1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "ShaderCore.hpp"
16
17 #include "Device/Renderer.hpp"
18 #include "System/Debug.hpp"
19
20 #include <limits.h>
21
22 // TODO(chromium:1299047)
23 #ifndef SWIFTSHADER_LEGACY_PRECISION
24 # define SWIFTSHADER_LEGACY_PRECISION false
25 #endif
26
27 namespace sw {
28
Vector4s()29 Vector4s::Vector4s()
30 {
31 }
32
Vector4s(unsigned short x,unsigned short y,unsigned short z,unsigned short w)33 Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w)
34 {
35 this->x = Short4(x);
36 this->y = Short4(y);
37 this->z = Short4(z);
38 this->w = Short4(w);
39 }
40
Vector4s(const Vector4s & rhs)41 Vector4s::Vector4s(const Vector4s &rhs)
42 {
43 x = rhs.x;
44 y = rhs.y;
45 z = rhs.z;
46 w = rhs.w;
47 }
48
operator =(const Vector4s & rhs)49 Vector4s &Vector4s::operator=(const Vector4s &rhs)
50 {
51 x = rhs.x;
52 y = rhs.y;
53 z = rhs.z;
54 w = rhs.w;
55
56 return *this;
57 }
58
operator [](int i)59 Short4 &Vector4s::operator[](int i)
60 {
61 switch(i)
62 {
63 case 0: return x;
64 case 1: return y;
65 case 2: return z;
66 case 3: return w;
67 }
68
69 return x;
70 }
71
Vector4f()72 Vector4f::Vector4f()
73 {
74 }
75
Vector4f(float x,float y,float z,float w)76 Vector4f::Vector4f(float x, float y, float z, float w)
77 {
78 this->x = Float4(x);
79 this->y = Float4(y);
80 this->z = Float4(z);
81 this->w = Float4(w);
82 }
83
Vector4f(const Vector4f & rhs)84 Vector4f::Vector4f(const Vector4f &rhs)
85 {
86 x = rhs.x;
87 y = rhs.y;
88 z = rhs.z;
89 w = rhs.w;
90 }
91
operator =(const Vector4f & rhs)92 Vector4f &Vector4f::operator=(const Vector4f &rhs)
93 {
94 x = rhs.x;
95 y = rhs.y;
96 z = rhs.z;
97 w = rhs.w;
98
99 return *this;
100 }
101
operator [](int i)102 Float4 &Vector4f::operator[](int i)
103 {
104 switch(i)
105 {
106 case 0: return x;
107 case 1: return y;
108 case 2: return z;
109 case 3: return w;
110 }
111
112 return x;
113 }
114
Vector4i()115 Vector4i::Vector4i()
116 {
117 }
118
Vector4i(int x,int y,int z,int w)119 Vector4i::Vector4i(int x, int y, int z, int w)
120 {
121 this->x = Int4(x);
122 this->y = Int4(y);
123 this->z = Int4(z);
124 this->w = Int4(w);
125 }
126
Vector4i(const Vector4i & rhs)127 Vector4i::Vector4i(const Vector4i &rhs)
128 {
129 x = rhs.x;
130 y = rhs.y;
131 z = rhs.z;
132 w = rhs.w;
133 }
134
operator =(const Vector4i & rhs)135 Vector4i &Vector4i::operator=(const Vector4i &rhs)
136 {
137 x = rhs.x;
138 y = rhs.y;
139 z = rhs.z;
140 w = rhs.w;
141
142 return *this;
143 }
144
operator [](int i)145 Int4 &Vector4i::operator[](int i)
146 {
147 switch(i)
148 {
149 case 0: return x;
150 case 1: return y;
151 case 2: return z;
152 case 3: return w;
153 }
154
155 return x;
156 }
157
158 // Approximation of atan in [0..1]
Atan_01(Float4 x)159 static RValue<Float4> Atan_01(Float4 x)
160 {
161 // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
162 const Float4 a2(-0.3333314528f);
163 const Float4 a4(0.1999355085f);
164 const Float4 a6(-0.1420889944f);
165 const Float4 a8(0.1065626393f);
166 const Float4 a10(-0.0752896400f);
167 const Float4 a12(0.0429096138f);
168 const Float4 a14(-0.0161657367f);
169 const Float4 a16(0.0028662257f);
170 Float4 x2 = x * x;
171 return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16)))))))));
172 }
173
174 // Polynomial approximation of order 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
Sin5(Float4 x)175 static RValue<Float4> Sin5(Float4 x)
176 {
177 // A * x^5 + B * x^3 + C * x
178 // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
179 const Float4 A = (36288 - 20736 * sqrt(3)) / 5;
180 const Float4 B = 288 * sqrt(3) - 540;
181 const Float4 C = (47 - 9 * sqrt(3)) / 5;
182
183 Float4 x2 = x * x;
184
185 return MulAdd(MulAdd(A, x2, B), x2, C) * x;
186 }
187
Sin(RValue<Float4> x,bool relaxedPrecision)188 RValue<Float4> Sin(RValue<Float4> x, bool relaxedPrecision)
189 {
190 const Float4 q = 0.25f;
191 const Float4 pi2 = 1 / (2 * 3.1415926535f);
192
193 // Range reduction and mirroring
194 Float4 x_2 = MulAdd(x, -pi2, q);
195 Float4 z = q - Abs(x_2 - Round(x_2));
196
197 return Sin5(z);
198 }
199
Cos(RValue<Float4> x,bool relaxedPrecision)200 RValue<Float4> Cos(RValue<Float4> x, bool relaxedPrecision)
201 {
202 const Float4 q = 0.25f;
203 const Float4 pi2 = 1 / (2 * 3.1415926535f);
204
205 // Phase shift, range reduction, and mirroring
206 Float4 x_2 = x * pi2;
207 Float4 z = q - Abs(x_2 - Round(x_2));
208
209 return Sin5(z);
210 }
211
Tan(RValue<Float4> x,bool relaxedPrecision)212 RValue<Float4> Tan(RValue<Float4> x, bool relaxedPrecision)
213 {
214 return sw::Sin(x, relaxedPrecision) / sw::Cos(x, relaxedPrecision);
215 }
216
Asin_4_terms(RValue<Float4> x)217 static RValue<Float4> Asin_4_terms(RValue<Float4> x)
218 {
219 // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
220 // |e(x)| <= 5e-8
221 const Float4 half_pi(1.57079632f);
222 const Float4 a0(1.5707288f);
223 const Float4 a1(-0.2121144f);
