• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
5  * in compliance with the License. You may obtain a copy of the License at
6  *
7  * http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software distributed under the License
10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
11  * or implied. See the License for the specific language governing permissions and limitations under
12  * the License.
13  */
14 
15 package com.google.common.util.concurrent;
16 
17 import static com.google.common.base.Preconditions.checkNotNull;
18 
19 import com.google.common.annotations.Beta;
20 import com.google.common.annotations.GwtIncompatible;
21 import com.google.common.primitives.Longs;
22 import com.google.errorprone.annotations.concurrent.GuardedBy;
23 import com.google.j2objc.annotations.Weak;
24 import java.util.concurrent.TimeUnit;
25 import java.util.concurrent.locks.Condition;
26 import java.util.concurrent.locks.ReentrantLock;
27 import javax.annotation.CheckForNull;
28 
29 /**
30  * A synchronization abstraction supporting waiting on arbitrary boolean conditions.
31  *
32  * <p>This class is intended as a replacement for {@link ReentrantLock}. Code using {@code Monitor}
33  * is less error-prone and more readable than code using {@code ReentrantLock}, without significant
34  * performance loss. {@code Monitor} even has the potential for performance gain by optimizing the
35  * evaluation and signaling of conditions. Signaling is entirely <a
36  * href="http://en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit_signaling">implicit</a>. By
37  * eliminating explicit signaling, this class can guarantee that only one thread is awakened when a
38  * condition becomes true (no "signaling storms" due to use of {@link
39  * java.util.concurrent.locks.Condition#signalAll Condition.signalAll}) and that no signals are lost
40  * (no "hangs" due to incorrect use of {@link java.util.concurrent.locks.Condition#signal
41  * Condition.signal}).
42  *
43  * <p>A thread is said to <i>occupy</i> a monitor if it has <i>entered</i> the monitor but not yet
44  * <i>left</i>. Only one thread may occupy a given monitor at any moment. A monitor is also
45  * reentrant, so a thread may enter a monitor any number of times, and then must leave the same
46  * number of times. The <i>enter</i> and <i>leave</i> operations have the same synchronization
47  * semantics as the built-in Java language synchronization primitives.
48  *
49  * <p>A call to any of the <i>enter</i> methods with <b>void</b> return type should always be
50  * followed immediately by a <i>try/finally</i> block to ensure that the current thread leaves the
51  * monitor cleanly:
52  *
53  * <pre>{@code
54  * monitor.enter();
55  * try {
56  *   // do things while occupying the monitor
57  * } finally {
58  *   monitor.leave();
59  * }
60  * }</pre>
61  *
62  * <p>A call to any of the <i>enter</i> methods with <b>boolean</b> return type should always appear
63  * as the condition of an <i>if</i> statement containing a <i>try/finally</i> block to ensure that
64  * the current thread leaves the monitor cleanly:
65  *
66  * <pre>{@code
67  * if (monitor.tryEnter()) {
68  *   try {
69  *     // do things while occupying the monitor
70  *   } finally {
71  *     monitor.leave();
72  *   }
73  * } else {
74  *   // do other things since the monitor was not available
75  * }
76  * }</pre>
77  *
78  * <h2>Comparison with {@code synchronized} and {@code ReentrantLock}</h2>
79  *
80  * <p>The following examples show a simple threadsafe holder expressed using {@code synchronized},
81  * {@link ReentrantLock}, and {@code Monitor}.
82  *
83  * <h3>{@code synchronized}</h3>
84  *
85  * <p>This version is the fewest lines of code, largely because the synchronization mechanism used
86  * is built into the language and runtime. But the programmer has to remember to avoid a couple of
87  * common bugs: The {@code wait()} must be inside a {@code while} instead of an {@code if}, and
88  * {@code notifyAll()} must be used instead of {@code notify()} because there are two different
89  * logical conditions being awaited.
90  *
91  * <pre>{@code
92  * public class SafeBox<V> {
93  *   private V value;
94  *
95  *   public synchronized V get() throws InterruptedException {
96  *     while (value == null) {
97  *       wait();
98  *     }
99  *     V result = value;
100  *     value = null;
101  *     notifyAll();
102  *     return result;
103  *   }
104  *
105  *   public synchronized void set(V newValue) throws InterruptedException {
106  *     while (value != null) {
107  *       wait();
108  *     }
109  *     value = newValue;
110  *     notifyAll();
111  *   }
112  * }
113  * }</pre>
114  *
115  * <h3>{@code ReentrantLock}</h3>
116  *
117  * <p>This version is much more verbose than the {@code synchronized} version, and still suffers
118  * from the need for the programmer to remember to use {@code while} instead of {@code if}. However,
119  * one advantage is that we can introduce two separate {@code Condition} objects, which allows us to
120  * use {@code signal()} instead of {@code signalAll()}, which may be a performance benefit.
