• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_VALIDATE_HELPERS_H
25 #define ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_VALIDATE_HELPERS_H
26 
27 #include "arm_compute/graph/Logger.h"
28 #include "arm_compute/graph/Tensor.h"
29 #include "arm_compute/graph/Types.h"
30 #include "arm_compute/graph/nodes/Nodes.h"
31 
32 #include "arm_compute/core/Error.h"
33 #include "arm_compute/core/Helpers.h"
34 #include "arm_compute/core/ITensorInfo.h"
35 
36 namespace arm_compute
37 {
38 namespace graph
39 {
40 namespace backends
41 {
42 namespace detail
43 {
44 /** Returns backing tensor info of a given tensor
45  *
46  * @param[in] tensor Tensor to extract the backing tensor from
47  *
48  * @return Backing tensor tensor info if present else nullptr
49  */
get_backing_tensor_info(arm_compute::graph::Tensor * tensor)50 inline arm_compute::ITensorInfo *get_backing_tensor_info(arm_compute::graph::Tensor *tensor)
51 {
52     return ((tensor == nullptr) || (tensor->handle() == nullptr)) ? nullptr : tensor->handle()->tensor().info();
53 }
54 
55 /** Validates a ArgMinMax layer node
56  *
57  * @tparam ArgMinMax layer function type
58  *
59  * @param[in] node Node to validate
60  *
61  * @return Status
62  */
63 template <typename ArgMinMaxLayer>
validate_arg_min_max_layer(ArgMinMaxLayerNode & node)64 Status validate_arg_min_max_layer(ArgMinMaxLayerNode &node)
65 {
66     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ArgMinMaxLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
67     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
68     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
69 
70     // Extract IO and info
71     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
72     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
73 
74     // Validate function
75     return ArgMinMaxLayer::validate(input, node.axis(), output, node.reduction_operation());
76 }
77 
78 /** Validates a Bounding Box Transform layer node
79  *
80  * @tparam BoundingBoxTransformLayer  Bounding Box Transform layer function type
81  *
82  * @param[in] node Node to validate
83  *
84  * @return Status
85  */
86 template <typename BoundingBoxTransformLayer>
validate_bounding_box_transform_layer(BoundingBoxTransformLayerNode & node)87 Status validate_bounding_box_transform_layer(BoundingBoxTransformLayerNode &node)
88 {
89     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating BoundingBoxTransformLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
90     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 2);
91     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
92 
93     // Extract IO and info
94     arm_compute::ITensorInfo      *input     = get_backing_tensor_info(node.input(0));
95     arm_compute::ITensorInfo      *deltas    = get_backing_tensor_info(node.input(1));
96     arm_compute::ITensorInfo      *output    = get_backing_tensor_info(node.output(0));
97     const BoundingBoxTransformInfo bbox_info = node.info();
98 
99     return BoundingBoxTransformLayer::validate(input, output, deltas, bbox_info);
100 }
101 
102 /** Validates a Channel Shuffle layer node
103  *
104  * @tparam ChannelShuffleLayer  Channel Shuffle layer function type
105  *
106  * @param[in] node Node to validate
107  *
108  * @return Status
109  */
110 template <typename ChannelShuffleLayer>
validate_channel_shuffle_layer(ChannelShuffleLayerNode & node)111 Status validate_channel_shuffle_layer(ChannelShuffleLayerNode &node)
112 {
113     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ChannelShuffle node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
114     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
115     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
116 
117     // Extract IO and info
118     arm_compute::ITensorInfo *input      = get_backing_tensor_info(node.input(0));
119     arm_compute::ITensorInfo *output     = get_backing_tensor_info(node.output(0));
120     const unsigned int        num_groups = node.num_groups();
121 
122     return ChannelShuffleLayer::validate(input, output, num_groups);
123 }
124 
125 /** Validates a Convolution layer node
126  *
127  * @tparam ConvolutionLayer          Default Convolution layer function type
128  * @tparam DirectConvolutionLayer    Direct Convolution layer function type
129  * @tparam GEMMConvolutionLayer      GEMM Convolution layer function type
130  * @tparam WinogradConvolutionLayer  Winograd Convolution layer function type
131  *
132  * @param[in] node Node to validate
133  *
134  * @return Status
135  */
136 template <typename ConvolutionLayer, typename DirectConvolutionLayer, typename GEMMConvolutionLayer, typename WinogradConvolutionLayer>
validate_convolution_layer(ConvolutionLayerNode & node)137 Status validate_convolution_layer(ConvolutionLayerNode &node)