224 const Float4 a2(0.0742610f);
225 const Float4 a3(-0.0187293f);
226 Float4 absx = Abs(x);
227 return As<Float4>(As<Int4>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^
228 (As<Int4>(x) & Int4(0x80000000)));
229 }
230
Asin_8_terms(RValue<Float4> x)231 static RValue<Float4> Asin_8_terms(RValue<Float4> x)
232 {
233 // From 4.4.46, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun
234 // |e(x)| <= 0e-8
235 const Float4 half_pi(1.5707963268f);
236 const Float4 a0(1.5707963050f);
237 const Float4 a1(-0.2145988016f);
238 const Float4 a2(0.0889789874f);
239 const Float4 a3(-0.0501743046f);
240 const Float4 a4(0.0308918810f);
241 const Float4 a5(-0.0170881256f);
242 const Float4 a6(0.006700901f);
243 const Float4 a7(-0.0012624911f);
244 Float4 absx = Abs(x);
245 return As<Float4>(As<Int4>(half_pi - Sqrt<Highp>(1.0f - absx) * (a0 + absx * (a1 + absx * (a2 + absx * (a3 + absx * (a4 + absx * (a5 + absx * (a6 + absx * a7)))))))) ^
246 (As<Int4>(x) & Int4(0x80000000)));
247 }
248
Asin(RValue<Float4> x,bool relaxedPrecision)249 RValue<Float4> Asin(RValue<Float4> x, bool relaxedPrecision)
250 {
251 // TODO(b/169755566): Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial
252 // approximation version of acos, unlike for Asin, which requires higher precision algorithms.
253
254 if(!relaxedPrecision)
255 {
256 return rr::Asin(x);
257 }
258
259 return Asin_8_terms(x);
260 }
261
Acos(RValue<Float4> x,bool relaxedPrecision)262 RValue<Float4> Acos(RValue<Float4> x, bool relaxedPrecision)
263 {
264 // pi/2 - arcsin(x)
265 return 1.57079632e+0f - Asin_4_terms(x);
266 }
267
Atan(RValue<Float4> x,bool relaxedPrecision)268 RValue<Float4> Atan(RValue<Float4> x, bool relaxedPrecision)
269 {
270 Float4 absx = Abs(x);
271 Int4 O = CmpNLT(absx, 1.0f);
272 Float4 y = As<Float4>((O & As<Int4>(1.0f / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select
273
274 const Float4 half_pi(1.57079632f);
275 Float4 theta = Atan_01(y);
276 return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select
277 (As<Int4>(x) & Int4(0x80000000)));
278 }
279
Atan2(RValue<Float4> y,RValue<Float4> x,bool relaxedPrecision)280 RValue<Float4> Atan2(RValue<Float4> y, RValue<Float4> x, bool relaxedPrecision)
281 {
282 const Float4 pi(3.14159265f); // pi
283 const Float4 minus_pi(-3.14159265f); // -pi
284 const Float4 half_pi(1.57079632f); // pi/2
285 const Float4 quarter_pi(7.85398163e-1f); // pi/4
286
287 // Rotate to upper semicircle when in lower semicircle
288 Int4 S = CmpLT(y, 0.0f);
289 Float4 theta = As<Float4>(S & As<Int4>(minus_pi));
290 Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x));
291 Float4 y0 = Abs(y);
292
293 // Rotate to right quadrant when in left quadrant
294 Int4 Q = CmpLT(x0, 0.0f);
295 theta += As<Float4>(Q & As<Int4>(half_pi));
296 Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0))); // FIXME: Vector select
297 Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select
298
299 // Mirror to first octant when in second octant
300 Int4 O = CmpNLT(y1, x1);
301 Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select
302 Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select
303
304 // Approximation of atan in [0..1]
305 Int4 zero_x = CmpEQ(x2, 0.0f);
306 Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4
307 Float4 atan2_theta = Atan_01(y2 / x2);
308 theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select
309 (inf_y & As<Int4>(quarter_pi)));
310
311 // Recover loss of precision for tiny theta angles
312 // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta
313 Int4 precision_loss = S & Q & O & ~inf_y;
314
315 return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select
316 }
317
318 // TODO(chromium:1299047)
Exp2_legacy(RValue<Float4> x0)319 static RValue<Float4> Exp2_legacy(RValue<Float4> x0)
320 {
321 Int4 i = RoundInt(x0 - 0.5f);
322 Float4 ii = As<Float4>((i + Int4(127)) << 23);
323
324 Float4 f = x0 - Float4(i);
325 Float4 ff = As<Float4>(Int4(0x3AF61905));
326 ff = ff * f + As<Float4>(Int4(0x3C134806));
327 ff = ff * f + As<Float4>(Int4(0x3D64AA23));
328 ff = ff * f + As<Float4>(Int4(0x3E75EAD4));
329 ff = ff * f + As<Float4>(Int4(0x3F31727B));
330 ff = ff * f + 1.0f;
331
332 return ii * ff;
333 }
334
Exp2(RValue<Float4> x,bool relaxedPrecision)335 RValue<Float4> Exp2(RValue<Float4> x, bool relaxedPrecision)
336 {
337 // Clamp to prevent overflow past the representation of infinity.
338 Float4 x0 = x;
339 x0 = Min(x0, 128.0f);
340 x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF))); // -126.999992
341
342 if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047)
343 {
344 return Exp2_legacy(x0);
345 }
346
347 Float4 xi = Floor(x0);
348 Float4 f = x0 - xi;
349
350 if(!relaxedPrecision) // highp
351 {
352 // Polynomial which approximates (2^x-x-1)/x. Multiplying with x
353 // gives us a correction term to be added to 1+x to obtain 2^x.
