700   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6701   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6702 
6703   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6704   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6705 
6706   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6707   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6708 
6709   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6710   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6711 
6712   SetEnv("TERM", "xterm");  // TERM supports colors.
6713   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6714 
6715   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6716   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6717 
6718   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6719   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6720 
6721   SetEnv("TERM", "screen");  // TERM supports colors.
6722   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6723 
6724   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6725   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6726 
6727   SetEnv("TERM", "tmux");  // TERM supports colors.
6728   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6729 
6730   SetEnv("TERM", "tmux-256color");  // TERM supports colors.
6731   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6732 
6733   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
6734   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6735 
6736   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6737   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6738 
6739   SetEnv("TERM", "linux");  // TERM supports colors.
6740   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6741 
6742   SetEnv("TERM", "cygwin");  // TERM supports colors.
6743   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6744 #endif  // GTEST_OS_WINDOWS
6745 }
6746 
6747 // Verifies that StaticAssertTypeEq works in a namespace scope.
6748 
6749 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6750 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6751     StaticAssertTypeEq<const int, const int>();
6752 
6753 // Verifies that StaticAssertTypeEq works in a class.
6754 
6755 template <typename T>
6756 class StaticAssertTypeEqTestHelper {
6757  public:
StaticAssertTypeEqTestHelper()6758   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6759 };
6760 
TEST(StaticAssertTypeEqTest,WorksInClass)6761 TEST(StaticAssertTypeEqTest, WorksInClass) {
6762   StaticAssertTypeEqTestHelper<bool>();
6763 }
6764 
6765 // Verifies that StaticAssertTypeEq works inside a function.
6766 
6767 typedef int IntAlias;
6768 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6769 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6770   StaticAssertTypeEq<int, IntAlias>();
6771   StaticAssertTypeEq<int*, IntAlias*>();
6772 }
6773 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6774 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6775   EXPECT_FALSE(HasNonfatalFailure());
6776 }
6777 
FailFatally()6778 static void FailFatally() { FAIL(); }
6779 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6780 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6781   FailFatally();
6782   const bool has_nonfatal_failure = HasNonfatalFailure();
6783   ClearCurrentTestPartResults();
6784   EXPECT_FALSE(has_nonfatal_failure);
6785 }
6786 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6787 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6788   ADD_FAILURE();
6789   const bool has_nonfatal_failure = HasNonfatalFailure();
6790   ClearCurrentTestPartResults();
6791   EXPECT_TRUE(has_nonfatal_failure);
6792 }
6793 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6794 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6795   FailFatally();
6796   ADD_FAILURE();
6797   const bool has_nonfatal_failure = HasNonfatalFailure();
6798   ClearCurrentTestPartResults();
6799   EXPECT_TRUE(has_nonfatal_failure);
6800 }
6801 
6802 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6803 static bool HasNonfatalFailureHelper() {
6804   return testing::Test::HasNonfatalFailure();
6805 }
6806 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6807 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6808   EXPECT_FALSE(HasNonfatalFailureHelper());
6809 }
6810 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6811 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6812   ADD_FAILURE();
6813   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6814   ClearCurrentTestPartResults();
6815   EXPECT_TRUE(has_nonfatal_failure);
6816 }
6817 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6818 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6819   EXPECT_FALSE(HasFailure());
6820 }
6821 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6822 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6823   FailFatally();
6824   const bool has_failure = HasFailure();
6825   ClearCurrentTestPartResults();
6826   EXPECT_TRUE(has_failure);
6827 }
6828 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6829 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6830   ADD_FAILURE();
6831   const bool has_failure = HasFailure();
6832   ClearCurrentTestPartResults();
6833   EXPECT_TRUE(has_failure);
6834 }
6835 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6836 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6837   FailFatally();
6838   ADD_FAILURE();
6839   const bool has_failure = HasFailure();
6840   ClearCurrentTestPartResults();
6841   EXPECT_TRUE(has_failure);
6842 }
6843 
6844 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6845 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6846 
TEST(HasFailureTest,WorksOutsideOfTestBody)6847 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6848   EXPECT_FALSE(HasFailureHelper());
6849 }
6850 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6851 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6852   ADD_FAILURE();
6853   const bool has_failure = HasFailureHelper();
6854   ClearCurrentTestPartResults();
6855   EXPECT_TRUE(has_failure);
6856 }
6857 
6858 class TestListener : public EmptyTestEventListener {
6859  public:
TestListener()6860   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6861   TestListener(int* on_start_counter, bool* is_destroyed)
6862       : on_start_counter_(on_start_counter),
6863         is_destroyed_(is_destroyed) {}
6864 
~TestListener()6865   ~TestListener() override {
6866     if (is_destroyed_)
6867       *is_destroyed_ = true;
6868   }
6869 
6870  protected:
OnTestProgramStart(const UnitTest &)6871   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6872     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6873   }
6874 
6875  private:
6876   int* on_start_counter_;
6877   bool* is_destroyed_;
6878 };
6879 
6880 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6881 TEST(TestEventListenersTest, ConstructionWorks) {
6882   TestEventListeners listeners;
6883 
6884   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6885   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6886   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6887 }
6888 
6889 // Tests that the TestEventListeners destructor deletes all the listeners it
6890 // owns.