138 {
139     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ConvolutionLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
140     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
141     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
142 
143     // Extract IO and info
144     arm_compute::ITensorInfo *input   = get_backing_tensor_info(node.input(0));
145     arm_compute::ITensorInfo *weights = get_backing_tensor_info(node.input(1));
146     arm_compute::ITensorInfo *biases  = get_backing_tensor_info(node.input(2));
147     arm_compute::ITensorInfo *output  = get_backing_tensor_info(node.output(0));
148 
149     if(is_data_type_quantized_asymmetric(input->data_type()))
150     {
151         biases->set_data_type(DataType::S32);
152     }
153 
154     const PadStrideInfo     conv_info      = node.convolution_info();
155     const ConvolutionMethod conv_algorithm = node.convolution_method();
156     const bool              fast_math      = node.fast_math_hint() == FastMathHint::Enabled;
157     const unsigned int      num_groups     = node.num_groups();
158 
159     // Validate function
160     Status status{};
161     switch(conv_algorithm)
162     {
163         case ConvolutionMethod::Direct:
164             ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups != 1, "DirectConvolutionLayer does not support grouping!");
165             status = DirectConvolutionLayer::validate(input, weights, biases, output, conv_info);
166             break;
167         case ConvolutionMethod::GEMM:
168             status = GEMMConvolutionLayer::validate(input, weights, biases, output, conv_info,
169                                                     WeightsInfo(), Size2D(1, 1), ActivationLayerInfo(), num_groups);
170             break;
171         case ConvolutionMethod::Winograd:
172             ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups != 1, "WinogradConvolutionLayer does not support grouping!");
173             status = WinogradConvolutionLayer::validate(input, weights, biases, output, conv_info, ActivationLayerInfo(), fast_math);
174             break;
175         case ConvolutionMethod::Default:
176             status = ConvolutionLayer::validate(input, weights, biases, output, conv_info,
177                                                 WeightsInfo(), Size2D(1, 1), ActivationLayerInfo(), fast_math, num_groups);
178             break;
179         default:
180             ARM_COMPUTE_RETURN_ERROR_MSG("Unsupported convolution method");
181     }
182 
183     return status;
184 }
185 
186 /** Validates a Depthwise Convolution layer node
187  *
188  * @tparam DepthwiseConvolutionLayer    Default Depthwise Convolution layer type
189  *
190  * @param[in] node Node to validate
191  *
192  * @return Status
193  */
194 template <typename DepthwiseConvolutionLayer>
validate_depthwise_convolution_layer(DepthwiseConvolutionLayerNode & node)195 Status validate_depthwise_convolution_layer(DepthwiseConvolutionLayerNode &node)
196 {
197     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating DepthwiseConvolutionLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
198     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
199     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
200 
201     // Extract IO and info
202     arm_compute::ITensorInfo *input   = detail::get_backing_tensor_info(node.input(0));
203     arm_compute::ITensorInfo *weights = detail::get_backing_tensor_info(node.input(1));
204     arm_compute::ITensorInfo *biases  = get_backing_tensor_info(node.input(2));
205     arm_compute::ITensorInfo *output  = get_backing_tensor_info(node.output(0));
206 
207     const PadStrideInfo              conv_info        = node.convolution_info();
208     const DepthwiseConvolutionMethod dwc_algorithm    = node.depthwise_convolution_method();
209     const int                        depth_multiplier = node.depth_multiplier();
210 
211     // Validate function
212     Status status{};
213     switch(dwc_algorithm)
214     {
215         case DepthwiseConvolutionMethod::Default:
216         case DepthwiseConvolutionMethod::Optimized3x3:
217             status = DepthwiseConvolutionLayer::validate(input, weights, biases, output, conv_info, depth_multiplier);
218             break;
219         default:
220             ARM_COMPUTE_RETURN_ERROR_MSG("Unsupported depthwise convolution method");
221     }
222 
223     return status;
224 }
225 /** Validates a depth to space layer node
226  *
227  * @tparam DequantizationLayer Dequantize layer type
228  *
229  * @param[in] node Node to validate
230  *
231  * @return Status
232  */
233 template <typename DepthToSpaceLayer>
validate_depth_to_space_layer(DepthToSpaceLayerNode & node)234 Status validate_depth_to_space_layer(DepthToSpaceLayerNode &node)
235 {