354 const Float4 a = 1.8852974e-3f;
355 const Float4 b = 8.9733787e-3f;
356 const Float4 c = 5.5835927e-2f;
357 const Float4 d = 2.4015281e-1f;
358 const Float4 e = -3.0684753e-1f;
359
360 Float4 r = MulAdd(MulAdd(MulAdd(MulAdd(a, f, b), f, c), f, d), f, e);
361
362 // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x.
363 // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al.
364 Float4 y = MulAdd(r, f, x0);
365 Int4 i = Int4(y * (1 << 23)) + (127 << 23);
366
367 return As<Float4>(i);
368 }
369 else // RelaxedPrecision / mediump
370 {
371 // Polynomial which approximates (2^x-x-1)/x. Multiplying with x
372 // gives us a correction term to be added to 1+x to obtain 2^x.
373 const Float4 a = 7.8145574e-2f;
374 const Float4 b = 2.2617357e-1f;
375 const Float4 c = -3.0444314e-1f;
376
377 Float4 r = MulAdd(MulAdd(a, f, b), f, c);
378
379 // bit_cast<float>(int(x * 2^23)) is a piecewise linear approximation of 2^x.
380 // See "Fast Exponential Computation on SIMD Architectures" by Malossi et al.
381 Float4 y = MulAdd(r, f, x0);
382 Int4 i = Int4(MulAdd((1 << 23), y, (127 << 23)));
383
384 return As<Float4>(i);
385 }
386 }
387
Log2_legacy(RValue<Float4> x)388 RValue<Float4> Log2_legacy(RValue<Float4> x)
389 {
390 Float4 x1 = As<Float4>(As<Int4>(x) & Int4(0x7F800000));
391 x1 = As<Float4>(As<UInt4>(x1) >> 8);
392 x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f)));
393 x1 = (x1 - 1.4960938f) * 256.0f;
394 Float4 x0 = As<Float4>((As<Int4>(x) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f)));
395
396 Float4 x2 = MulAdd(MulAdd(9.5428179e-2f, x0, 4.7779095e-1f), x0, 1.9782813e-1f);
397 Float4 x3 = MulAdd(MulAdd(MulAdd(1.6618466e-2f, x0, 2.0350508e-1f), x0, 2.7382900e-1f), x0, 4.0496687e-2f);
398
399 x1 += (x0 - 1.0f) * (x2 / x3);
400
401 Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000));
402 return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1)));
403 }
404
Log2(RValue<Float4> x,bool relaxedPrecision)405 RValue<Float4> Log2(RValue<Float4> x, bool relaxedPrecision)
406 {
407 if(SWIFTSHADER_LEGACY_PRECISION) // TODO(chromium:1299047)
408 {
409 return Log2_legacy(x);
410 }
411
412 if(!relaxedPrecision) // highp
413 {
414 // Reinterpretation as an integer provides a piecewise linear
415 // approximation of log2(). Scale to the radix and subtract exponent bias.
416 Int4 im = As<Int4>(x);
417 Float4 y = Float4(im - (127 << 23)) * (1.0f / (1 << 23));
418
419 // Handle log2(inf) = inf.
420 y = As<Float4>(As<Int4>(y) | (CmpEQ(im, 0x7F800000) & As<Int4>(Float4::infinity())));
421
422 Float4 m = Float4(im & 0x007FFFFF) * (1.0f / (1 << 23)); // Normalized mantissa of x.
423
424 // Add a polynomial approximation of log2(m+1)-m to the result's mantissa.
425 const Float4 a = -9.3091638e-3f;
426 const Float4 b = 5.2059003e-2f;
427 const Float4 c = -1.3752135e-1f;
428 const Float4 d = 2.4186478e-1f;
429 const Float4 e = -3.4730109e-1f;
430 const Float4 f = 4.786837e-1f;
431 const Float4 g = -7.2116581e-1f;
432 const Float4 h = 4.4268988e-1f;
433
434 Float4 z = MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(MulAdd(a, m, b), m, c), m, d), m, e), m, f), m, g), m, h);
435
436 return MulAdd(z, m, y);
437 }
438 else // RelaxedPrecision / mediump
439 {
440 // Reinterpretation as an integer provides a piecewise linear
441 // approximation of log2(). Scale to the radix and subtract exponent bias.
442 Int4 im = As<Int4>(x);
443 Float4 y = MulAdd(Float4(im), (1.0f / (1 << 23)), -127.0f);
444
445 // Handle log2(inf) = inf.
446 y = As<Float4>(As<Int4>(y) | (CmpEQ(im, 0x7F800000) & As<Int4>(Float4::infinity())));
447
448 Float4 m = Float4(im & 0x007FFFFF); // Unnormalized mantissa of x.
449
450 // Add a polynomial approximation of log2(m+1)-m to the result's mantissa.
