1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wextra"
20
21 #undef LOG_TAG
22 #define LOG_TAG "VSyncPredictor"
23
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include <algorithm>
27 #include <chrono>
28 #include <sstream>
29
30 #include <android-base/logging.h>
31 #include <android-base/stringprintf.h>
32 #include <cutils/compiler.h>
33 #include <cutils/properties.h>
34 #include <utils/Log.h>
35 #include <utils/Trace.h>
36
37 #include "RefreshRateConfigs.h"
38 #include "VSyncPredictor.h"
39
40 namespace android::scheduler {
41
42 using base::StringAppendF;
43
44 static auto constexpr kMaxPercent = 100u;
45
46 VSyncPredictor::~VSyncPredictor() = default;
47
VSyncPredictor(nsecs_t idealPeriod,size_t historySize,size_t minimumSamplesForPrediction,uint32_t outlierTolerancePercent)48 VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
49 size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
50 : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)),
51 kHistorySize(historySize),
52 kMinimumSamplesForPrediction(minimumSamplesForPrediction),
53 kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
54 mIdealPeriod(idealPeriod) {
55 resetModel();
56 }
57
traceInt64If(const char * name,int64_t value) const58 inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
59 if (CC_UNLIKELY(mTraceOn)) {
60 ATRACE_INT64(name, value);
61 }
62 }
63
next(size_t i) const64 inline size_t VSyncPredictor::next(size_t i) const {
65 return (i + 1) % mTimestamps.size();
66 }
67
validate(nsecs_t timestamp) const68 bool VSyncPredictor::validate(nsecs_t timestamp) const {
69 if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
70 return true;
71 }
72
73 auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
74 auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
75 if (percent >= kOutlierTolerancePercent &&
76 percent <= (kMaxPercent - kOutlierTolerancePercent)) {
77 return false;
78 }
79
80 const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
81 [timestamp](nsecs_t a, nsecs_t b) {
82 return std::abs(timestamp - a) < std::abs(timestamp - b);
83 });
84 const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod;
85 if (distancePercent < kOutlierTolerancePercent) {
86 // duplicate timestamp
87 return false;
88 }
89 return true;
90 }
91
currentPeriod() const92 nsecs_t VSyncPredictor::currentPeriod() const {
93 std::lock_guard lock(mMutex);
94 return mRateMap.find(mIdealPeriod)->second.slope;
95 }
96
addVsyncTimestamp(nsecs_t timestamp)97 bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
98 std::lock_guard lock(mMutex);
99
100 if (!validate(timestamp)) {
101 // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
102 // don't insert this ts into mTimestamps ringbuffer. If we are still
103 // in the learning phase we should just clear all timestamps and start
104 // over.
105 if (mTimestamps.size() < kMinimumSamplesForPrediction) {
106 // Add the timestamp to mTimestamps before clearing it so we could
107 // update mKnownTimestamp based on the new timestamp.
108 mTimestamps.push_back(timestamp);
109 clearTimestamps();
110 } else if (!mTimestamps.empty()) {
111 mKnownTimestamp =
112 std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
113 } else {
114 mKnownTimestamp = timestamp;
115 }
116 return false;
117 }
118
119 if (mTimestamps.size() != kHistorySize) {
120 mTimestamps.push_back(timestamp);
121 mLastTimestampIndex = next(mLastTimestampIndex);
122 } else {
123 mLastTimestampIndex = next(mLastTimestampIndex);
124 mTimestamps[mLastTimestampIndex] = timestamp;
125 }
126
127 const size_t numSamples = mTimestamps.size();
128 if (numSamples < kMinimumSamplesForPrediction) {
129 mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
130 return true;
131 }
132
133 // This is a 'simple linear regression' calculation of Y over X, with Y being the
134 // vsync timestamps, and X being the ordinal of vsync count.
135 // The calculated slope is the vsync period.
136 // Formula for reference:
137 // Sigma_i: means sum over all timestamps.
138 // mean(variable): statistical mean of variable.