121  *
122  * <pre>{@code
123  * public class SafeBox<V> {
124  *   private V value;
125  *   private final ReentrantLock lock = new ReentrantLock();
126  *   private final Condition valuePresent = lock.newCondition();
127  *   private final Condition valueAbsent = lock.newCondition();
128  *
129  *   public V get() throws InterruptedException {
130  *     lock.lock();
131  *     try {
132  *       while (value == null) {
133  *         valuePresent.await();
134  *       }
135  *       V result = value;
136  *       value = null;
137  *       valueAbsent.signal();
138  *       return result;
139  *     } finally {
140  *       lock.unlock();
141  *     }
142  *   }
143  *
144  *   public void set(V newValue) throws InterruptedException {
145  *     lock.lock();
146  *     try {
147  *       while (value != null) {
148  *         valueAbsent.await();
149  *       }
150  *       value = newValue;
151  *       valuePresent.signal();
152  *     } finally {
153  *       lock.unlock();
154  *     }
155  *   }
156  * }
157  * }</pre>
158  *
159  * <h3>{@code Monitor}</h3>
160  *
161  * <p>This version adds some verbosity around the {@code Guard} objects, but removes that same
162  * verbosity, and more, from the {@code get} and {@code set} methods. {@code Monitor} implements the
163  * same efficient signaling as we had to hand-code in the {@code ReentrantLock} version above.
164  * Finally, the programmer no longer has to hand-code the wait loop, and therefore doesn't have to
165  * remember to use {@code while} instead of {@code if}.
166  *
167  * <pre>{@code
168  * public class SafeBox<V> {
169  *   private V value;
170  *   private final Monitor monitor = new Monitor();
171  *   private final Monitor.Guard valuePresent = monitor.newGuard(() -> value != null);
172  *   private final Monitor.Guard valueAbsent = monitor.newGuard(() -> value == null);
173  *
174  *   public V get() throws InterruptedException {
175  *     monitor.enterWhen(valuePresent);
176  *     try {
177  *       V result = value;
178  *       value = null;
179  *       return result;
180  *     } finally {
181  *       monitor.leave();
182  *     }
183  *   }
184  *
185  *   public void set(V newValue) throws InterruptedException {
186  *     monitor.enterWhen(valueAbsent);
187  *     try {
188  *       value = newValue;
189  *     } finally {
190  *       monitor.leave();
191  *     }
192  *   }
193  * }
194  * }</pre>
195  *
196  * @author Justin T. Sampson
197  * @author Martin Buchholz
198  * @since 10.0
199  */
200 @Beta
201 @GwtIncompatible
202 @SuppressWarnings("GuardedBy") // TODO(b/35466881): Fix or suppress.
203 @ElementTypesAreNonnullByDefault
204 public final class Monitor {
205   // TODO(user): Use raw LockSupport or AbstractQueuedSynchronizer instead of ReentrantLock.
206   // TODO(user): "Port" jsr166 tests for ReentrantLock.
207   //
208   // TODO(user): Change API to make it impossible to use a Guard with the "wrong" monitor,
209   //    by making the monitor implicit, and to eliminate other sources of IMSE.
210   //    Imagine:
211   //    guard.lock();
212   //    try { /* monitor locked and guard satisfied here */ }
213   //    finally { guard.unlock(); }
214   // Here are Justin's design notes about this:
215   //
216   // This idea has come up from time to time, and I think one of my
217   // earlier versions of Monitor even did something like this. I ended
218   // up strongly favoring the current interface.
219   //
220   // I probably can't remember all the reasons (it's possible you
221   // could find them in the code review archives), but here are a few:
222   //
223   // 1. What about leaving/unlocking? Are you going to do
224   //    guard.enter() paired with monitor.leave()? That might get
225   //    confusing. It's nice for the finally block to look as close as
226   //    possible to the thing right before the try. You could have
227   //    guard.leave(), but that's a little odd as well because the
228   //    guard doesn't have anything to do with leaving. You can't
229   //    really enforce that the guard you're leaving is the same one
230   //    you entered with, and it doesn't actually matter.
231   //
232   // 2. Since you can enter the monitor without a guard at all, some
233   //    places you'll have monitor.enter()/monitor.leave() and other
234   //    places you'll have guard.enter()/guard.leave() even though
235   //    it's the same lock being acquired underneath. Always using
236   //    monitor.enterXXX()/monitor.leave() will make it really clear
237   //    which lock is held at any point in the code.
238   //
239   // 3. I think "enterWhen(notEmpty)" reads better than "notEmpty.enter()".
240   //
241   // TODO(user): Implement ReentrantLock features:
242   //    - toString() method
243   //    - getOwner() method
244   //    - getQueuedThreads() method
245   //    - getWaitingThreads(Guard) method
246   //    - implement Serializable
247   //    - redo the API to be as close to identical to ReentrantLock as possible,
248   //      since, after all, this class is also a reentrant mutual exclusion lock!?
249 
250   /*
251    * One of the key challenges of this class is to prevent lost signals, while trying hard to
252    * minimize unnecessary signals. One simple and correct algorithm is to signal some other waiter
253    * with a satisfied guard (if one exists) whenever any thread occupying the monitor exits the
254    * monitor, either by unlocking all of its held locks, or by starting to wait for a guard. This
255    * includes exceptional exits, so all control paths involving signalling must be protected by a
256    * finally block.