451 const Float4 a = 2.8017103e-22f;
452 const Float4 b = -8.373131e-15f;
453 const Float4 c = 5.0615534e-8f;
454
455 Float4 f = MulAdd(MulAdd(a, m, b), m, c);
456
457 return MulAdd(f, m, y);
458 }
459 }
460
Exp(RValue<Float4> x,bool relaxedPrecision)461 RValue<Float4> Exp(RValue<Float4> x, bool relaxedPrecision)
462 {
463 return sw::Exp2(1.44269504f * x, relaxedPrecision); // 1/ln(2)
464 }
465
Log(RValue<Float4> x,bool relaxedPrecision)466 RValue<Float4> Log(RValue<Float4> x, bool relaxedPrecision)
467 {
468 return 6.93147181e-1f * sw::Log2(x, relaxedPrecision); // ln(2)
469 }
470
Pow(RValue<Float4> x,RValue<Float4> y,bool relaxedPrecision)471 RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y, bool relaxedPrecision)
472 {
473 Float4 log = sw::Log2(x, relaxedPrecision);
474 log *= y;
475 return sw::Exp2(log, relaxedPrecision);
476 }
477
Sinh(RValue<Float4> x,bool relaxedPrecision)478 RValue<Float4> Sinh(RValue<Float4> x, bool relaxedPrecision)
479 {
480 return (sw::Exp(x, relaxedPrecision) - sw::Exp(-x, relaxedPrecision)) * 0.5f;
481 }
482
Cosh(RValue<Float4> x,bool relaxedPrecision)483 RValue<Float4> Cosh(RValue<Float4> x, bool relaxedPrecision)
484 {
485 return (sw::Exp(x, relaxedPrecision) + sw::Exp(-x, relaxedPrecision)) * 0.5f;
486 }
487
Tanh(RValue<Float4> x,bool relaxedPrecision)488 RValue<Float4> Tanh(RValue<Float4> x, bool relaxedPrecision)
489 {
490 Float4 e_x = sw::Exp(x, relaxedPrecision);
491 Float4 e_minus_x = sw::Exp(-x, relaxedPrecision);
492 return (e_x - e_minus_x) / (e_x + e_minus_x);
493 }
494
Asinh(RValue<Float4> x,bool relaxedPrecision)495 RValue<Float4> Asinh(RValue<Float4> x, bool relaxedPrecision)
496 {
497 return sw::Log(x + Sqrt(x * x + 1.0f, relaxedPrecision), relaxedPrecision);
498 }
499
Acosh(RValue<Float4> x,bool relaxedPrecision)500 RValue<Float4> Acosh(RValue<Float4> x, bool relaxedPrecision)
501 {
502 return sw::Log(x + Sqrt(x + 1.0f, relaxedPrecision) * Sqrt(x - 1.0f, relaxedPrecision), relaxedPrecision);
503 }
504
Atanh(RValue<Float4> x,bool relaxedPrecision)505 RValue<Float4> Atanh(RValue<Float4> x, bool relaxedPrecision)
506 {
507 return sw::Log((1.0f + x) / (1.0f - x), relaxedPrecision) * 0.5f;
508 }
509
Sqrt(RValue<Float4> x,bool relaxedPrecision)510 RValue<Float4> Sqrt(RValue<Float4> x, bool relaxedPrecision)
511 {
512 return rr::Sqrt(x); // TODO(b/222218659): Optimize for relaxed precision.
513 }
514
reciprocal(RValue<Float4> x,bool pp,bool exactAtPow2)515 RValue<Float4> reciprocal(RValue<Float4> x, bool pp, bool exactAtPow2)
516 {
517 return Rcp(x, pp, exactAtPow2);
518 }
519
reciprocalSquareRoot(RValue<Float4> x,bool absolute,bool pp)520 RValue<Float4> reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp)
521 {
522 Float4 abs = x;
523
524 if(absolute)
525 {
526 abs = Abs(abs);
527 }
528
529 return Rcp(abs, pp);
530 }
531
532 // TODO(chromium:1299047): Eliminate when Chromium tests accept both fused and unfused multiply-add.
mulAdd(RValue<Float4> x,RValue<Float4> y,RValue<Float4> z)533 RValue<Float4> mulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z)
534 {
535 if(SWIFTSHADER_LEGACY_PRECISION)
536 {
537 return x * y + z;
538 }
539
540 return rr::MulAdd(x, y, z);
541 }
542
transpose4x4(Short4 & row0,Short4 & row1,Short4 & row2,Short4 & row3)543 void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
544 {
545 Int2 tmp0 = UnpackHigh(row0, row1);
546 Int2 tmp1 = UnpackHigh(row2, row3);
547 Int2 tmp2 = UnpackLow(row0, row1);
548 Int2 tmp3 = UnpackLow(row2, row3);
549
550 row0 = UnpackLow(tmp2, tmp3);
551 row1 = UnpackHigh(tmp2, tmp3);
552 row2 = UnpackLow(tmp0, tmp1);
553 row3 = UnpackHigh(tmp0, tmp1);
554 }
555
transpose4x3(Short4 & row0,Short4 & row1,Short4 & row2,Short4 & row3)556 void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3)
557 {
558 Int2 tmp0 = UnpackHigh(row0, row1);
559 Int2 tmp1 = UnpackHigh(row2, row3);
560 Int2 tmp2 = UnpackLow(row0, row1);
561 Int2 tmp3 = UnpackLow(row2, row3);
562
563 row0 = UnpackLow(tmp2, tmp3);
564 row1 = UnpackHigh(tmp2, tmp3);
565 row2 = UnpackLow(tmp0, tmp1);
566 }
567
transpose4x4(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)568 void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
569 {
570 Float4 tmp0 = UnpackLow(row0, row1);
571 Float4 tmp1 = UnpackLow(row2, row3);
572 Float4 tmp2 = UnpackHigh(row0, row1);
573 Float4 tmp3 = UnpackHigh(row2, row3);
574
575 row0 = Float4(tmp0.xy, tmp1.xy);
576 row1 = Float4(tmp0.zw, tmp1.zw);
577 row2 = Float4(tmp2.xy, tmp3.xy);
578 row3 = Float4(tmp2.zw, tmp3.zw);
579 }
580
transpose4x3(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)581 void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
582 {
583 Float4 tmp0 = UnpackLow(row0, row1);
584 Float4 tmp1 = UnpackLow(row2, row3);
585 Float4 tmp2 = UnpackHigh(row0, row1);
586 Float4 tmp3 = UnpackHigh(row2, row3);
587
588 row0 = Float4(tmp0.xy, tmp1.xy);
589 row1 = Float4(tmp0.zw, tmp1.zw);
590 row2 = Float4(tmp2.xy, tmp3.xy);
591 }
592
transpose4x2(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)593 void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
594 {
595 Float4 tmp0 = UnpackLow(row0, row1);
596 Float4 tmp1 = UnpackLow(row2, row3);
597
598 row0 = Float4(tmp0.xy, tmp1.xy);
599 row1 = Float4(tmp0.zw, tmp1.zw);
600 }
601
transpose4x1(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)602 void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
603 {
604 Float4 tmp0 = UnpackLow(row0, row1);
605 Float4 tmp1 = UnpackLow(row2, row3);
606
607 row0 = Float4(tmp0.xy, tmp1.xy);
608 }
609
transpose2x4(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3)610 void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3)
611 {
612 Float4 tmp01 = UnpackLow(row0, row1);
613 Float4 tmp23 = UnpackHigh(row0, row1);
614
615 row0 = tmp01;
616 row1 = Float4(tmp01.zw, row1.zw);
617 row2 = tmp23;
618 row3 = Float4(tmp23.zw, row3.zw);
619 }
620