236     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating DetectionOutputLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
237     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
238     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
239 
240     // Extract IO and info
241     arm_compute::ITensorInfo *input  = get_backing_tensor_info(node.input(0));
242     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
243 
244     return DepthToSpaceLayer::validate(input, output, node.block_shape());
245 }
246 /** Validates a dequantize layer node
247  *
248  * @tparam DequantizationLayer Dequantize layer type
249  *
250  * @param[in] node Node to validate
251  *
252  * @return Status
253  */
254 template <typename DequantizationLayer>
validate_dequantization_layer(DequantizationLayerNode & node)255 Status validate_dequantization_layer(DequantizationLayerNode &node)
256 {
257     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating DetectionOutputLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
258     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
259     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
260 
261     // Extract IO and info
262     arm_compute::ITensorInfo *input  = get_backing_tensor_info(node.input(0));
263     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
264 
265     return DequantizationLayer::validate(input, output);
266 }
267 /** Validates a detection output layer node
268  *
269  * @tparam DetectionOutputLayer DetectionOutput layer type
270  *
271  * @param[in] node Node to validate
272  *
273  * @return Status
274  */
275 template <typename DetectionOutputLayer>
validate_detection_output_layer(DetectionOutputLayerNode & node)276 Status validate_detection_output_layer(DetectionOutputLayerNode &node)
277 {
278     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating DetectionOutputLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
279     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
280     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
281 
282     // Extract IO and info
283     arm_compute::ITensorInfo      *input0      = get_backing_tensor_info(node.input(0));
284     arm_compute::ITensorInfo      *input1      = get_backing_tensor_info(node.input(1));
285     arm_compute::ITensorInfo      *input2      = get_backing_tensor_info(node.input(2));
286     arm_compute::ITensorInfo      *output      = get_backing_tensor_info(node.output(0));
287     const DetectionOutputLayerInfo detect_info = node.detection_output_info();
288 
289     return DetectionOutputLayer::validate(input0, input1, input2, output, detect_info);
290 }
291 /** Validates a detection post process layer node
292  *
293  * @tparam DetectionPostProcessLayer DetectionOutput layer type
294  *
295  * @param[in] node Node to validate
296  *
297  * @return Status
298  */
299 template <typename DetectionPostProcessLayer>
validate_detection_post_process_layer(DetectionPostProcessLayerNode & node)300 Status validate_detection_post_process_layer(DetectionPostProcessLayerNode &node)
301 {
302     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating DetectionPostProcessLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
303     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
304     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 4);
305 
306     // Extract IO and info
307     arm_compute::ITensorInfo           *input0      = get_backing_tensor_info(node.input(0));
308     arm_compute::ITensorInfo           *input1      = get_backing_tensor_info(node.input(1));
309     arm_compute::ITensorInfo           *input2      = get_backing_tensor_info(node.input(2));
310     arm_compute::ITensorInfo           *output0     = get_backing_tensor_info(node.output(0));
311     arm_compute::ITensorInfo           *output1     = get_backing_tensor_info(node.output(1));
312     arm_compute::ITensorInfo           *output2     = get_backing_tensor_info(node.output(2));
313     arm_compute::ITensorInfo           *output3     = get_backing_tensor_info(node.output(3));
314     const DetectionPostProcessLayerInfo detect_info = node.detection_post_process_info();
315 
316     return DetectionPostProcessLayer::validate(input0, input1, input2, output0, output1, output2, output3, detect_info);
317 }
318 
319 /** Validates a Generate Proposals layer node
320  *
321  * @tparam GenerateProposalsLayer Generate Proposals layer type
322  *
323  * @param[in] node Node to validate
324  *
325  * @return Status
326  */
327 template <typename GenerateProposalsLayer>
validate_generate_proposals_layer(GenerateProposalsLayerNode & node)328 Status validate_generate_proposals_layer(GenerateProposalsLayerNode &node)
329 {
330     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating GenerateProposalsLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