257    *
258    * Further optimizations of this algorithm become increasingly subtle. A wait that terminates
259    * without the guard being satisfied (due to timeout, but not interrupt) can then immediately exit
260    * the monitor without signalling. If it timed out without being signalled, it does not need to
261    * "pass on" the signal to another thread. If it *was* signalled, then its guard must have been
262    * satisfied at the time of signal, and has since been modified by some other thread to be
263    * non-satisfied before reacquiring the lock, and that other thread takes over the responsibility
264    * of signaling the next waiter.
265    *
266    * Unlike the underlying Condition, if we are not careful, an interrupt *can* cause a signal to be
267    * lost, because the signal may be sent to a condition whose sole waiter has just been
268    * interrupted.
269    *
270    * Imagine a monitor with multiple guards. A thread enters the monitor, satisfies all the guards,
271    * and leaves, calling signalNextWaiter. With traditional locks and conditions, all the conditions
272    * need to be signalled because it is not known which if any of them have waiters (and hasWaiters
273    * can't be used reliably because of a check-then-act race). With our Monitor guards, we only
274    * signal the first active guard that is satisfied. But the corresponding thread may have already
275    * been interrupted and is waiting to reacquire the lock while still registered in activeGuards,
276    * in which case the signal is a no-op, and the bigger-picture signal is lost unless interrupted
277    * threads take special action by participating in the signal-passing game.
278    */
279 
280   /*
281    * Timeout handling is intricate, especially given our ambitious goals:
282    * - Avoid underflow and overflow of timeout values when specified timeouts are close to
283    *   Long.MIN_VALUE or Long.MAX_VALUE.
284    * - Favor responding to interrupts over timeouts.
285    * - System.nanoTime() is expensive enough that we want to call it the minimum required number of
286    *   times, typically once before invoking a blocking method. This often requires keeping track of
287    *   the first time in a method that nanoTime() has been invoked, for which the special value 0L
288    *   is reserved to mean "uninitialized". If timeout is non-positive, then nanoTime need never be
289    *   called.
290    * - Keep behavior of fair and non-fair instances consistent.
291    */
292 
293   /**
294    * A boolean condition for which a thread may wait. A {@code Guard} is associated with a single
295    * {@code Monitor}. The monitor may check the guard at arbitrary times from any thread occupying
296    * the monitor, so code should not be written to rely on how often a guard might or might not be
297    * checked.
298    *
299    * <p>If a {@code Guard} is passed into any method of a {@code Monitor} other than the one it is
300    * associated with, an {@link IllegalMonitorStateException} is thrown.
301    *
302    * @since 10.0
303    */
304   @Beta
305   public abstract static class Guard {
306 
307     @Weak final Monitor monitor;
308     final Condition condition;
309 
310     @GuardedBy("monitor.lock")
311     int waiterCount = 0;
312 
313     /** The next active guard */
314     @GuardedBy("monitor.lock")
315     @CheckForNull
316     Guard next;
317 
Guard(Monitor monitor)318     protected Guard(Monitor monitor) {
319       this.monitor = checkNotNull(monitor, "monitor");
320       this.condition = monitor.lock.newCondition();
321     }
322 
323     /**
324      * Evaluates this guard's boolean condition. This method is always called with the associated
325      * monitor already occupied. Implementations of this method must depend only on state protected
326      * by the associated monitor, and must not modify that state.
327      */
isSatisfied()328     public abstract boolean isSatisfied();
329   }
330 
331   /** Whether this monitor is fair. */
332   private final boolean fair;
333 
334   /** The lock underlying this monitor. */
335   private final ReentrantLock lock;
336 
337   /**
338    * The guards associated with this monitor that currently have waiters ({@code waiterCount > 0}).
339    * A linked list threaded through the Guard.next field.
340    */
341   @GuardedBy("lock")
342   @CheckForNull
343   private Guard activeGuards = null;
344 
345   /**
346    * Creates a monitor with a non-fair (but fast) ordering policy. Equivalent to {@code
347    * Monitor(false)}.
348    */
Monitor()349   public Monitor() {
350     this(false);
351   }
352 
353   /**
354    * Creates a monitor with the given ordering policy.
355    *
356    * @param fair whether this monitor should use a fair ordering policy rather than a non-fair (but
357    *     fast) one
358    */
Monitor(boolean fair)359   public Monitor(boolean fair) {
360     this.fair = fair;
361     this.lock = new ReentrantLock(fair);
362   }
363 
364   /** Enters this monitor. Blocks indefinitely. */
enter()365   public void enter() {
366     lock.lock();
367   }
368 
369   /**
370    * Enters this monitor. Blocks at most the given time.