transpose4xN(Float4 & row0,Float4 & row1,Float4 & row2,Float4 & row3,int N)621 void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N)
622 {
623 switch(N)
624 {
625 case 1: transpose4x1(row0, row1, row2, row3); break;
626 case 2: transpose4x2(row0, row1, row2, row3); break;
627 case 3: transpose4x3(row0, row1, row2, row3); break;
628 case 4: transpose4x4(row0, row1, row2, row3); break;
629 }
630 }
631
halfToFloatBits(SIMD::UInt halfBits)632 SIMD::UInt halfToFloatBits(SIMD::UInt halfBits)
633 {
634 auto magic = SIMD::UInt(126 << 23);
635
636 auto sign16 = halfBits & SIMD::UInt(0x8000);
637 auto man16 = halfBits & SIMD::UInt(0x03FF);
638 auto exp16 = halfBits & SIMD::UInt(0x7C00);
639
640 auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0));
641 auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00));
642
643 auto sign32 = sign16 << 16;
644 auto man32 = man16 << 13;
645 auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13;
646 auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000));
647
648 auto denorm32 = As<SIMD::UInt>(As<SIMD::Float>(magic + man16) - As<SIMD::Float>(magic));
649
650 return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero);
651 }
652
floatToHalfBits(SIMD::UInt floatBits,bool storeInUpperBits)653 SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits)
654 {
655 SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000);
656 SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF);
657
658 SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000));
659
660 SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000);
661 SIMD::UInt e = SIMD::UInt(113) - (abs >> 23);
662 SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e);
663
664 SIMD::UInt base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse()
665
666 // float exponent bias is 127, half bias is 15, so adjust by -112
667 SIMD::UInt bias = normal & SIMD::UInt(0xC8000000);
668
669 SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1));
670 SIMD::UInt fp16u = rounded >> 13;
671
672 // Infinity
673 fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF);
674
675 return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u);
676 }
677
r11g11b10Unpack(UInt r11g11b10bits)678 Float4 r11g11b10Unpack(UInt r11g11b10bits)
679 {
680 // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa.
681 // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by
682 // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format.
683 // In this case, we have:
684 // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB
685 UInt4 halfBits;
686 halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0);
687 halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1);
688 halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2);
689 halfBits = Insert(halfBits, UInt(0x00003C00u), 3);
690 return As<Float4>(halfToFloatBits(halfBits));
691 }
692
r11g11b10Pack(const Float4 & value)693 UInt r11g11b10Pack(const Float4 &value)
694 {
695 // 10 and 11 bit floats are unsigned, so their minimal value is 0
696 auto halfBits = floatToHalfBits(As<UInt4>(Max(value, Float4(0.0f))), true);
697 // Truncates instead of rounding. See b/147900455
698 UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0);
699 return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1);
700 }
701
linearToSRGB(const Float4 & c)702 Float4 linearToSRGB(const Float4 &c)
703 {
704 Float4 lc = Min(c, 0.0031308f) * 12.92f;
705 Float4 ec = MulAdd(1.055f, Pow<Mediump>(c, (1.0f / 2.4f)), -0.055f); // TODO(b/149574741): Use a custom approximation.
706
707 return Max(lc, ec);
708 }
709
sRGBtoLinear(const Float4 & c)710 Float4 sRGBtoLinear(const Float4 &c)
711 {
712 Float4 lc = c * (1.0f / 12.92f);
713 Float4 ec = Pow<Mediump>(MulAdd(c, 1.0f / 1.055f, 0.055f / 1.055f), 2.4f); // TODO(b/149574741): Use a custom approximation.
714
715 Int4 linear = CmpLT(c, 0.04045f);
716 return As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec))); // TODO: IfThenElse()
717 }
718
AnyTrue(const RValue<SIMD::Int> & bools)719 RValue<Bool> AnyTrue(const RValue<SIMD::Int> &bools)
720 {
721 return SignMask(bools) != 0;
722 }
723
AnyFalse(const RValue<SIMD::Int> & bools)724 RValue<Bool> AnyFalse(const RValue<SIMD::Int> &bools)
725 {
726 return SignMask(~bools) != 0; // TODO(b/214588983): Compare against mask of SIMD::Width 1's to avoid bitwise NOT.
727 }
728
AllTrue(const RValue<SIMD::Int> & bools)729 RValue<Bool> AllTrue(const RValue<SIMD::Int> &bools)
730 {
731 return SignMask(~bools) == 0; // TODO(b/214588983): Compare against mask of SIMD::Width 1's to avoid bitwise NOT.
732 }
733
AllFalse(const RValue<SIMD::Int> & bools)734 RValue<Bool> AllFalse(const RValue<SIMD::Int> &bools)
735 {
736 return SignMask(bools) == 0;
737 }
738
Divergent(const RValue<SIMD::Int> & ints)739 RValue<Bool> Divergent(const RValue<SIMD::Int> &ints)
740 {
741 auto broadcastFirst = SIMD::Int(Extract(ints, 0));
742 return AnyTrue(CmpNEQ(broadcastFirst, ints));
743 }
744
Divergent(const RValue<SIMD::Float> & floats)745 RValue<Bool> Divergent(const RValue<SIMD::Float> &floats)
746 {
747 auto broadcastFirst = SIMD::Float(Extract(floats, 0));
748 return AnyTrue(CmpNEQ(broadcastFirst, floats));
749 }
750
Uniform(const RValue<SIMD::Int> & ints)751 RValue<Bool> Uniform(const RValue<SIMD::Int> &ints)
752 {
753 auto broadcastFirst = SIMD::Int(Extract(ints, 0));
754 return AllFalse(CmpNEQ(broadcastFirst, ints));
755 }
756
Uniform(const RValue<SIMD::Float> & floats)757 RValue<Bool> Uniform(const RValue<SIMD::Float> &floats)
758 {
759 auto broadcastFirst = SIMD::Float(rr::Extract(floats, 0));
760 return AllFalse(CmpNEQ(broadcastFirst, floats));
761 }
762
Sign(rr::RValue<sw::SIMD::Float> const & val)763 rr::RValue<sw::SIMD::Float> Sign(rr::RValue<sw::SIMD::Float> const &val)
764 {
765 return rr::As<sw::SIMD::Float>((rr::As<sw::SIMD::UInt>(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000));
766 }
767
768 // Returns the <whole, frac> of val.