TEST(TestEventListenersTest,DestructionWorks)6891 TEST(TestEventListenersTest, DestructionWorks) {
6892   bool default_result_printer_is_destroyed = false;
6893   bool default_xml_printer_is_destroyed = false;
6894   bool extra_listener_is_destroyed = false;
6895   TestListener* default_result_printer =
6896       new TestListener(nullptr, &default_result_printer_is_destroyed);
6897   TestListener* default_xml_printer =
6898       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6899   TestListener* extra_listener =
6900       new TestListener(nullptr, &extra_listener_is_destroyed);
6901 
6902   {
6903     TestEventListeners listeners;
6904     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6905                                                         default_result_printer);
6906     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6907                                                        default_xml_printer);
6908     listeners.Append(extra_listener);
6909   }
6910   EXPECT_TRUE(default_result_printer_is_destroyed);
6911   EXPECT_TRUE(default_xml_printer_is_destroyed);
6912   EXPECT_TRUE(extra_listener_is_destroyed);
6913 }
6914 
6915 // Tests that a listener Append'ed to a TestEventListeners list starts
6916 // receiving events.
TEST(TestEventListenersTest,Append)6917 TEST(TestEventListenersTest, Append) {
6918   int on_start_counter = 0;
6919   bool is_destroyed = false;
6920   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6921   {
6922     TestEventListeners listeners;
6923     listeners.Append(listener);
6924     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6925         *UnitTest::GetInstance());
6926     EXPECT_EQ(1, on_start_counter);
6927   }
6928   EXPECT_TRUE(is_destroyed);
6929 }
6930 
6931 // Tests that listeners receive events in the order they were appended to
6932 // the list, except for *End requests, which must be received in the reverse
6933 // order.
6934 class SequenceTestingListener : public EmptyTestEventListener {
6935  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6936   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6937       : vector_(vector), id_(id) {}
6938 
6939  protected:
OnTestProgramStart(const UnitTest &)6940   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6941     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6942   }
6943 
OnTestProgramEnd(const UnitTest &)6944   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6945     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6946   }
6947 
OnTestIterationStart(const UnitTest &,int)6948   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6949                             int /*iteration*/) override {
6950     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6951   }
6952 
OnTestIterationEnd(const UnitTest &,int)6953   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6954                           int /*iteration*/) override {
6955     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6956   }
6957 
6958  private:
GetEventDescription(const char * method)6959   std::string GetEventDescription(const char* method) {
6960     Message message;
6961     message << id_ << "." << method;
6962     return message.GetString();
6963   }
6964 
6965   std::vector<std::string>* vector_;
6966   const char* const id_;
6967 
6968   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6969 };
6970 
TEST(EventListenerTest,AppendKeepsOrder)6971 TEST(EventListenerTest, AppendKeepsOrder) {
6972   std::vector<std::string> vec;
6973   TestEventListeners listeners;
6974   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6975   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6976   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6977 
6978   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6979       *UnitTest::GetInstance());
6980   ASSERT_EQ(3U, vec.size());
6981   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6982   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6983   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6984 
6985   vec.clear();
6986   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6987       *UnitTest::GetInstance());
6988   ASSERT_EQ(3U, vec.size());
6989   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6990   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6991   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6992 
6993   vec.clear();
6994   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6995       *UnitTest::GetInstance(), 0);
6996   ASSERT_EQ(3U, vec.size());
6997   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6998   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6999   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
7000 
7001   vec.clear();
7002   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
7003       *UnitTest::GetInstance(), 0);
7004   ASSERT_EQ(3U, vec.size());
7005   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
7006   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
7007   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
7008 }
7009 
7010 // Tests that a listener removed from a TestEventListeners list stops receiving
7011 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)7012 TEST(TestEventListenersTest, Release) {
7013   int on_start_counter = 0;
7014   bool is_destroyed = false;
7015   // Although Append passes the ownership of this object to the list,
7016   // the following calls release it, and we need to delete it before the
7017   // test ends.