331     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
332     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 3);
333 
334     // Extract IO and info
335     arm_compute::ITensorInfo   *scores              = detail::get_backing_tensor_info(node.input(0));
336     arm_compute::ITensorInfo   *deltas              = detail::get_backing_tensor_info(node.input(1));
337     arm_compute::ITensorInfo   *anchors             = detail::get_backing_tensor_info(node.input(2));
338     arm_compute::ITensorInfo   *proposals           = get_backing_tensor_info(node.output(0));
339     arm_compute::ITensorInfo   *scores_out          = get_backing_tensor_info(node.output(1));
340     arm_compute::ITensorInfo   *num_valid_proposals = get_backing_tensor_info(node.output(2));
341     const GenerateProposalsInfo info                = node.info();
342 
343     return GenerateProposalsLayer::validate(scores, deltas, anchors, proposals, scores_out, num_valid_proposals, info);
344 }
345 
346 /** Validates a L2Normalization layer node
347  *
348  * @tparam L2Normalization layer type
349  *
350  * @param[in] node Node to validate
351  *
352  * @return Status
353  */
354 template <typename L2NormalizeLayer>
validate_l2_normalize_layer(L2NormalizeLayerNode & node)355 Status validate_l2_normalize_layer(L2NormalizeLayerNode &node)
356 {
357     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating L2NormalizeLayerNode node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
358     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
359     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
360 
361     // Extract IO and info
362     arm_compute::ITensorInfo *input   = detail::get_backing_tensor_info(node.input(0));
363     arm_compute::ITensorInfo *output  = get_backing_tensor_info(node.output(0));
364     int                       axis    = node.axis();
365     float                     epsilon = node.epsilon();
366 
367     // Validate function
368     return L2NormalizeLayer::validate(input, output, axis, epsilon);
369 }
370 
371 /** Validates a NormalizePlanarYUV layer node
372  *
373  * @tparam NormalizePlanarYUVLayer layer type
374  *
375  * @param[in] node Node to validate
376  *
377  * @return Status
378  */
379 template <typename NormalizePlanarYUVLayer>
validate_normalize_planar_yuv_layer(NormalizePlanarYUVLayerNode & node)380 Status validate_normalize_planar_yuv_layer(NormalizePlanarYUVLayerNode &node)
381 {
382     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating NormalizePlanarYUVLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
383     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 3);
384     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
385 
386     // Extract IO and info
387     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
388     arm_compute::ITensorInfo *mean   = detail::get_backing_tensor_info(node.input(1));
389     arm_compute::ITensorInfo *std    = detail::get_backing_tensor_info(node.input(2));
390     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
391 
392     // Validate function
393     return NormalizePlanarYUVLayer::validate(input, output, mean, std);
394 }
395 
396 /** Validates a pad layer node
397  *
398  * @tparam PadLayer Pad layer type
399  *
400  * @param[in] node Node to validate
401  *
402  * @return Status
403  */
404 template <typename PadLayer>
validate_pad_layer(PadLayerNode & node)405 Status validate_pad_layer(PadLayerNode &node)
406 {
407     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating PadLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
408     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
409     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
410 
411     // Extract IO and info
412     arm_compute::ITensorInfo *input   = get_backing_tensor_info(node.input(0));
413     arm_compute::ITensorInfo *output  = get_backing_tensor_info(node.output(0));
414     const PaddingList        &padding = node.padding();
415 
416     return PadLayer::validate(input, output, padding);
417 }
418 
419 /** Validates a permute layer node
420  *
421  * @tparam PermuteLayer Permute layer type
422  *
423  * @param[in] node Node to validate
424  *
425  * @return Status
426  */
427 template <typename PermuteLayer>
validate_permute_layer(PermuteLayerNode & node)428 Status validate_permute_layer(PermuteLayerNode &node)
429 {
430     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating PermuteLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
431     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
432     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
433 
434     // Extract IO and info
435     arm_compute::ITensorInfo *input  = get_backing_tensor_info(node.input(0));