769 // Both whole and frac will have the same sign as val.
770 std::pair<rr::RValue<sw::SIMD::Float>, rr::RValue<sw::SIMD::Float>>
Modf(rr::RValue<sw::SIMD::Float> const & val)771 Modf(rr::RValue<sw::SIMD::Float> const &val)
772 {
773 auto abs = Abs(val);
774 auto sign = Sign(val);
775 auto whole = Floor(abs) * sign;
776 auto frac = Frac(abs) * sign;
777 return std::make_pair(whole, frac);
778 }
779
780 // Returns the number of 1s in bits, per lane.
CountBits(rr::RValue<sw::SIMD::UInt> const & bits)781 sw::SIMD::UInt CountBits(rr::RValue<sw::SIMD::UInt> const &bits)
782 {
783 // TODO: Add an intrinsic to reactor. Even if there isn't a
784 // single vector instruction, there may be target-dependent
785 // ways to make this faster.
786 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
787 sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555));
788 c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333));
789 c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F);
790 c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF);
791 c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF);
792 return c;
793 }
794
795 // Returns 1 << bits.
796 // If the resulting bit overflows a 32 bit integer, 0 is returned.
NthBit32(rr::RValue<sw::SIMD::UInt> const & bits)797 rr::RValue<sw::SIMD::UInt> NthBit32(rr::RValue<sw::SIMD::UInt> const &bits)
798 {
799 return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32)));
800 }
801
802 // Returns bitCount number of of 1's starting from the LSB.
Bitmask32(rr::RValue<sw::SIMD::UInt> const & bitCount)803 rr::RValue<sw::SIMD::UInt> Bitmask32(rr::RValue<sw::SIMD::UInt> const &bitCount)
804 {
805 return NthBit32(bitCount) - sw::SIMD::UInt(1);
806 }
807
808 // Returns the exponent of the floating point number f.
809 // Assumes IEEE 754
Exponent(rr::RValue<sw::SIMD::Float> f)810 rr::RValue<sw::SIMD::Int> Exponent(rr::RValue<sw::SIMD::Float> f)
811 {
812 auto v = rr::As<sw::SIMD::UInt>(f);
813 return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126));
814 }
815
816 // Returns y if y < x; otherwise result is x.
817 // If one operand is a NaN, the other operand is the result.
818 // If both operands are NaN, the result is a NaN.
NMin(rr::RValue<sw::SIMD::Float> const & x,rr::RValue<sw::SIMD::Float> const & y)819 rr::RValue<sw::SIMD::Float> NMin(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
820 {
821 auto xIsNan = IsNan(x);
822 auto yIsNan = IsNan(y);
823 return As<sw::SIMD::Float>(
824 // If neither are NaN, return min
825 ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Min(x, y))) |
826 // If one operand is a NaN, the other operand is the result
827 // If both operands are NaN, the result is a NaN.
828 ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
829 (xIsNan & As<sw::SIMD::Int>(y)));
830 }
831
832 // Returns y if y > x; otherwise result is x.
833 // If one operand is a NaN, the other operand is the result.
834 // If both operands are NaN, the result is a NaN.
NMax(rr::RValue<sw::SIMD::Float> const & x,rr::RValue<sw::SIMD::Float> const & y)835 rr::RValue<sw::SIMD::Float> NMax(rr::RValue<sw::SIMD::Float> const &x, rr::RValue<sw::SIMD::Float> const &y)
836 {
837 auto xIsNan = IsNan(x);
838 auto yIsNan = IsNan(y);
839 return As<sw::SIMD::Float>(
840 // If neither are NaN, return max
841 ((~xIsNan & ~yIsNan) & As<sw::SIMD::Int>(Max(x, y))) |
842 // If one operand is a NaN, the other operand is the result
843 // If both operands are NaN, the result is a NaN.
844 ((~xIsNan & yIsNan) & As<sw::SIMD::Int>(x)) |
845 (xIsNan & As<sw::SIMD::Int>(y)));
846 }
847
848 // Returns the determinant of a 2x2 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d)849 rr::RValue<sw::SIMD::Float> Determinant(
850 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
851 rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
852 {
853 return a * d - b * c;
854 }
855
856 // Returns the determinant of a 3x3 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i)857 rr::RValue<sw::SIMD::Float> Determinant(
858 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
859 rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
860 rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
861 {
862 return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h;
863 }
864
865 // Returns the determinant of a 4x4 matrix.
Determinant(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i,rr::RValue<sw::SIMD::Float> const & j,rr::RValue<sw::SIMD::Float> const & k,rr::RValue<sw::SIMD::Float> const & l,rr::RValue<sw::SIMD::Float> const & m,rr::RValue<sw::SIMD::Float> const & n,rr::RValue<sw::SIMD::Float> const & o,rr::RValue<sw::SIMD::Float> const & p)866 rr::RValue<sw::SIMD::Float> Determinant(
867 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
868 rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
869 rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
870 rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
871 {
872 return a * Determinant(f, g, h,
873 j, k, l,
874 n, o, p) -
875 b * Determinant(e, g, h,
876 i, k, l,
877 m, o, p) +
878 c * Determinant(e, f, h,
879 i, j, l,
880 m, n, p) -
881 d * Determinant(e, f, g,
882 i, j, k,
883 m, n, o);
884 }
885
886 // Returns the inverse of a 2x2 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d)887 std::array<rr::RValue<sw::SIMD::Float>, 4> MatrixInverse(
888 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b,
889 rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d)
890 {
891 auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d);
892 return { { s * d, -s * b, -s * c, s * a } };
893 }
894
895 // Returns the inverse of a 3x3 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i)896 std::array<rr::RValue<sw::SIMD::Float>, 9> MatrixInverse(
897 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c,
898 rr::RValue<sw::SIMD::Float> const &d, rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f,
899 rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h, rr::RValue<sw::SIMD::Float> const &i)
900 {
901 auto s = sw::SIMD::Float(1.0f) / Determinant(
902 a, b, c,
903 d, e, f,
904 g, h, i); // TODO: duplicate arithmetic calculating the det and below.