7018   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7019   {
7020     TestEventListeners listeners;
7021     listeners.Append(listener);
7022     EXPECT_EQ(listener, listeners.Release(listener));
7023     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7024         *UnitTest::GetInstance());
7025     EXPECT_TRUE(listeners.Release(listener) == nullptr);
7026   }
7027   EXPECT_EQ(0, on_start_counter);
7028   EXPECT_FALSE(is_destroyed);
7029   delete listener;
7030 }
7031 
7032 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7033 TEST(EventListenerTest, SuppressEventForwarding) {
7034   int on_start_counter = 0;
7035   TestListener* listener = new TestListener(&on_start_counter, nullptr);
7036 
7037   TestEventListeners listeners;
7038   listeners.Append(listener);
7039   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7040   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7041   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7042   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7043       *UnitTest::GetInstance());
7044   EXPECT_EQ(0, on_start_counter);
7045 }
7046 
7047 // Tests that events generated by Google Test are not forwarded in
7048 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)7049 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
7050   EXPECT_DEATH_IF_SUPPORTED({
7051       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7052           *GetUnitTestImpl()->listeners())) << "expected failure";},
7053       "expected failure");
7054 }
7055 
7056 // Tests that a listener installed via SetDefaultResultPrinter() starts
7057 // receiving events and is returned via default_result_printer() and that
7058 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7059 TEST(EventListenerTest, default_result_printer) {
7060   int on_start_counter = 0;
7061   bool is_destroyed = false;
7062   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7063 
7064   TestEventListeners listeners;
7065   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7066 
7067   EXPECT_EQ(listener, listeners.default_result_printer());
7068 
7069   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7070       *UnitTest::GetInstance());
7071 
7072   EXPECT_EQ(1, on_start_counter);
7073 
7074   // Replacing default_result_printer with something else should remove it
7075   // from the list and destroy it.
7076   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7077 
7078   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7079   EXPECT_TRUE(is_destroyed);
7080 
7081   // After broadcasting an event the counter is still the same, indicating
7082   // the listener is not in the list anymore.
7083   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7084       *UnitTest::GetInstance());
7085   EXPECT_EQ(1, on_start_counter);
7086 }
7087 
7088 // Tests that the default_result_printer listener stops receiving events
7089 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7090 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7091   int on_start_counter = 0;
7092   bool is_destroyed = false;
7093   // Although Append passes the ownership of this object to the list,
7094   // the following calls release it, and we need to delete it before the
7095   // test ends.
7096   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7097   {
7098     TestEventListeners listeners;
7099     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7100 
7101     EXPECT_EQ(listener, listeners.Release(listener));
7102     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7103     EXPECT_FALSE(is_destroyed);
7104 
7105     // Broadcasting events now should not affect default_result_printer.
7106     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7107         *UnitTest::GetInstance());
7108     EXPECT_EQ(0, on_start_counter);
7109   }
7110   // Destroying the list should not affect the listener now, too.
7111   EXPECT_FALSE(is_destroyed);
7112   delete listener;
7113 }
7114 
7115 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7116 // receiving events and is returned via default_xml_generator() and that
7117 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7118 TEST(EventListenerTest, default_xml_generator) {
7119   int on_start_counter = 0;
7120   bool is_destroyed = false;
7121   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7122 
7123   TestEventListeners listeners;
7124   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7125 
7126   EXPECT_EQ(listener, listeners.default_xml_generator());
7127 
7128   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7129       *UnitTest::GetInstance());
7130 
7131   EXPECT_EQ(1, on_start_counter);
7132 
7133   // Replacing default_xml_generator with something else should remove it
7134   // from the list and destroy it.