436     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
437     const PermutationVector &perm   = node.permutation_vector();
438 
439     return PermuteLayer::validate(input, output, perm);
440 }
441 
442 /** Validates a PRelu layer node
443  *
444  * @tparam PReluLayer PRelu layer type
445  *
446  * @param[in] node Node to validate
447  *
448  * @return Status
449  */
450 template <typename PReluLayer>
validate_prelu_layer(PReluLayerNode & node)451 Status validate_prelu_layer(PReluLayerNode &node)
452 {
453     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating PRelu node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
454     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 2);
455     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
456 
457     // Extract IO and info
458     arm_compute::ITensorInfo *input  = get_backing_tensor_info(node.input(0));
459     arm_compute::ITensorInfo *alpha  = get_backing_tensor_info(node.input(1));
460     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
461 
462     return PReluLayer::validate(input, alpha, output);
463 }
464 
465 /** Validates a priorbox layer node
466  *
467  * @tparam PriorBoxLayer PriorBox layer type
468  *
469  * @param[in] node Node to validate
470  *
471  * @return Status
472  */
473 template <typename PriorBoxLayer>
validate_priorbox_layer(PriorBoxLayerNode & node)474 Status validate_priorbox_layer(PriorBoxLayerNode &node)
475 {
476     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating PriorBoxLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
477     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 2);
478     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
479 
480     // Extract IO and info
481     arm_compute::ITensorInfo *input0     = get_backing_tensor_info(node.input(0));
482     arm_compute::ITensorInfo *input1     = get_backing_tensor_info(node.input(1));
483     arm_compute::ITensorInfo *output     = get_backing_tensor_info(node.output(0));
484     const PriorBoxLayerInfo   prior_info = node.priorbox_info();
485 
486     return PriorBoxLayer::validate(input0, input1, output, prior_info);
487 }
488 
489 /** Validates a Quantization layer node
490  *
491  * @tparam QuantizationLayer Quantization layer type
492  *
493  * @param[in] node Node to validate
494  *
495  * @return Status
496  */
497 template <typename QuantizationLayer>
validate_quantization_layer(QuantizationLayerNode & node)498 Status validate_quantization_layer(QuantizationLayerNode &node)
499 {
500     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating QuantizationLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
501     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
502     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
503 
504     // Extract input and output
505     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
506     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
507 
508     // Validate function
509     return QuantizationLayer::validate(input, output);
510 }
511 
512 /** Validates a Reduction operation layer node
513  *
514  * @tparam ReductionLayer Reduction layer type
515  *
516  * @param[in] node Node to validate
517  *
518  * @return Status
519  */
520 template <typename ReductionLayer>
validate_reduction_operation_layer(ReductionLayerNode & node)521 Status validate_reduction_operation_layer(ReductionLayerNode &node)
522 {
523     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ReductionLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
524 
525     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
526     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
527 
528     // Extract input and output
529     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
530     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
531 
532     // Validate function
533     return ReductionLayer::validate(input, output, node.axis(), node.op(), node.keep_dims());
534 }
535 
536 /** Validates a Reorg layer node
537  *
538  * @tparam ReorgLayer Reorg layer type
539  *
540  * @param[in] node Node to validate
541  *
542  * @return Status
543  */
544 template <typename ReorgLayer>
validate_reorg_layer(ReorgLayerNode & node)545 Status validate_reorg_layer(ReorgLayerNode &node)
546 {
547     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ReorgLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
548     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
549     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
550 
551     // Extract input and output
552     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
553     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
554 
555     // Validate function
556     return ReorgLayer::validate(input, output, node.stride());
557 }
558 