371    *
372    * @return whether the monitor was entered
373    */
374   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enter(long time, TimeUnit unit)375   public boolean enter(long time, TimeUnit unit) {
376     final long timeoutNanos = toSafeNanos(time, unit);
377     final ReentrantLock lock = this.lock;
378     if (!fair && lock.tryLock()) {
379       return true;
380     }
381     boolean interrupted = Thread.interrupted();
382     try {
383       final long startTime = System.nanoTime();
384       for (long remainingNanos = timeoutNanos; ; ) {
385         try {
386           return lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS);
387         } catch (InterruptedException interrupt) {
388           interrupted = true;
389           remainingNanos = remainingNanos(startTime, timeoutNanos);
390         }
391       }
392     } finally {
393       if (interrupted) {
394         Thread.currentThread().interrupt();
395       }
396     }
397   }
398 
399   /**
400    * Enters this monitor. Blocks indefinitely, but may be interrupted.
401    *
402    * @throws InterruptedException if interrupted while waiting
403    */
enterInterruptibly()404   public void enterInterruptibly() throws InterruptedException {
405     lock.lockInterruptibly();
406   }
407 
408   /**
409    * Enters this monitor. Blocks at most the given time, and may be interrupted.
410    *
411    * @return whether the monitor was entered
412    * @throws InterruptedException if interrupted while waiting
413    */
414   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterInterruptibly(long time, TimeUnit unit)415   public boolean enterInterruptibly(long time, TimeUnit unit) throws InterruptedException {
416     return lock.tryLock(time, unit);
417   }
418 
419   /**
420    * Enters this monitor if it is possible to do so immediately. Does not block.
421    *
422    * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
423    *
424    * @return whether the monitor was entered
425    */
tryEnter()426   public boolean tryEnter() {
427     return lock.tryLock();
428   }
429 
430   /**
431    * Enters this monitor when the guard is satisfied. Blocks indefinitely, but may be interrupted.
432    *
433    * @throws InterruptedException if interrupted while waiting
434    */
enterWhen(Guard guard)435   public void enterWhen(Guard guard) throws InterruptedException {
436     if (guard.monitor != this) {
437       throw new IllegalMonitorStateException();
438     }
439     final ReentrantLock lock = this.lock;
440     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
441     lock.lockInterruptibly();
442 
443     boolean satisfied = false;
444     try {
445       if (!guard.isSatisfied()) {
446         await(guard, signalBeforeWaiting);
447       }
448       satisfied = true;
449     } finally {
450       if (!satisfied) {
451         leave();
452       }
453     }
454   }
455 
456   /**
457    * Enters this monitor when the guard is satisfied. Blocks at most the given time, including both
458    * the time to acquire the lock and the time to wait for the guard to be satisfied, and may be
459    * interrupted.
460    *
461    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
462    * @throws InterruptedException if interrupted while waiting
463    */
464   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterWhen(Guard guard, long time, TimeUnit unit)465   public boolean enterWhen(Guard guard, long time, TimeUnit unit) throws InterruptedException {
466     final long timeoutNanos = toSafeNanos(time, unit);
467     if (guard.monitor != this) {
468       throw new IllegalMonitorStateException();
469     }
470     final ReentrantLock lock = this.lock;
471     boolean reentrant = lock.isHeldByCurrentThread();
472     long startTime = 0L;
473 
474     locked:
475     {
476       if (!fair) {
477         // Check interrupt status to get behavior consistent with fair case.
478         if (Thread.interrupted()) {
479           throw new InterruptedException();
480         }
481         if (lock.tryLock()) {
482           break locked;
483         }
484       }
485       startTime = initNanoTime(timeoutNanos);
486       if (!lock.tryLock(time, unit)) {
487         return false;
488       }
489     }
490 
491     boolean satisfied = false;
492     boolean threw = true;
493     try {
494       satisfied =
495           guard.isSatisfied()
496               || awaitNanos(
497                   guard,
498                   (startTime == 0L) ? timeoutNanos : remainingNanos(startTime, timeoutNanos),
499                   reentrant);
500       threw = false;
501       return satisfied;
502     } finally {
503       if (!satisfied) {
504         try {
505           // Don't need to signal if timed out, but do if interrupted
506           if (threw && !reentrant) {
507             signalNextWaiter();
508           }
509         } finally {
510           lock.unlock();
511         }
512       }
513     }
514   }
515 
516   /** Enters this monitor when the guard is satisfied. Blocks indefinitely. */
enterWhenUninterruptibly(Guard guard)517   public void enterWhenUninterruptibly(Guard guard) {
518     if (guard.monitor != this) {
519       throw new IllegalMonitorStateException();
520     }
521     final ReentrantLock lock = this.lock;
522     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
523     lock.lock();
524 
525     boolean satisfied = false;
526     try {
527       if (!guard.isSatisfied()) {
528         awaitUninterruptibly(guard, signalBeforeWaiting);
529       }
530       satisfied = true;
531     } finally {
532       if (!satisfied) {
533         leave();
534       }
535     }
536   }
537 
538   /**
539    * Enters this monitor when the guard is satisfied. Blocks at most the given time, including both
540    * the time to acquire the lock and the time to wait for the guard to be satisfied.