7135   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7136 
7137   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7138   EXPECT_TRUE(is_destroyed);
7139 
7140   // After broadcasting an event the counter is still the same, indicating
7141   // the listener is not in the list anymore.
7142   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7143       *UnitTest::GetInstance());
7144   EXPECT_EQ(1, on_start_counter);
7145 }
7146 
7147 // Tests that the default_xml_generator listener stops receiving events
7148 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7149 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7150   int on_start_counter = 0;
7151   bool is_destroyed = false;
7152   // Although Append passes the ownership of this object to the list,
7153   // the following calls release it, and we need to delete it before the
7154   // test ends.
7155   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7156   {
7157     TestEventListeners listeners;
7158     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7159 
7160     EXPECT_EQ(listener, listeners.Release(listener));
7161     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7162     EXPECT_FALSE(is_destroyed);
7163 
7164     // Broadcasting events now should not affect default_xml_generator.
7165     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7166         *UnitTest::GetInstance());
7167     EXPECT_EQ(0, on_start_counter);
7168   }
7169   // Destroying the list should not affect the listener now, too.
7170   EXPECT_FALSE(is_destroyed);
7171   delete listener;
7172 }
7173 
7174 // Sanity tests to ensure that the alternative, verbose spellings of
7175 // some of the macros work.  We don't test them thoroughly as that
7176 // would be quite involved.  Since their implementations are
7177 // straightforward, and they are rarely used, we'll just rely on the
7178 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7179 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7180   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7181 
7182   // GTEST_FAIL is the same as FAIL.
7183   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7184                        "An expected failure");
7185 
7186   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7187 
7188   GTEST_ASSERT_EQ(0, 0);
7189   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7190                        "An expected failure");
7191   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7192                        "An expected failure");
7193 
7194   GTEST_ASSERT_NE(0, 1);
7195   GTEST_ASSERT_NE(1, 0);
7196   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7197                        "An expected failure");
7198 
7199   GTEST_ASSERT_LE(0, 0);
7200   GTEST_ASSERT_LE(0, 1);
7201   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7202                        "An expected failure");
7203 
7204   GTEST_ASSERT_LT(0, 1);
7205   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7206                        "An expected failure");
7207   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7208                        "An expected failure");
7209 
7210   GTEST_ASSERT_GE(0, 0);
7211   GTEST_ASSERT_GE(1, 0);
7212   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7213                        "An expected failure");
7214 
7215   GTEST_ASSERT_GT(1, 0);
7216   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7217                        "An expected failure");
7218   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7219                        "An expected failure");
7220 }
7221 
7222 // Tests for internal utilities necessary for implementation of the universal
7223 // printing.
7224 
7225 class ConversionHelperBase {};
7226 class ConversionHelperDerived : public ConversionHelperBase {};
7227 
7228 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7229   std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7230   std::string ShortDebugString() const { return ""; }
7231 };
7232 
7233 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7234 
7235 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7236   std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7237   int ShortDebugString() const { return 1; }
7238 };
7239 
7240 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7241   std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7242   std::string ShortDebugString() const { return ""; }
7243 };
7244 
7245 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7246   std::string DebugString() { return ""; }
7247 };
7248 
7249 struct IncompleteType;
7250 
7251 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7252 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7253 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7254   GTEST_COMPILE_ASSERT_(
7255       HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7256       const_true);
7257   GTEST_COMPILE_ASSERT_(
7258       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7259       const_true);
7260   GTEST_COMPILE_ASSERT_(HasDebugStringAndShortDebugString<
7261                             const InheritsDebugStringMethods>::value,
7262                         const_true);
7263   GTEST_COMPILE_ASSERT_(
7264       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7265       const_false);
7266   GTEST_COMPILE_ASSERT_(
7267       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7268       const_false);
7269   GTEST_COMPILE_ASSERT_(
7270       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7271       const_false);
7272   GTEST_COMPILE_ASSERT_(
7273       !HasDebugStringAndShortDebugString<IncompleteType>::value, const_false);
7274   GTEST_COMPILE_ASSERT_(!HasDebugStringAndShortDebugString<int>::value,
7275                         const_false);
7276 }
7277 
7278 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7279 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7280 TEST(HasDebugStringAndShortDebugStringTest,
7281      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7282   EXPECT_TRUE(
7283       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7284 }
7285 
7286 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7287 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7288 TEST(HasDebugStringAndShortDebugStringTest,
7289      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7290   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7291   EXPECT_FALSE(
7292       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7293 }
7294 
7295 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7296 
7297 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7298 void TestGTestRemoveReferenceAndConst() {
7299   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7300                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7301 }
7302 
TEST(RemoveReferenceToConstTest,Works)7303 TEST(RemoveReferenceToConstTest, Works) {
7304   TestGTestRemoveReferenceAndConst<int, int>();
7305   TestGTestRemoveReferenceAndConst<double, double&>();
7306   TestGTestRemoveReferenceAndConst<char, const char>();
7307   TestGTestRemoveReferenceAndConst<char, const char&>();
7308   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7309 }
7310 
7311 // Tests GTEST_REFERENCE_TO_CONST_.