559 /** Validates a Reshape layer node
560  *
561  * @tparam ReshapeLayer Reshape layer type
562  *
563  * @param[in] node Node to validate
564  *
565  * @return Status
566  */
567 template <typename ReshapeLayer>
validate_reshape_layer(ReshapeLayerNode & node)568 Status validate_reshape_layer(ReshapeLayerNode &node)
569 {
570     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ReshapeLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
571     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
572     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
573 
574     // Extract input and output
575     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
576     arm_compute::ITensorInfo *output = detail::get_backing_tensor_info(node.output(0));
577 
578     // Validate function
579     return ReshapeLayer::validate(input, output);
580 }
581 
582 /** Validates a ROI Align layer node
583  *
584  * @tparam ROIAlignLayer ROIAlign layer type
585  *
586  * @param[in] node Node to validate
587  *
588  * @return Status
589  */
590 template <typename ROIAlignLayer>
validate_roi_align_layer(ROIAlignLayerNode & node)591 Status validate_roi_align_layer(ROIAlignLayerNode &node)
592 {
593     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating ROIAlignLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
594     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 2);
595     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
596 
597     // Extract input and output
598     arm_compute::ITensorInfo *input     = detail::get_backing_tensor_info(node.input(0));
599     arm_compute::ITensorInfo *rois      = detail::get_backing_tensor_info(node.input(1));
600     arm_compute::ITensorInfo *output    = detail::get_backing_tensor_info(node.output(0));
601     const ROIPoolingLayerInfo &pool_info = node.pooling_info();
602 
603     // Validate function
604     return ROIAlignLayer::validate(input, rois, output, pool_info);
605 }
606 
607 /** Validates a Slice layer node
608  *
609  * @tparam SliceLayer Slice layer function type
610  *
611  * @param[in] node Node to validate
612  *
613  * @return Status
614  */
615 template <typename SliceLayer>
validate_slice_layer(SliceLayerNode & node)616 Status validate_slice_layer(SliceLayerNode &node)
617 {
618     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating Slice node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
619     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
620     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
621 
622     // Extract IO and info
623     arm_compute::ITensorInfo *input  = get_backing_tensor_info(node.input(0));
624     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
625     const Coordinates         starts = node.starts();
626     const Coordinates         ends   = node.ends();
627 
628     return SliceLayer::validate(input, output, starts, ends);
629 }
630 
631 /** Validates a Strided Slice layer node
632  *
633  * @tparam StridedSliceLayer Strided Slice layer function type
634  *
635  * @param[in] node Node to validate
636  *
637  * @return Status
638  */
639 template <typename StridedSliceLayer>
validate_strided_slice_layer(StridedSliceLayerNode & node)640 Status validate_strided_slice_layer(StridedSliceLayerNode &node)
641 {
642     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating StridedSlice node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
643     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
644     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
645 
646     // Extract IO and info
647     arm_compute::ITensorInfo   *input   = get_backing_tensor_info(node.input(0));
648     arm_compute::ITensorInfo   *output  = get_backing_tensor_info(node.output(0));
649     const Coordinates           starts  = node.starts();
650     const Coordinates           ends    = node.ends();
651     const BiStrides             strides = node.strides();
652     const StridedSliceLayerInfo info    = node.strided_slice_info();
653 
654     return StridedSliceLayer::validate(input, output, starts, ends, strides, info.begin_mask(), info.end_mask(), info.shrink_axis_mask());
655 }
656 
657 /** Validates a Upsample layer node
658  *
659  * @tparam UpsampleLayer Upsample layer type
660  *
661  * @param[in] node Node to validate
662  *
663  * @return Status
664  */
665 template <typename UpsampleLayer>
validate_upsample_layer(UpsampleLayerNode & node)666 Status validate_upsample_layer(UpsampleLayerNode &node)
667 {
668     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating UpsampleLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
669     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
670     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
671 
672     // Extract input and output