541    *
542    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
543    */
544   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterWhenUninterruptibly(Guard guard, long time, TimeUnit unit)545   public boolean enterWhenUninterruptibly(Guard guard, long time, TimeUnit unit) {
546     final long timeoutNanos = toSafeNanos(time, unit);
547     if (guard.monitor != this) {
548       throw new IllegalMonitorStateException();
549     }
550     final ReentrantLock lock = this.lock;
551     long startTime = 0L;
552     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
553     boolean interrupted = Thread.interrupted();
554     try {
555       if (fair || !lock.tryLock()) {
556         startTime = initNanoTime(timeoutNanos);
557         for (long remainingNanos = timeoutNanos; ; ) {
558           try {
559             if (lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS)) {
560               break;
561             } else {
562               return false;
563             }
564           } catch (InterruptedException interrupt) {
565             interrupted = true;
566             remainingNanos = remainingNanos(startTime, timeoutNanos);
567           }
568         }
569       }
570 
571       boolean satisfied = false;
572       try {
573         while (true) {
574           try {
575             if (guard.isSatisfied()) {
576               satisfied = true;
577             } else {
578               final long remainingNanos;
579               if (startTime == 0L) {
580                 startTime = initNanoTime(timeoutNanos);
581                 remainingNanos = timeoutNanos;
582               } else {
583                 remainingNanos = remainingNanos(startTime, timeoutNanos);
584               }
585               satisfied = awaitNanos(guard, remainingNanos, signalBeforeWaiting);
586             }
587             return satisfied;
588           } catch (InterruptedException interrupt) {
589             interrupted = true;
590             signalBeforeWaiting = false;
591           }
592         }
593       } finally {
594         if (!satisfied) {
595           lock.unlock(); // No need to signal if timed out
596         }
597       }
598     } finally {
599       if (interrupted) {
600         Thread.currentThread().interrupt();
601       }
602     }
603   }
604 
605   /**
606    * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but does
607    * not wait for the guard to be satisfied.
608    *
609    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
610    */
enterIf(Guard guard)611   public boolean enterIf(Guard guard) {
612     if (guard.monitor != this) {
613       throw new IllegalMonitorStateException();
614     }
615     final ReentrantLock lock = this.lock;
616     lock.lock();
617 
618     boolean satisfied = false;
619     try {
620       return satisfied = guard.isSatisfied();
621     } finally {
622       if (!satisfied) {
623         lock.unlock();
624       }
625     }
626   }
627 
628   /**
629    * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
630    * lock, but does not wait for the guard to be satisfied.
631    *
632    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
633    */
634   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterIf(Guard guard, long time, TimeUnit unit)635   public boolean enterIf(Guard guard, long time, TimeUnit unit) {
636     if (guard.monitor != this) {
637       throw new IllegalMonitorStateException();
638     }
639     if (!enter(time, unit)) {
640       return false;
641     }
642 
643     boolean satisfied = false;
644     try {
645       return satisfied = guard.isSatisfied();
646     } finally {
647       if (!satisfied) {
648         lock.unlock();
649       }
650     }
651   }
652 
653   /**
654    * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but does
655    * not wait for the guard to be satisfied, and may be interrupted.
656    *
657    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
658    * @throws InterruptedException if interrupted while waiting
659    */
enterIfInterruptibly(Guard guard)660   public boolean enterIfInterruptibly(Guard guard) throws InterruptedException {
661     if (guard.monitor != this) {
662       throw new IllegalMonitorStateException();
663     }
664     final ReentrantLock lock = this.lock;
665     lock.lockInterruptibly();
666 
667     boolean satisfied = false;
668     try {
669       return satisfied = guard.isSatisfied();
670     } finally {
671       if (!satisfied) {
672         lock.unlock();
673       }
674     }
675   }
676 
677   /**
678    * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
679    * lock, but does not wait for the guard to be satisfied, and may be interrupted.
680    *
681    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
682    */
683   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterIfInterruptibly(Guard guard, long time, TimeUnit unit)684   public boolean enterIfInterruptibly(Guard guard, long time, TimeUnit unit)
685       throws InterruptedException {
686     if (guard.monitor != this) {
687       throw new IllegalMonitorStateException();
688     }
689     final ReentrantLock lock = this.lock;
690     if (!lock.tryLock(time, unit)) {
691       return false;
692     }
693 
694     boolean satisfied = false;
695     try {
696       return satisfied = guard.isSatisfied();
697     } finally {
698       if (!satisfied) {
699         lock.unlock();
700       }
701     }
702   }
703 
704   /**
705    * Enters this monitor if it is possible to do so immediately and the guard is satisfied. Does not
706    * block acquiring the lock and does not wait for the guard to be satisfied.
707    *
708    * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
709    *
710    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
711    */
tryEnterIf(Guard guard)712   public boolean tryEnterIf(Guard guard) {
713     if (guard.monitor != this) {
714       throw new IllegalMonitorStateException();
715     }
716     final ReentrantLock lock = this.lock;
717     if (!lock.tryLock()) {
718       return false;
719     }
720 
721     boolean satisfied = false;
722     try {
723       return satisfied = guard.isSatisfied();
724     } finally {
725       if (!satisfied) {
726         lock.unlock();
727       }
728     }
729   }
730 
731   /**
732    * Waits for the guard to be satisfied. Waits indefinitely, but may be interrupted. May be called
733    * only by a thread currently occupying this monitor.