7312 
7313 template <typename T1, typename T2>
TestGTestReferenceToConst()7314 void TestGTestReferenceToConst() {
7315   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7316                 "GTEST_REFERENCE_TO_CONST_ failed.");
7317 }
7318 
TEST(GTestReferenceToConstTest,Works)7319 TEST(GTestReferenceToConstTest, Works) {
7320   TestGTestReferenceToConst<const char&, char>();
7321   TestGTestReferenceToConst<const int&, const int>();
7322   TestGTestReferenceToConst<const double&, double>();
7323   TestGTestReferenceToConst<const std::string&, const std::string&>();
7324 }
7325 
7326 
7327 // Tests IsContainerTest.
7328 
7329 class NonContainer {};
7330 
TEST(IsContainerTestTest,WorksForNonContainer)7331 TEST(IsContainerTestTest, WorksForNonContainer) {
7332   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7333   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7334   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7335 }
7336 
TEST(IsContainerTestTest,WorksForContainer)7337 TEST(IsContainerTestTest, WorksForContainer) {
7338   EXPECT_EQ(sizeof(IsContainer),
7339             sizeof(IsContainerTest<std::vector<bool> >(0)));
7340   EXPECT_EQ(sizeof(IsContainer),
7341             sizeof(IsContainerTest<std::map<int, double> >(0)));
7342 }
7343 
7344 struct ConstOnlyContainerWithPointerIterator {
7345   using const_iterator = int*;
7346   const_iterator begin() const;
7347   const_iterator end() const;
7348 };
7349 
7350 struct ConstOnlyContainerWithClassIterator {
7351   struct const_iterator {
7352     const int& operator*() const;
7353     const_iterator& operator++(/* pre-increment */);
7354   };
7355   const_iterator begin() const;
7356   const_iterator end() const;
7357 };
7358 
TEST(IsContainerTestTest,ConstOnlyContainer)7359 TEST(IsContainerTestTest, ConstOnlyContainer) {
7360   EXPECT_EQ(sizeof(IsContainer),
7361             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7362   EXPECT_EQ(sizeof(IsContainer),
7363             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7364 }
7365 
7366 // Tests IsHashTable.
7367 struct AHashTable {
7368   typedef void hasher;
7369 };
7370 struct NotReallyAHashTable {
7371   typedef void hasher;
7372   typedef void reverse_iterator;
7373 };
TEST(IsHashTable,Basic)7374 TEST(IsHashTable, Basic) {
7375   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7376   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7377   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7378   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7379 }
7380 
7381 // Tests ArrayEq().
7382 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7383 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7384   EXPECT_TRUE(ArrayEq(5, 5L));
7385   EXPECT_FALSE(ArrayEq('a', 0));
7386 }
7387 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7388 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7389   // Note that a and b are distinct but compatible types.
7390   const int a[] = { 0, 1 };
7391   long b[] = { 0, 1 };
7392   EXPECT_TRUE(ArrayEq(a, b));
7393   EXPECT_TRUE(ArrayEq(a, 2, b));
7394 
7395   b[0] = 2;
7396   EXPECT_FALSE(ArrayEq(a, b));
7397   EXPECT_FALSE(ArrayEq(a, 1, b));
7398 }
7399 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7400 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7401   const char a[][3] = { "hi", "lo" };
7402   const char b[][3] = { "hi", "lo" };
7403   const char c[][3] = { "hi", "li" };
7404 
7405   EXPECT_TRUE(ArrayEq(a, b));
7406   EXPECT_TRUE(ArrayEq(a, 2, b));
7407 
7408   EXPECT_FALSE(ArrayEq(a, c));
7409   EXPECT_FALSE(ArrayEq(a, 2, c));
7410 }
7411 
7412 // Tests ArrayAwareFind().