673     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
674     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
675 
676     // Validate function
677     return UpsampleLayer::validate(input, output, node.info(), node.upsampling_policy());
678 }
679 /** Validates a YOLO layer node
680  *
681  * @tparam YOLOLayer YOLO layer type
682  *
683  * @param[in] node Node to validate
684  *
685  * @return Status
686  */
687 template <typename YOLOLayer>
validate_yolo_layer(YOLOLayerNode & node)688 Status validate_yolo_layer(YOLOLayerNode &node)
689 {
690     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating YOLOLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
691     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
692     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
693 
694     // Extract input and output
695     arm_compute::ITensorInfo *input  = detail::get_backing_tensor_info(node.input(0));
696     arm_compute::ITensorInfo *output = get_backing_tensor_info(node.output(0));
697 
698     // Validate function
699     return YOLOLayer::validate(input, output, node.activation_info(), node.num_classes());
700 }
701 /** Validates a element-wise layer node
702  *
703  * @param[in] node Node to validate
704  *
705  * @return Status
706  */
707 template <typename EltwiseLayerFunctions>
validate_eltwise_Layer(EltwiseLayerNode & node)708 Status validate_eltwise_Layer(EltwiseLayerNode &node)
709 {
710     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating EltwiseLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
711     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 2);
712     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
713 
714     // Extract input and output
715     const arm_compute::ITensorInfo *input1         = detail::get_backing_tensor_info(node.input(0));
716     const arm_compute::ITensorInfo *input2         = detail::get_backing_tensor_info(node.input(1));
717     const arm_compute::ITensorInfo *output         = get_backing_tensor_info(node.output(0));
718     const EltwiseOperation          eltwise_op     = node.eltwise_operation();
719     const ConvertPolicy             convert_policy = node.convert_policy();
720     const RoundingPolicy            round_policy   = node.rounding_policy();
721     const ActivationLayerInfo       act_info       = node.fused_activation();
722     const QuantizationInfo          quant_info     = node.output_quant_info();
723 
724     // Validate function
725     if(eltwise_op == EltwiseOperation::Add)
726     {
727         return EltwiseLayerFunctions::ArithmeticAddition::validate(input1, input2, output, convert_policy, act_info);
728     }
729     else if(eltwise_op == EltwiseOperation::Sub)
730     {
731         return EltwiseLayerFunctions::ArithmeticSubtraction::validate(input1, input2, output, convert_policy, act_info);
732     }
733     else if(eltwise_op == EltwiseOperation::Mul)
734     {
735         return EltwiseLayerFunctions::PixelWiseMultiplication::validate(input1, input2, output, 1.0f, convert_policy, round_policy, act_info);
736     }
737     else if(eltwise_op == EltwiseOperation::Max)
738     {
739         return EltwiseLayerFunctions::ElementwiseMax::validate(input1, input2, output, act_info);
740     }
741     else
742     {
743         ARM_COMPUTE_ERROR("Unsupported element-wise operation!");
744     }
745     return Status{};
746 }
747 /** Validates a unary element-wise layer node
748  *
749  * @param[in] node Node to validate
750  *
751  * @return Status
752  */
753 template <typename UnaryEltwiseLayerFunctions>
validate_unary_eltwise_layer(UnaryEltwiseLayerNode & node)754 Status validate_unary_eltwise_layer(UnaryEltwiseLayerNode &node)
755 {
756     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Validating EltwiseLayer node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
757     ARM_COMPUTE_RETURN_ERROR_ON(node.num_inputs() != 1);
758     ARM_COMPUTE_RETURN_ERROR_ON(node.num_outputs() != 1);
759 
760     // Extract input and output
761     arm_compute::ITensorInfo   *input      = detail::get_backing_tensor_info(node.input(0));
762     arm_compute::ITensorInfo   *output     = get_backing_tensor_info(node.output(0));
763     const UnaryEltwiseOperation eltwise_op = node.eltwise_descriptor().op;
764 
765     // Validate function
766     if(eltwise_op == UnaryEltwiseOperation::Exp)
767     {
768         return UnaryEltwiseLayerFunctions::ExpLayer::validate(input, output);
769     }
770     else
771     {
772         ARM_COMPUTE_ERROR("Unsupported unary element-wise operation!");
773     }
774 
775     return Status{};
776 }
777 } // namespace detail
778 } // namespace backends
779 } // namespace graph
780 } // namespace arm_compute
781 
782 #endif /* ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_VALIDATE_HELPERS_H */
783