905
906 return { {
907 s * (e * i - f * h),
908 s * (c * h - b * i),
909 s * (b * f - c * e),
910 s * (f * g - d * i),
911 s * (a * i - c * g),
912 s * (c * d - a * f),
913 s * (d * h - e * g),
914 s * (b * g - a * h),
915 s * (a * e - b * d),
916 } };
917 }
918
919 // Returns the inverse of a 4x4 matrix.
MatrixInverse(rr::RValue<sw::SIMD::Float> const & a,rr::RValue<sw::SIMD::Float> const & b,rr::RValue<sw::SIMD::Float> const & c,rr::RValue<sw::SIMD::Float> const & d,rr::RValue<sw::SIMD::Float> const & e,rr::RValue<sw::SIMD::Float> const & f,rr::RValue<sw::SIMD::Float> const & g,rr::RValue<sw::SIMD::Float> const & h,rr::RValue<sw::SIMD::Float> const & i,rr::RValue<sw::SIMD::Float> const & j,rr::RValue<sw::SIMD::Float> const & k,rr::RValue<sw::SIMD::Float> const & l,rr::RValue<sw::SIMD::Float> const & m,rr::RValue<sw::SIMD::Float> const & n,rr::RValue<sw::SIMD::Float> const & o,rr::RValue<sw::SIMD::Float> const & p)920 std::array<rr::RValue<sw::SIMD::Float>, 16> MatrixInverse(
921 rr::RValue<sw::SIMD::Float> const &a, rr::RValue<sw::SIMD::Float> const &b, rr::RValue<sw::SIMD::Float> const &c, rr::RValue<sw::SIMD::Float> const &d,
922 rr::RValue<sw::SIMD::Float> const &e, rr::RValue<sw::SIMD::Float> const &f, rr::RValue<sw::SIMD::Float> const &g, rr::RValue<sw::SIMD::Float> const &h,
923 rr::RValue<sw::SIMD::Float> const &i, rr::RValue<sw::SIMD::Float> const &j, rr::RValue<sw::SIMD::Float> const &k, rr::RValue<sw::SIMD::Float> const &l,
924 rr::RValue<sw::SIMD::Float> const &m, rr::RValue<sw::SIMD::Float> const &n, rr::RValue<sw::SIMD::Float> const &o, rr::RValue<sw::SIMD::Float> const &p)
925 {
926 auto s = sw::SIMD::Float(1.0f) / Determinant(
927 a, b, c, d,
928 e, f, g, h,
929 i, j, k, l,
930 m, n, o, p); // TODO: duplicate arithmetic calculating the det and below.
931
932 auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n;
933 auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n;
934 auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j;
935 auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m;
936 auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i;
937 auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i;
938
939 return { {
940 s * (f * kplo - g * jpln + h * jokn),
941 s * (-b * kplo + c * jpln - d * jokn),
942 s * (b * gpho - c * fphn + d * fogn),
943 s * (-b * glhk + c * flhj - d * fkgj),
944
945 s * (-e * kplo + g * iplm - h * iokm),
946 s * (a * kplo - c * iplm + d * iokm),
947 s * (-a * gpho + c * ephm - d * eogm),
948 s * (a * glhk - c * elhi + d * ekgi),
949
950 s * (e * jpln - f * iplm + h * injm),
951 s * (-a * jpln + b * iplm - d * injm),
952 s * (a * fphn - b * ephm + d * enfm),
953 s * (-a * flhj + b * elhi - d * ejfi),
954
955 s * (-e * jokn + f * iokm - g * injm),
956 s * (a * jokn - b * iokm + c * injm),
957 s * (-a * fogn + b * eogm - c * enfm),
958 s * (a * fkgj - b * ekgi + c * ejfi),
959 } };
960 }
961
962 namespace SIMD {
963
Pointer(rr::Pointer<Byte> base,rr::Int limit)964 Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit)
965 : base(base)
966 , dynamicLimit(limit)
967 , staticLimit(0)
968 , dynamicOffsets(0)
969 , staticOffsets{}
970 , hasDynamicLimit(true)
971 , hasDynamicOffsets(false)
972 {}
973
Pointer(rr::Pointer<Byte> base,unsigned int limit)974 Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit)
975 : base(base)
976 , dynamicLimit(0)
977 , staticLimit(limit)
978 , dynamicOffsets(0)
979 , staticOffsets{}
980 , hasDynamicLimit(false)
981 , hasDynamicOffsets(false)
982 {}
983
Pointer(rr::Pointer<Byte> base,rr::Int limit,SIMD::Int offset)984 Pointer::Pointer(rr::Pointer<Byte> base, rr::Int limit, SIMD::Int offset)
985 : base(base)
986 , dynamicLimit(limit)
987 , staticLimit(0)
988 , dynamicOffsets(offset)
989 , staticOffsets{}
990 , hasDynamicLimit(true)
991 , hasDynamicOffsets(true)
992 {}
993
Pointer(rr::Pointer<Byte> base,unsigned int limit,SIMD::Int offset)994 Pointer::Pointer(rr::Pointer<Byte> base, unsigned int limit, SIMD::Int offset)
995 : base(base)
996 , dynamicLimit(0)
997 , staticLimit(limit)
998 , dynamicOffsets(offset)
999 , staticOffsets{}
1000 , hasDynamicLimit(false)
1001 , hasDynamicOffsets(true)
1002 {}
1003
operator +=(Int i)1004 Pointer &Pointer::operator+=(Int i)
1005 {
1006 dynamicOffsets += i;
1007 hasDynamicOffsets = true;
1008 return *this;
1009 }
1010
operator *=(Int i)1011 Pointer &Pointer::operator*=(Int i)
1012 {
1013 dynamicOffsets = offsets() * i;
1014 staticOffsets = {};
1015 hasDynamicOffsets = true;
1016 return *this;
1017 }
1018
operator +(SIMD::Int i)1019 Pointer Pointer::operator+(SIMD::Int i)
1020 {
1021 Pointer p = *this;
1022 p += i;
1023 return p;
1024 }
operator *(SIMD::Int i)1025 Pointer Pointer::operator*(SIMD::Int i)
1026 {
1027 Pointer p = *this;
1028 p *= i;
1029 return p;
1030 }
1031