139 // X: snapped ordinal of the timestamp
140 // Y: vsync timestamp
141 //
142 // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
143 // slope = -------------------------------------------
144 // Sigma_i ( X_i - mean(X) ) ^ 2
145 //
146 // intercept = mean(Y) - slope * mean(X)
147 //
148 std::vector<nsecs_t> vsyncTS(numSamples);
149 std::vector<nsecs_t> ordinals(numSamples);
150
151 // Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
152 const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
153 auto it = mRateMap.find(mIdealPeriod);
154 auto const currentPeriod = it->second.slope;
155
156 // The mean of the ordinals must be precise for the intercept calculation, so scale them up for
157 // fixed-point arithmetic.
158 constexpr int64_t kScalingFactor = 1000;
159
160 nsecs_t meanTS = 0;
161 nsecs_t meanOrdinal = 0;
162
163 for (size_t i = 0; i < numSamples; i++) {
164 traceInt64If("VSP-ts", mTimestamps[i]);
165
166 const auto timestamp = mTimestamps[i] - oldestTS;
167 vsyncTS[i] = timestamp;
168 meanTS += timestamp;
169
170 const auto ordinal = (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
171 ordinals[i] = ordinal;
172 meanOrdinal += ordinal;
173 }
174
175 meanTS /= numSamples;
176 meanOrdinal /= numSamples;
177
178 for (size_t i = 0; i < numSamples; i++) {
179 vsyncTS[i] -= meanTS;
180 ordinals[i] -= meanOrdinal;
181 }
182
183 nsecs_t top = 0;
184 nsecs_t bottom = 0;
185 for (size_t i = 0; i < numSamples; i++) {
186 top += vsyncTS[i] * ordinals[i];
187 bottom += ordinals[i] * ordinals[i];
188 }
189
190 if (CC_UNLIKELY(bottom == 0)) {
191 it->second = {mIdealPeriod, 0};
192 clearTimestamps();
193 return false;
194 }
195
196 nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
197 nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
198
199 auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
200 if (percent >= kOutlierTolerancePercent) {
201 it->second = {mIdealPeriod, 0};
202 clearTimestamps();
203 return false;
204 }
205
206 traceInt64If("VSP-period", anticipatedPeriod);
207 traceInt64If("VSP-intercept", intercept);
208
209 it->second = {anticipatedPeriod, intercept};
210
211 ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
212 anticipatedPeriod, intercept);
213 return true;
214 }
215
nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const216 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const {
217 auto const [slope, intercept] = getVSyncPredictionModelLocked();
218
219 if (mTimestamps.empty()) {
220 traceInt64If("VSP-mode", 1);
221 auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
222 auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
223 return knownTimestamp + numPeriodsOut * mIdealPeriod;
224 }
225
226 auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
227
228 // See b/145667109, the ordinal calculation must take into account the intercept.
229 auto const zeroPoint = oldest + intercept;
230 auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
231 auto const prediction = (ordinalRequest * slope) + intercept + oldest;
232
233 traceInt64If("VSP-mode", 0);
234 traceInt64If("VSP-timePoint", timePoint);
235 traceInt64If("VSP-prediction", prediction);
236
237 auto const printer = [&, slope = slope, intercept = intercept] {
238 std::stringstream str;
239 str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
240 << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
241 << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
242 return str.str();
243 };
244
245 ALOGV("%s", printer().c_str());
246 LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
247 printer().c_str());
248
249 return prediction;
250 }
251
nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const252 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
253 std::lock_guard lock(mMutex);
254 return nextAnticipatedVSyncTimeFromLocked(timePoint);
255 }
256
257 /*
258 * Returns whether a given vsync timestamp is in phase with a frame rate.