7413 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7414 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7415   const char a[] = "hello";
7416   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7417   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7418 }
7419 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7420 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7421   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7422   const int b[2] = { 2, 3 };
7423   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7424 
7425   const int c[2] = { 6, 7 };
7426   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7427 }
7428 
7429 // Tests CopyArray().
7430 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7431 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7432   int n = 0;
7433   CopyArray('a', &n);
7434   EXPECT_EQ('a', n);
7435 }
7436 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7437 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7438   const char a[3] = "hi";
7439   int b[3];
7440 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7441   CopyArray(a, &b);
7442   EXPECT_TRUE(ArrayEq(a, b));
7443 #endif
7444 
7445   int c[3];
7446   CopyArray(a, 3, c);
7447   EXPECT_TRUE(ArrayEq(a, c));
7448 }
7449 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7450 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7451   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7452   int b[2][3];
7453 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7454   CopyArray(a, &b);
7455   EXPECT_TRUE(ArrayEq(a, b));
7456 #endif
7457 
7458   int c[2][3];
7459   CopyArray(a, 2, c);
7460   EXPECT_TRUE(ArrayEq(a, c));
7461 }
7462 
7463 // Tests NativeArray.
7464 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7465 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7466   const int a[3] = { 0, 1, 2 };
7467   NativeArray<int> na(a, 3, RelationToSourceReference());
7468   EXPECT_EQ(3U, na.size());
7469   EXPECT_EQ(a, na.begin());
7470 }
7471 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7472 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7473   typedef int Array[2];
7474   Array* a = new Array[1];
7475   (*a)[0] = 0;
7476   (*a)[1] = 1;
7477   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7478   EXPECT_NE(*a, na.begin());
7479   delete[] a;
7480   EXPECT_EQ(0, na.begin()[0]);
7481   EXPECT_EQ(1, na.begin()[1]);
7482 
7483   // We rely on the heap checker to verify that na deletes the copy of
7484   // array.
7485 }
7486 
TEST(NativeArrayTest,TypeMembersAreCorrect)7487 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7488   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7489   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7490 
7491   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7492   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7493 }
7494 
TEST(NativeArrayTest,MethodsWork)7495 TEST(NativeArrayTest, MethodsWork) {
7496   const int a[3] = { 0, 1, 2 };
7497   NativeArray<int> na(a, 3, RelationToSourceCopy());
7498   ASSERT_EQ(3U, na.size());
7499   EXPECT_EQ(3, na.end() - na.begin());
7500 
7501   NativeArray<int>::const_iterator it = na.begin();
7502   EXPECT_EQ(0, *it);
7503   ++it;
7504   EXPECT_EQ(1, *it);
7505   it++;
7506   EXPECT_EQ(2, *it);
7507   ++it;
7508   EXPECT_EQ(na.end(), it);
7509 
7510   EXPECT_TRUE(na == na);
7511 
7512   NativeArray<int> na2(a, 3, RelationToSourceReference());
7513   EXPECT_TRUE(na == na2);
7514 
7515   const int b1[3] = { 0, 1, 1 };
7516   const int b2[4] = { 0, 1, 2, 3 };
7517   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7518   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7519 }
7520 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7521 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7522   const char a[2][3] = { "hi", "lo" };
7523   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7524   ASSERT_EQ(2U, na.size());
7525   EXPECT_EQ(a, na.begin());
7526 }
7527 
7528 // IndexSequence
TEST(IndexSequence,MakeIndexSequence)7529 TEST(IndexSequence, MakeIndexSequence) {
7530   using testing::internal::IndexSequence;
7531   using testing::internal::MakeIndexSequence;
7532   EXPECT_TRUE(
7533       (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7534   EXPECT_TRUE(
7535       (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7536   EXPECT_TRUE(
7537       (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7538   EXPECT_TRUE((
7539       std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7540   EXPECT_TRUE(
7541       (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7542 }
7543 
7544 // ElemFromList
TEST(ElemFromList,Basic)7545 TEST(ElemFromList, Basic) {
7546   using testing::internal::ElemFromList;
7547   EXPECT_TRUE(
7548       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7549   EXPECT_TRUE(
7550       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7551   EXPECT_TRUE(
