• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10 
11 #include <xnnpack.h>
12 #include <xnnpack/log.h>
13 #include <xnnpack/params.h>
14 #include <xnnpack/subgraph.h>
15 
16 
create_squared_difference_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)17 static enum xnn_status create_squared_difference_operator(
18   const struct xnn_node* node,
19   const struct xnn_value* values,
20   size_t num_values,
21   struct xnn_operator_data* opdata)
22 {
23   assert(node->compute_type == xnn_compute_type_fp32);
24 
25   assert(node->num_inputs == 2);
26   const uint32_t input1_id = node->inputs[0];
27   assert(input1_id != XNN_INVALID_VALUE_ID);
28   assert(input1_id < num_values);
29   const uint32_t input2_id = node->inputs[1];
30   assert(input2_id != XNN_INVALID_VALUE_ID);
31   assert(input2_id < num_values);
32 
33   assert(node->num_outputs == 1);
34   const uint32_t output_id = node->outputs[0];
35   assert(output_id != XNN_INVALID_VALUE_ID);
36   assert(output_id < num_values);
37 
38   const enum xnn_status status = xnn_create_squared_difference_nd_f32(
39     node->flags,
40     &opdata->operator_object);
41   if (status == xnn_status_success) {
42     opdata->shape1.num_dims = values[input1_id].shape.num_dims;
43     opdata->shape2.num_dims = values[input2_id].shape.num_dims;
44     if (values[output_id].layout == xnn_layout_type_nchw) {
45       assert(values[input1_id].layout == xnn_layout_type_nchw);
46       assert(values[input2_id].layout == xnn_layout_type_nchw);
47       opdata->shape1.dim[0] = values[input1_id].shape.dim[0];
48       opdata->shape1.dim[1] = values[input1_id].shape.dim[values[input1_id].shape.num_dims - 1];
49       if (values[input1_id].shape.num_dims > 2) {
50         memcpy(&opdata->shape1.dim[2], &values[input1_id].shape.dim[1], (values[input1_id].shape.num_dims - 2) * sizeof(size_t));
51       }
52       opdata->shape2.dim[0] = values[input2_id].shape.dim[0];
53       opdata->shape2.dim[1] = values[input2_id].shape.dim[values[input2_id].shape.num_dims - 1];
54       if (values[input1_id].shape.num_dims > 2) {
55         memcpy(&opdata->shape2.dim[2], &values[input2_id].shape.dim[1], (values[input2_id].shape.num_dims - 2) * sizeof(size_t));
56       }
57     } else {
58       assert(values[output_id].layout == xnn_layout_type_nhwc);
59       assert(values[input1_id].layout == xnn_layout_type_nhwc);
60       assert(values[input2_id].layout == xnn_layout_type_nhwc);
61       memcpy(opdata->shape1.dim, values[input1_id].shape.dim, values[input1_id].shape.num_dims * sizeof(size_t));
62       memcpy(opdata->shape2.dim, values[input2_id].shape.dim, values[input2_id].shape.num_dims * sizeof(size_t));
63     }
64     opdata->inputs[0] = input1_id;
65     opdata->inputs[1] = input2_id;
66     opdata->outputs[0] = output_id;
67   }
68   return status;
69 }
70 
setup_squared_difference_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)71 static enum xnn_status setup_squared_difference_operator(
72   const struct xnn_operator_data* opdata,
73   const struct xnn_blob* blobs,
74   size_t num_blobs,
75   pthreadpool_t threadpool)
76 {
77   const uint32_t input1_id = opdata->inputs[0];
78   assert(input1_id != XNN_INVALID_VALUE_ID);
79   assert(input1_id < num_blobs);
80 
81   const uint32_t input2_id = opdata->inputs[1];
82   assert(input2_id != XNN_INVALID_VALUE_ID);
83   assert(input2_id < num_blobs);
84 
85   const uint32_t output_id = opdata->outputs[0];
86   assert(output_id != XNN_INVALID_VALUE_ID);
87   assert(output_id < num_blobs);
88 
89   const struct xnn_blob* input1_blob = blobs + input1_id;
90   const void* input1_data = input1_blob->data;
91   assert(input1_data != NULL);
92 
93   const struct xnn_blob* input2_blob = blobs + input2_id;
94   const void* input2_data = input2_blob->data;
95   assert(input2_data != NULL);
96 
97   const struct xnn_blob* output_blob = blobs + output_id;
98   void* output_data = output_blob->data;
99   assert(output_data != NULL);
100 
101   return xnn_setup_squared_difference_nd_f32(
102     opdata->operator_object,
103     opdata->shape1.num_dims,
104     opdata->shape1.dim,
105     opdata->shape2.num_dims,
106     opdata->shape2.dim,
107     input1_data, input2_data, output_data,
108     threadpool);
109 }
110 
xnn_define_squared_difference(xnn_subgraph_t subgraph,uint32_t input1_id,uint32_t input2_id,uint32_t output_id,uint32_t flags)111 enum xnn_status xnn_define_squared_difference(