259 * If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
260 * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
261 * isVSyncInPhase(16.6, 30) = true
262 * isVSyncInPhase(33.3, 30) = false
263 * isVSyncInPhase(50.0, 30) = true
264 */
isVSyncInPhase(nsecs_t timePoint,Fps frameRate) const265 bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const {
266 struct VsyncError {
267 nsecs_t vsyncTimestamp;
268 float error;
269
270 bool operator<(const VsyncError& other) const { return error < other.error; }
271 };
272
273 std::lock_guard lock(mMutex);
274 const auto divisor =
275 RefreshRateConfigs::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), frameRate);
276 if (divisor <= 1 || timePoint == 0) {
277 return true;
278 }
279
280 const nsecs_t period = mRateMap[mIdealPeriod].slope;
281 const nsecs_t justBeforeTimePoint = timePoint - period / 2;
282 const nsecs_t dividedPeriod = mIdealPeriod / divisor;
283
284 // If this is the first time we have asked about this divisor with the
285 // current vsync period, it is considered in phase and we store the closest
286 // vsync timestamp
287 const auto knownTimestampIter = mRateDivisorKnownTimestampMap.find(dividedPeriod);
288 if (knownTimestampIter == mRateDivisorKnownTimestampMap.end()) {
289 const auto vsync = nextAnticipatedVSyncTimeFromLocked(justBeforeTimePoint);
290 mRateDivisorKnownTimestampMap[dividedPeriod] = vsync;
291 return true;
292 }
293
294 // Find the next N vsync timestamp where N is the divisor.
295 // One of these vsyncs will be in phase. We return the one which is
296 // the most aligned with the last known in phase vsync
297 std::vector<VsyncError> vsyncs(static_cast<size_t>(divisor));
298 const nsecs_t knownVsync = knownTimestampIter->second;
299 nsecs_t point = justBeforeTimePoint;
300 for (size_t i = 0; i < divisor; i++) {
301 const nsecs_t vsync = nextAnticipatedVSyncTimeFromLocked(point);
302 const auto numPeriods = static_cast<float>(vsync - knownVsync) / (period * divisor);
303 const auto error = std::abs(std::round(numPeriods) - numPeriods);
304 vsyncs[i] = {vsync, error};
305 point = vsync + 1;
306 }
307
308 const auto minVsyncError = std::min_element(vsyncs.begin(), vsyncs.end());
309 mRateDivisorKnownTimestampMap[dividedPeriod] = minVsyncError->vsyncTimestamp;
310 return std::abs(minVsyncError->vsyncTimestamp - timePoint) < period / 2;
311 }
312
getVSyncPredictionModel() const313 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
314 std::lock_guard lock(mMutex);
315 const auto model = VSyncPredictor::getVSyncPredictionModelLocked();
316 return {model.slope, model.intercept};
317 }
318
getVSyncPredictionModelLocked() const319 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
320 return mRateMap.find(mIdealPeriod)->second;
321 }
322
setPeriod(nsecs_t period)323 void VSyncPredictor::setPeriod(nsecs_t period) {
324 ATRACE_CALL();
325
326 std::lock_guard lock(mMutex);
327 static constexpr size_t kSizeLimit = 30;
328 if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
329 mRateMap.erase(mRateMap.begin());
330 }
331
332 mIdealPeriod = period;
333 if (mRateMap.find(period) == mRateMap.end()) {
334 mRateMap[mIdealPeriod] = {period, 0};
335 }
336
337 clearTimestamps();
338 }
339
clearTimestamps()340 void VSyncPredictor::clearTimestamps() {
341 if (!mTimestamps.empty()) {
342 auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
343 if (mKnownTimestamp) {
344 mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
345 } else {
346 mKnownTimestamp = maxRb;
347 }
348
349 mTimestamps.clear();
350 mLastTimestampIndex = 0;
351 }
352 }
353
needsMoreSamples() const354 bool VSyncPredictor::needsMoreSamples() const {
355 std::lock_guard lock(mMutex);
356 return mTimestamps.size() < kMinimumSamplesForPrediction;
357 }
358
resetModel()359 void VSyncPredictor::resetModel() {
360 std::lock_guard lock(mMutex);
361 mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
362 clearTimestamps();
363 }
364
dump(std::string & result) const365 void VSyncPredictor::dump(std::string& result) const {
366 std::lock_guard lock(mMutex);
367 StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
368 StringAppendF(&result, "\tRefresh Rate Map:\n");
369 for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
370 StringAppendF(&result,
371 "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
372 idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f,
373 periodInterceptTuple.intercept);
374 }
375 }
376
377 } // namespace android::scheduler
378
379 // TODO(b/129481165): remove the #pragma below and fix conversion issues
380 #pragma clang diagnostic pop // ignored "-Wextra"
381