7552       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7553   EXPECT_TRUE((
7554       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7555                                       char, int, int, int, int>::type>::value));
7556 }
7557 
7558 // FlatTuple
TEST(FlatTuple,Basic)7559 TEST(FlatTuple, Basic) {
7560   using testing::internal::FlatTuple;
7561 
7562   FlatTuple<int, double, const char*> tuple = {};
7563   EXPECT_EQ(0, tuple.Get<0>());
7564   EXPECT_EQ(0.0, tuple.Get<1>());
7565   EXPECT_EQ(nullptr, tuple.Get<2>());
7566 
7567   tuple = FlatTuple<int, double, const char*>(
7568       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7569   EXPECT_EQ(7, tuple.Get<0>());
7570   EXPECT_EQ(3.2, tuple.Get<1>());
7571   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7572 
7573   tuple.Get<1>() = 5.1;
7574   EXPECT_EQ(5.1, tuple.Get<1>());
7575 }
7576 
7577 namespace {
AddIntToString(int i,const std::string & s)7578 std::string AddIntToString(int i, const std::string& s) {
7579   return s + std::to_string(i);
7580 }
7581 }  // namespace
7582 
TEST(FlatTuple,Apply)7583 TEST(FlatTuple, Apply) {
7584   using testing::internal::FlatTuple;
7585 
7586   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7587                                     5, "Hello"};
7588 
7589   // Lambda.
7590   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7591     return i == static_cast<int>(s.size());
7592   }));
7593 
7594   // Function.
7595   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7596 
7597   // Mutating operations.
7598   tuple.Apply([](int& i, std::string& s) {
7599     ++i;
7600     s += s;
7601   });
7602   EXPECT_EQ(tuple.Get<0>(), 6);
7603   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7604 }
7605 
7606 struct ConstructionCounting {
ConstructionCountingConstructionCounting7607   ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7608   ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7609   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7610   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7611   ConstructionCounting& operator=(const ConstructionCounting&) {
7612     ++copy_assignment_calls;
7613     return *this;
7614   }
operator =ConstructionCounting7615   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7616     ++move_assignment_calls;
7617     return *this;
7618   }
7619 
ResetConstructionCounting7620   static void Reset() {
7621     default_ctor_calls = 0;
7622     dtor_calls = 0;
7623     copy_ctor_calls = 0;
7624     move_ctor_calls = 0;
7625     copy_assignment_calls = 0;
7626     move_assignment_calls = 0;
7627   }
7628 
7629   static int default_ctor_calls;
7630   static int dtor_calls;
7631   static int copy_ctor_calls;
7632   static int move_ctor_calls;
7633   static int copy_assignment_calls;
7634   static int move_assignment_calls;
7635 };
7636 
7637 int ConstructionCounting::default_ctor_calls = 0;
7638 int ConstructionCounting::dtor_calls = 0;
7639 int ConstructionCounting::copy_ctor_calls = 0;
7640 int ConstructionCounting::move_ctor_calls = 0;
7641 int ConstructionCounting::copy_assignment_calls = 0;
7642 int ConstructionCounting::move_assignment_calls = 0;
7643 
TEST(FlatTuple,ConstructorCalls)7644 TEST(FlatTuple, ConstructorCalls) {
7645   using testing::internal::FlatTuple;
7646 
7647   // Default construction.
7648   ConstructionCounting::Reset();
7649   { FlatTuple<ConstructionCounting> tuple; }
7650   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7651   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7652   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7653   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7654   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7655   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7656 
7657   // Copy construction.
7658   ConstructionCounting::Reset();
7659   {
7660     ConstructionCounting elem;
7661     FlatTuple<ConstructionCounting> tuple{
7662         testing::internal::FlatTupleConstructTag{}, elem};
7663   }
7664   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7665   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7666   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7667   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7668   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7669   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7670 
7671   // Move construction.
7672   ConstructionCounting::Reset();
7673   {
7674     FlatTuple<ConstructionCounting> tuple{
7675         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7676   }
7677   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7678   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7679   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7680   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7681   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7682   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7683 
7684   // Copy assignment.