734    *
735    * @throws InterruptedException if interrupted while waiting
736    */
waitFor(Guard guard)737   public void waitFor(Guard guard) throws InterruptedException {
738     if (!((guard.monitor == this) & lock.isHeldByCurrentThread())) {
739       throw new IllegalMonitorStateException();
740     }
741     if (!guard.isSatisfied()) {
742       await(guard, true);
743     }
744   }
745 
746   /**
747    * Waits for the guard to be satisfied. Waits at most the given time, and may be interrupted. May
748    * be called only by a thread currently occupying this monitor.
749    *
750    * @return whether the guard is now satisfied
751    * @throws InterruptedException if interrupted while waiting
752    */
753   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
waitFor(Guard guard, long time, TimeUnit unit)754   public boolean waitFor(Guard guard, long time, TimeUnit unit) throws InterruptedException {
755     final long timeoutNanos = toSafeNanos(time, unit);
756     if (!((guard.monitor == this) & lock.isHeldByCurrentThread())) {
757       throw new IllegalMonitorStateException();
758     }
759     if (guard.isSatisfied()) {
760       return true;
761     }
762     if (Thread.interrupted()) {
763       throw new InterruptedException();
764     }
765     return awaitNanos(guard, timeoutNanos, true);
766   }
767 
768   /**
769    * Waits for the guard to be satisfied. Waits indefinitely. May be called only by a thread
770    * currently occupying this monitor.
771    */
waitForUninterruptibly(Guard guard)772   public void waitForUninterruptibly(Guard guard) {
773     if (!((guard.monitor == this) & lock.isHeldByCurrentThread())) {
774       throw new IllegalMonitorStateException();
775     }
776     if (!guard.isSatisfied()) {
777       awaitUninterruptibly(guard, true);
778     }
779   }
780 
781   /**
782    * Waits for the guard to be satisfied. Waits at most the given time. May be called only by a
783    * thread currently occupying this monitor.
784    *
785    * @return whether the guard is now satisfied
786    */
787   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
waitForUninterruptibly(Guard guard, long time, TimeUnit unit)788   public boolean waitForUninterruptibly(Guard guard, long time, TimeUnit unit) {
789     final long timeoutNanos = toSafeNanos(time, unit);
790     if (!((guard.monitor == this) & lock.isHeldByCurrentThread())) {
791       throw new IllegalMonitorStateException();
792     }
793     if (guard.isSatisfied()) {
794       return true;
795     }
796     boolean signalBeforeWaiting = true;
797     final long startTime = initNanoTime(timeoutNanos);
798     boolean interrupted = Thread.interrupted();
799     try {
800       for (long remainingNanos = timeoutNanos; ; ) {
801         try {
802           return awaitNanos(guard, remainingNanos, signalBeforeWaiting);
803         } catch (InterruptedException interrupt) {
804           interrupted = true;
805           if (guard.isSatisfied()) {
806             return true;
807           }
808           signalBeforeWaiting = false;
809           remainingNanos = remainingNanos(startTime, timeoutNanos);
810         }
811       }
812     } finally {
813       if (interrupted) {
814         Thread.currentThread().interrupt();
815       }
816     }
817   }
818 
819   /** Leaves this monitor. May be called only by a thread currently occupying this monitor. */
leave()820   public void leave() {
821     final ReentrantLock lock = this.lock;
822     try {
823       // No need to signal if we will still be holding the lock when we return
824       if (lock.getHoldCount() == 1) {
825         signalNextWaiter();
826       }
827     } finally {
828       lock.unlock(); // Will throw IllegalMonitorStateException if not held
829     }
830   }
831 
832   /** Returns whether this monitor is using a fair ordering policy. */
isFair()833   public boolean isFair() {
834     return fair;
835   }
836 
837   /**
838    * Returns whether this monitor is occupied by any thread. This method is designed for use in
839    * monitoring of the system state, not for synchronization control.
840    */
isOccupied()841   public boolean isOccupied() {
842     return lock.isLocked();
843   }
844 
845   /**
846    * Returns whether the current thread is occupying this monitor (has entered more times than it
847    * has left).
848    */
isOccupiedByCurrentThread()849   public boolean isOccupiedByCurrentThread() {
850     return lock.isHeldByCurrentThread();
851   }
852 
853   /**
854    * Returns the number of times the current thread has entered this monitor in excess of the number
855    * of times it has left. Returns 0 if the current thread is not occupying this monitor.
856    */
getOccupiedDepth()857   public int getOccupiedDepth() {
858     return lock.getHoldCount();
859   }
860 
861   /**
862    * Returns an estimate of the number of threads waiting to enter this monitor. The value is only
863    * an estimate because the number of threads may change dynamically while this method traverses
864    * internal data structures. This method is designed for use in monitoring of the system state,
865    * not for synchronization control.