operator +=(int i)1032 Pointer &Pointer::operator+=(int i)
1033 {
1034 for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] += i; }
1035 return *this;
1036 }
1037
operator *=(int i)1038 Pointer &Pointer::operator*=(int i)
1039 {
1040 for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] *= i; }
1041 if(hasDynamicOffsets)
1042 {
1043 dynamicOffsets *= SIMD::Int(i);
1044 }
1045 return *this;
1046 }
1047
operator +(int i)1048 Pointer Pointer::operator+(int i)
1049 {
1050 Pointer p = *this;
1051 p += i;
1052 return p;
1053 }
operator *(int i)1054 Pointer Pointer::operator*(int i)
1055 {
1056 Pointer p = *this;
1057 p *= i;
1058 return p;
1059 }
1060
offsets() const1061 SIMD::Int Pointer::offsets() const
1062 {
1063 static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1064 return dynamicOffsets + SIMD::Int(staticOffsets[0], staticOffsets[1], staticOffsets[2], staticOffsets[3]);
1065 }
1066
isInBounds(unsigned int accessSize,OutOfBoundsBehavior robustness) const1067 SIMD::Int Pointer::isInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const
1068 {
1069 ASSERT(accessSize > 0);
1070
1071 if(isStaticallyInBounds(accessSize, robustness))
1072 {
1073 return SIMD::Int(0xffffffff);
1074 }
1075
1076 if(!hasDynamicOffsets && !hasDynamicLimit)
1077 {
1078 // Common fast paths.
1079 static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1080 return SIMD::Int(
1081 (staticOffsets[0] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
1082 (staticOffsets[1] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
1083 (staticOffsets[2] + accessSize - 1 < staticLimit) ? 0xffffffff : 0,
1084 (staticOffsets[3] + accessSize - 1 < staticLimit) ? 0xffffffff : 0);
1085 }
1086
1087 return CmpGE(offsets(), SIMD::Int(0)) & CmpLT(offsets() + SIMD::Int(accessSize - 1), SIMD::Int(limit()));
1088 }
1089
isStaticallyInBounds(unsigned int accessSize,OutOfBoundsBehavior robustness) const1090 bool Pointer::isStaticallyInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const
1091 {
1092 if(hasDynamicOffsets)
1093 {
1094 return false;
1095 }
1096
1097 if(hasDynamicLimit)
1098 {
1099 if(hasStaticEqualOffsets() || hasStaticSequentialOffsets(accessSize))
1100 {
1101 switch(robustness)
1102 {
1103 case OutOfBoundsBehavior::UndefinedBehavior:
1104 // With this robustness setting the application/compiler guarantees in-bounds accesses on active lanes,
1105 // but since it can't know in advance which branches are taken this must be true even for inactives lanes.
1106 return true;
1107 case OutOfBoundsBehavior::Nullify:
1108 case OutOfBoundsBehavior::RobustBufferAccess:
1109 case OutOfBoundsBehavior::UndefinedValue:
1110 return false;
1111 }
1112 }
1113 }
1114
1115 for(int i = 0; i < SIMD::Width; i++)
1116 {
1117 if(staticOffsets[i] + accessSize - 1 >= staticLimit)
1118 {
1119 return false;
1120 }
1121 }
1122
1123 return true;
1124 }
1125
limit() const1126 rr::Int Pointer::limit() const
1127 {
1128 return dynamicLimit + staticLimit;
1129 }
1130
1131 // Returns true if all offsets are sequential
1132 // (N+0*step, N+1*step, N+2*step, N+3*step)
hasSequentialOffsets(unsigned int step) const1133 rr::Bool Pointer::hasSequentialOffsets(unsigned int step) const
1134 {
1135 if(hasDynamicOffsets)
1136 {
1137 auto o = offsets();
1138 static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1139 return rr::SignMask(~CmpEQ(o.yzww, o + SIMD::Int(1 * step, 2 * step, 3 * step, 0))) == 0;
1140 }
1141 return hasStaticSequentialOffsets(step);
1142 }
1143
1144 // Returns true if all offsets are are compile-time static and
1145 // sequential (N+0*step, N+1*step, N+2*step, N+3*step)
hasStaticSequentialOffsets(unsigned int step) const1146 bool Pointer::hasStaticSequentialOffsets(unsigned int step) const
1147 {
1148 if(hasDynamicOffsets)
1149 {
1150 return false;
1151 }
1152 for(int i = 1; i < SIMD::Width; i++)
1153 {
1154 if(staticOffsets[i - 1] + int32_t(step) != staticOffsets[i]) { return false; }
1155 }
1156 return true;
1157 }
1158
1159 // Returns true if all offsets are equal (N, N, N, N)
hasEqualOffsets() const1160 rr::Bool Pointer::hasEqualOffsets() const
1161 {
1162 if(hasDynamicOffsets)
1163 {
1164 auto o = offsets();
1165 static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4");
1166 return rr::SignMask(~CmpEQ(o, o.yzwx)) == 0;
1167 }
1168 return hasStaticEqualOffsets();
1169 }
1170
1171 // Returns true if all offsets are compile-time static and are equal
1172 // (N, N, N, N)
hasStaticEqualOffsets() const1173 bool Pointer::hasStaticEqualOffsets() const
1174 {
1175 if(hasDynamicOffsets)
1176 {
1177 return false;
1178 }
1179 for(int i = 1; i < SIMD::Width; i++)
1180 {
1181 if(staticOffsets[i - 1] != staticOffsets[i]) { return false; }
1182 }
1183 return true;
1184 }
1185
1186 } // namespace SIMD
1187
1188 } // namespace sw
1189