7685   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7686   // elements
7687   ConstructionCounting::Reset();
7688   {
7689     FlatTuple<ConstructionCounting> tuple;
7690     ConstructionCounting elem;
7691     tuple.Get<0>() = elem;
7692   }
7693   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7694   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7695   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7696   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7697   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7698   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7699 
7700   // Move assignment.
7701   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7702   // elements
7703   ConstructionCounting::Reset();
7704   {
7705     FlatTuple<ConstructionCounting> tuple;
7706     tuple.Get<0>() = ConstructionCounting{};
7707   }
7708   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7709   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7710   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7711   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7712   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7713   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7714 
7715   ConstructionCounting::Reset();
7716 }
7717 
TEST(FlatTuple,ManyTypes)7718 TEST(FlatTuple, ManyTypes) {
7719   using testing::internal::FlatTuple;
7720 
7721   // Instantiate FlatTuple with 257 ints.
7722   // Tests show that we can do it with thousands of elements, but very long
7723   // compile times makes it unusuitable for this test.
7724 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7725 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7726 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7727 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7728 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7729 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7730 
7731   // Let's make sure that we can have a very long list of types without blowing
7732   // up the template instantiation depth.
7733   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7734 
7735   tuple.Get<0>() = 7;
7736   tuple.Get<99>() = 17;
7737   tuple.Get<256>() = 1000;
7738   EXPECT_EQ(7, tuple.Get<0>());
7739   EXPECT_EQ(17, tuple.Get<99>());
7740   EXPECT_EQ(1000, tuple.Get<256>());
7741 }
7742 
7743 // Tests SkipPrefix().
7744 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7745 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7746   const char* const str = "hello";
7747 
7748   const char* p = str;
7749   EXPECT_TRUE(SkipPrefix("", &p));
7750   EXPECT_EQ(str, p);
7751 
7752   p = str;
7753   EXPECT_TRUE(SkipPrefix("hell", &p));
7754   EXPECT_EQ(str + 4, p);
7755 }
7756 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7757 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7758   const char* const str = "world";
7759 
7760   const char* p = str;
7761   EXPECT_FALSE(SkipPrefix("W", &p));
7762   EXPECT_EQ(str, p);
7763 
7764   p = str;
7765   EXPECT_FALSE(SkipPrefix("world!", &p));
7766   EXPECT_EQ(str, p);
7767 }
7768 
7769 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7770 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7771   const testing::TestResult& test_result =
7772       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7773   EXPECT_FALSE(test_result.Failed());
7774 }
7775 
7776 class DynamicUnitTestFixture : public testing::Test {};
7777 
7778 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7779   void TestBody() override { EXPECT_TRUE(true); }
7780 };
7781 
7782 auto* dynamic_test = testing::RegisterTest(
7783     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anonbb4b4fd70902() 7784     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7785 
TEST(RegisterTest,WasRegistered)7786 TEST(RegisterTest, WasRegistered) {
7787   auto* unittest = testing::UnitTest::GetInstance();
7788   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7789     auto* tests = unittest->GetTestSuite(i);
7790     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7791     for (int j = 0; j < tests->total_test_count(); ++j) {
7792       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7793       // Found it.
7794       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7795       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7796       return;
7797     }
7798   }
7799 
7800   FAIL() << "Didn't find the test!";
7801 }
7802 
7803 // Test that the pattern globbing algorithm is linear. If not, this test should
7804 // time out.
TEST(PatternGlobbingTest,MatchesFilterLinearRuntime)7805 TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7806   std::string name(100, 'a');  // Construct the string (a^100)b
7807   name.push_back('b');
7808 
7809   std::string pattern;  // Construct the string ((a*)^100)b
7810   for (int i = 0; i < 100; ++i) {
7811     pattern.append("a*");
7812   }
7813   pattern.push_back('b');
7814 
7815   EXPECT_TRUE(
7816       testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7817 }
7818 
TEST(PatternGlobbingTest,MatchesFilterWithMultiplePatterns)7819 TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7820   const std::string name = "aaaa";
7821   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7822   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7823   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7824   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7825   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7826 }
7827 
TEST(PatternGlobbingTest,MatchesFilterEdgeCases)7828 TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7829   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7830   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7831   EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7832   EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7833 }
7834