866    */
getQueueLength()867   public int getQueueLength() {
868     return lock.getQueueLength();
869   }
870 
871   /**
872    * Returns whether any threads are waiting to enter this monitor. Note that because cancellations
873    * may occur at any time, a {@code true} return does not guarantee that any other thread will ever
874    * enter this monitor. This method is designed primarily for use in monitoring of the system
875    * state.
876    */
hasQueuedThreads()877   public boolean hasQueuedThreads() {
878     return lock.hasQueuedThreads();
879   }
880 
881   /**
882    * Queries whether the given thread is waiting to enter this monitor. Note that because
883    * cancellations may occur at any time, a {@code true} return does not guarantee that this thread
884    * will ever enter this monitor. This method is designed primarily for use in monitoring of the
885    * system state.
886    */
hasQueuedThread(Thread thread)887   public boolean hasQueuedThread(Thread thread) {
888     return lock.hasQueuedThread(thread);
889   }
890 
891   /**
892    * Queries whether any threads are waiting for the given guard to become satisfied. Note that
893    * because timeouts and interrupts may occur at any time, a {@code true} return does not guarantee
894    * that the guard becoming satisfied in the future will awaken any threads. This method is
895    * designed primarily for use in monitoring of the system state.
896    */
hasWaiters(Guard guard)897   public boolean hasWaiters(Guard guard) {
898     return getWaitQueueLength(guard) > 0;
899   }
900 
901   /**
902    * Returns an estimate of the number of threads waiting for the given guard to become satisfied.
903    * Note that because timeouts and interrupts may occur at any time, the estimate serves only as an
904    * upper bound on the actual number of waiters. This method is designed for use in monitoring of
905    * the system state, not for synchronization control.
906    */
getWaitQueueLength(Guard guard)907   public int getWaitQueueLength(Guard guard) {
908     if (guard.monitor != this) {
909       throw new IllegalMonitorStateException();
910     }
911     lock.lock();
912     try {
913       return guard.waiterCount;
914     } finally {
915       lock.unlock();
916     }
917   }
918 
919   /**
920    * Returns unit.toNanos(time), additionally ensuring the returned value is not at risk of
921    * overflowing or underflowing, by bounding the value between 0 and (Long.MAX_VALUE / 4) * 3.
922    * Actually waiting for more than 219 years is not supported!
923    */
toSafeNanos(long time, TimeUnit unit)924   private static long toSafeNanos(long time, TimeUnit unit) {
925     long timeoutNanos = unit.toNanos(time);
926     return Longs.constrainToRange(timeoutNanos, 0L, (Long.MAX_VALUE / 4) * 3);
927   }
928 
929   /**
930    * Returns System.nanoTime() unless the timeout has already elapsed. Returns 0L if and only if the
931    * timeout has already elapsed.
932    */
initNanoTime(long timeoutNanos)933   private static long initNanoTime(long timeoutNanos) {
934     if (timeoutNanos <= 0L) {
935       return 0L;
936     } else {
937       long startTime = System.nanoTime();
938       return (startTime == 0L) ? 1L : startTime;
939     }
940   }
941 
942   /**
943    * Returns the remaining nanos until the given timeout, or 0L if the timeout has already elapsed.
944    * Caller must have previously sanitized timeoutNanos using toSafeNanos.
945    */
remainingNanos(long startTime, long timeoutNanos)946   private static long remainingNanos(long startTime, long timeoutNanos) {
947     // assert timeoutNanos == 0L || startTime != 0L;
948 
949     // TODO : NOT CORRECT, BUT TESTS PASS ANYWAYS!
950     // if (true) return timeoutNanos;
951     // ONLY 2 TESTS FAIL IF WE DO:
952     // if (true) return 0;
953 
954     return (timeoutNanos <= 0L) ? 0L : timeoutNanos - (System.nanoTime() - startTime);
955   }
956 
957   /**
958    * Signals some other thread waiting on a satisfied guard, if one exists.
959    *
960    * <p>We manage calls to this method carefully, to signal only when necessary, but never losing a
961    * signal, which is the classic problem of this kind of concurrency construct. We must signal if
962    * the current thread is about to relinquish the lock and may have changed the state protected by
963    * the monitor, thereby causing some guard to be satisfied.
964    *
965    * <p>In addition, any thread that has been signalled when its guard was satisfied acquires the
966    * responsibility of signalling the next thread when it again relinquishes the lock. Unlike a
967    * normal Condition, there is no guarantee that an interrupted thread has not been signalled,
968    * since the concurrency control must manage multiple Conditions. So this method must generally be
969    * called when waits are interrupted.
970    *
971    * <p>On the other hand, if a signalled thread wakes up to discover that its guard is still not
972    * satisfied, it does *not* need to call this method before returning to wait. This can only
973    * happen due to spurious wakeup (ignorable) or another thread acquiring the lock before the
974    * current thread can and returning the guard to the unsatisfied state. In the latter case the
975    * other thread (last thread modifying the state protected by the monitor) takes over the
976    * responsibility of signalling the next waiter.
977    *
978    * <p>This method must not be called from within a beginWaitingFor/endWaitingFor block, or else
979    * the current thread's guard might be mistakenly signalled, leading to a lost signal.