112   xnn_subgraph_t subgraph,
113   uint32_t input1_id,
114   uint32_t input2_id,
115   uint32_t output_id,
116   uint32_t flags)
117 {
118   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
119     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
120       xnn_node_type_to_string(xnn_node_type_squared_difference));
121     return xnn_status_uninitialized;
122   }
123 
124   if (input1_id >= subgraph->num_values) {
125     xnn_log_error(
126       "failed to define %s operator with the first input ID #%" PRIu32 ": invalid Value ID",
127       xnn_node_type_to_string(xnn_node_type_squared_difference), input1_id);
128     return xnn_status_invalid_parameter;
129   }
130 
131   const struct xnn_value* input1_value = &subgraph->values[input1_id];
132   if (input1_value->type != xnn_value_type_dense_tensor) {
133     xnn_log_error(
134       "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
135       xnn_node_type_to_string(xnn_node_type_squared_difference), input1_id, input1_value->type);
136     return xnn_status_invalid_parameter;
137   }
138 
139   switch (input1_value->datatype) {
140     case xnn_datatype_fp32:
141       break;
142     default:
143       xnn_log_error(
144         "failed to define %s operator with first input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
145         xnn_node_type_to_string(xnn_node_type_squared_difference), input1_id,
146         xnn_datatype_to_string(input1_value->datatype), input1_value->datatype);
147       return xnn_status_invalid_parameter;
148   }
149 
150   if (input2_id >= subgraph->num_values) {
151     xnn_log_error(
152       "failed to define %s operator with the second input ID #%" PRIu32 ": invalid Value ID",
153       xnn_node_type_to_string(xnn_node_type_squared_difference), input2_id);
154     return xnn_status_invalid_parameter;
155   }
156 
157   const struct xnn_value* input2_value = &subgraph->values[input2_id];
158   if (input2_value->type != xnn_value_type_dense_tensor) {
159     xnn_log_error(
160       "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
161       xnn_node_type_to_string(xnn_node_type_squared_difference), input2_id, input2_value->type);
162     return xnn_status_invalid_parameter;
163   }
164 
165   switch (input2_value->datatype) {
166     case xnn_datatype_fp32:
167       break;
168     default:
169       xnn_log_error(
170         "failed to define %s operator with second input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
171         xnn_node_type_to_string(xnn_node_type_squared_difference), input2_id,
172         xnn_datatype_to_string(input2_value->datatype), input2_value->datatype);
173       return xnn_status_invalid_parameter;
174   }
175 
176   if (output_id >= subgraph->num_values) {
177     xnn_log_error(
178       "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
179       xnn_node_type_to_string(xnn_node_type_squared_difference), output_id);
180     return xnn_status_invalid_parameter;
181   }
182 
183   const struct xnn_value* output_value = &subgraph->values[output_id];
184   if (output_value->type != xnn_value_type_dense_tensor) {
185     xnn_log_error(
186       "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
187       xnn_node_type_to_string(xnn_node_type_squared_difference), output_id, output_value->type);
188     return xnn_status_invalid_parameter;
189   }
190 
191   switch (output_value->datatype) {
192     case xnn_datatype_fp32:
193       break;
194     default:
195       xnn_log_error(
196         "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
197         xnn_node_type_to_string(xnn_node_type_squared_difference), output_id,
198         xnn_datatype_to_string(output_value->datatype), output_value->datatype);
199       return xnn_status_invalid_parameter;
200   }
201 
202   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
203   if (node == NULL) {
204     return xnn_status_out_of_memory;
205   }
206 
207   node->type = xnn_node_type_squared_difference;
208   node->compute_type = xnn_compute_type_fp32;
209   node->num_inputs = 2;
210   node->inputs[0] = input1_id;
211   node->inputs[1] = input2_id;
212   node->num_outputs = 1;
213   node->outputs[0] = output_id;
214   node->flags = flags;
215 
216   node->create = create_squared_difference_operator;
217   node->setup = setup_squared_difference_operator;
218 
219   return xnn_status_success;
220 }
221