980    */
981   @GuardedBy("lock")
signalNextWaiter()982   private void signalNextWaiter() {
983     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
984       if (isSatisfied(guard)) {
985         guard.condition.signal();
986         break;
987       }
988     }
989   }
990 
991   /**
992    * Exactly like signalNextWaiter, but caller guarantees that guardToSkip need not be considered,
993    * because caller has previously checked that guardToSkip.isSatisfied() returned false. An
994    * optimization for the case that guardToSkip.isSatisfied() may be expensive.
995    *
996    * <p>We decided against using this method, since in practice, isSatisfied() is likely to be very
997    * cheap (typically one field read). Resurrect this method if you find that not to be true.
998    */
999   //   @GuardedBy("lock")
1000   //   private void signalNextWaiterSkipping(Guard guardToSkip) {
1001   //     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
1002   //       if (guard != guardToSkip && isSatisfied(guard)) {
1003   //         guard.condition.signal();
1004   //         break;
1005   //       }
1006   //     }
1007   //   }
1008 
1009   /**
1010    * Exactly like guard.isSatisfied(), but in addition signals all waiting threads in the (hopefully
1011    * unlikely) event that isSatisfied() throws.
1012    */
1013   @GuardedBy("lock")
isSatisfied(Guard guard)1014   private boolean isSatisfied(Guard guard) {
1015     try {
1016       return guard.isSatisfied();
1017     } catch (Throwable throwable) {
1018       signalAllWaiters();
1019       throw throwable;
1020     }
1021   }
1022 
1023   /** Signals all threads waiting on guards. */
1024   @GuardedBy("lock")
signalAllWaiters()1025   private void signalAllWaiters() {
1026     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
1027       guard.condition.signalAll();
1028     }
1029   }
1030 
1031   /** Records that the current thread is about to wait on the specified guard. */
1032   @GuardedBy("lock")
beginWaitingFor(Guard guard)1033   private void beginWaitingFor(Guard guard) {
1034     int waiters = guard.waiterCount++;
1035     if (waiters == 0) {
1036       // push guard onto activeGuards
1037       guard.next = activeGuards;
1038       activeGuards = guard;
1039     }
1040   }
1041 
1042   /** Records that the current thread is no longer waiting on the specified guard. */
1043   @GuardedBy("lock")
endWaitingFor(Guard guard)1044   private void endWaitingFor(Guard guard) {
1045     int waiters = --guard.waiterCount;
1046     if (waiters == 0) {
1047       // unlink guard from activeGuards
1048       for (Guard p = activeGuards, pred = null; ; pred = p, p = p.next) {
1049         if (p == guard) {
1050           if (pred == null) {
1051             activeGuards = p.next;
1052           } else {
1053             pred.next = p.next;
1054           }
1055           p.next = null; // help GC
1056           break;
1057         }
1058       }
1059     }
1060   }
1061 
1062   /*
1063    * Methods that loop waiting on a guard's condition until the guard is satisfied, while recording
1064    * this fact so that other threads know to check our guard and signal us. It's caller's
1065    * responsibility to ensure that the guard is *not* currently satisfied.
1066    */
1067 
1068   @GuardedBy("lock")
await(Guard guard, boolean signalBeforeWaiting)1069   private void await(Guard guard, boolean signalBeforeWaiting) throws InterruptedException {
1070     if (signalBeforeWaiting) {
1071       signalNextWaiter();
1072     }
1073     beginWaitingFor(guard);
1074     try {
1075       do {
1076         guard.condition.await();
1077       } while (!guard.isSatisfied());
1078     } finally {
1079       endWaitingFor(guard);
1080     }
1081   }
1082 
1083   @GuardedBy("lock")
awaitUninterruptibly(Guard guard, boolean signalBeforeWaiting)1084   private void awaitUninterruptibly(Guard guard, boolean signalBeforeWaiting) {
1085     if (signalBeforeWaiting) {
1086       signalNextWaiter();
1087     }
1088     beginWaitingFor(guard);
1089     try {
1090       do {
1091         guard.condition.awaitUninterruptibly();
1092       } while (!guard.isSatisfied());
1093     } finally {
1094       endWaitingFor(guard);
1095     }
1096   }
1097 
1098   /** Caller should check before calling that guard is not satisfied. */
1099   @GuardedBy("lock")
awaitNanos(Guard guard, long nanos, boolean signalBeforeWaiting)1100   private boolean awaitNanos(Guard guard, long nanos, boolean signalBeforeWaiting)
1101       throws InterruptedException {
1102     boolean firstTime = true;
1103     try {
1104       do {
1105         if (nanos <= 0L) {
1106           return false;
1107         }
1108         if (firstTime) {
1109           if (signalBeforeWaiting) {
1110             signalNextWaiter();
1111           }
1112           beginWaitingFor(guard);
1113           firstTime = false;
1114         }
1115         nanos = guard.condition.awaitNanos(nanos);
1116       } while (!guard.isSatisfied());
1117       return true;
1118     } finally {
1119       if (!firstTime) {
1120         endWaitingFor(guard);
1121       }
1122     }
1123   }
1124 }
1125