1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
11 */
12
13 #include <assert.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdio.h>
17
18 #include "config/aom_dsp_rtcd.h"
19 #include "config/av1_rtcd.h"
20
21 #include "aom_dsp/aom_dsp_common.h"
22 #include "aom_dsp/blend.h"
23 #include "aom_mem/aom_mem.h"
24 #include "aom_ports/aom_timer.h"
25 #include "aom_ports/mem.h"
26
27 #include "av1/encoder/model_rd.h"
28 #include "av1/common/mvref_common.h"
29 #include "av1/common/pred_common.h"
30 #include "av1/common/reconinter.h"
31 #include "av1/common/reconintra.h"
32
33 #include "av1/encoder/encodemv.h"
34 #include "av1/encoder/rdopt.h"
35 #include "av1/encoder/reconinter_enc.h"
36
37 extern int g_pick_inter_mode_cnt;
38 /*!\cond */
39 typedef struct {
40 uint8_t *data;
41 int stride;
42 int in_use;
43 } PRED_BUFFER;
44
45 typedef struct {
46 PRED_BUFFER *best_pred;
47 PREDICTION_MODE best_mode;
48 TX_SIZE best_tx_size;
49 MV_REFERENCE_FRAME best_ref_frame;
50 MV_REFERENCE_FRAME best_second_ref_frame;
51 uint8_t best_mode_skip_txfm;
52 uint8_t best_mode_initial_skip_flag;
53 int_interpfilters best_pred_filter;
54 MOTION_MODE best_motion_mode;
55 WarpedMotionParams wm_params;
56 int num_proj_ref;
57 } BEST_PICKMODE;
58
59 typedef struct {
60 MV_REFERENCE_FRAME ref_frame;
61 PREDICTION_MODE pred_mode;
62 } REF_MODE;
63
64 typedef struct {
65 InterpFilter filter_x;
66 InterpFilter filter_y;
67 } INTER_FILTER;
68 /*!\endcond */
69
70 static const int pos_shift_16x16[4][4] = {
71 { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
72 };
73
74 #define NUM_INTER_MODES_RT 9
75 #define NUM_INTER_MODES_REDUCED 8
76
77 static const REF_MODE ref_mode_set_rt[NUM_INTER_MODES_RT] = {
78 { LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV },
79 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
80 { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
81 { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
82 { ALTREF_FRAME, NEWMV }
83 };
84
85 // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT
86 // mode
87 static const REF_MODE ref_mode_set_reduced[NUM_INTER_MODES_REDUCED] = {
88 { LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEARESTMV },
89 { GOLDEN_FRAME, GLOBALMV }, { LAST_FRAME, NEARMV },
90 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
91 { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }
92 };
93
94 static const THR_MODES mode_idx[REF_FRAMES][4] = {
95 { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH },
96 { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV },
97 { THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 },
98 { THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 },
99 { THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG },
100 };
101
102 static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
103 SMOOTH_PRED };
104
105 static const INTER_FILTER filters_ref_set[9] = {
106 { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
107 { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH }, { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR },
108 { MULTITAP_SHARP, MULTITAP_SHARP }, { EIGHTTAP_REGULAR, MULTITAP_SHARP },
109 { MULTITAP_SHARP, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, MULTITAP_SHARP },
110 { MULTITAP_SHARP, EIGHTTAP_SMOOTH }
111 };
112
mode_offset(const PREDICTION_MODE mode)113 static INLINE int mode_offset(const PREDICTION_MODE mode) {
114 if (mode >= NEARESTMV) {
115 return INTER_OFFSET(mode);
116 } else {
117 switch (mode) {
118 case DC_PRED: return 0;
119 case V_PRED: return 1;
120 case H_PRED: return 2;
121 case SMOOTH_PRED: return 3;
122 default: assert(0); return -1;
123 }
124 }
125 }
126
127 enum {
128 // INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
129 INTER_NEAREST = (1 << NEARESTMV),
130 INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
131 INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
132 INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
133 };
134
init_best_pickmode(BEST_PICKMODE * bp)135 static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
136 bp->best_mode = NEARESTMV;
137 bp->best_ref_frame = LAST_FRAME;
138 bp->best_second_ref_frame = NONE_FRAME;
139 bp->best_tx_size = TX_8X8;
140 bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
141 bp->best_mode_skip_txfm = 0;
142 bp->best_mode_initial_skip_flag = 0;
143 bp->best_pred = NULL;
144 bp->best_motion_mode = SIMPLE_TRANSLATION;
145 bp->num_proj_ref = 0;
146 memset(&bp->wm_params, 0, sizeof(bp->wm_params));
147 }
148
149 /*!\brief Runs Motion Estimation for a specific block and specific ref frame.
150 *
151 * \ingroup nonrd_mode_search
152 * \callgraph
153 * \callergraph
154 * Finds the best Motion Vector by running Motion Estimation for a specific
155 * block and a specific reference frame. Exits early if RDCost of Full Pel part
156 * exceeds best RD Cost fund so far
157 * \param[in] cpi Top-level encoder structure
158 * \param[in] x Pointer to structure holding all the
159 * data for the current macroblock
160 * \param[in] bsize Current block size
161 * \param[in] mi_row Row index in 4x4 units
162 * \param[in] mi_col Column index in 4x4 units
163 * \param[in] tmp_mv Pointer to best found New MV
164 * \param[in] rate_mv Pointer to Rate of the best new MV
165 * \param[in] best_rd_sofar RD Cost of the best mode found so far
166 * \param[in] use_base_mv Flag, indicating that tmp_mv holds
167 * specific MV to start the search with
168 *
169 * \return Returns 0 if ME was terminated after Full Pel Search because too
170 * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv.
171 * Rate estimation for this vector is placed to \c rate_mv
172 */
combined_motion_search(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int_mv * tmp_mv,int * rate_mv,int64_t best_rd_sofar,int use_base_mv)173 static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
174 BLOCK_SIZE bsize, int mi_row, int mi_col,
175 int_mv *tmp_mv, int *rate_mv,
176 int64_t best_rd_sofar, int use_base_mv) {
177 MACROBLOCKD *xd = &x->e_mbd;
178 const AV1_COMMON *cm = &cpi->common;
179 const int num_planes = av1_num_planes(cm);
180 MB_MODE_INFO *mi = xd->mi[0];
181 struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
182 int step_param = (cpi->sf.rt_sf.fullpel_search_step_param)
183 ? cpi->sf.rt_sf.fullpel_search_step_param
184 : cpi->mv_search_params.mv_step_param;
185 FULLPEL_MV start_mv;
186 const int ref = mi->ref_frame[0];
187 const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
188 MV center_mv;
189 int dis;
190 int rv = 0;
191 int cost_list[5];
192 int search_subpel = 1;
193 const YV12_BUFFER_CONFIG *scaled_ref_frame =
194 av1_get_scaled_ref_frame(cpi, ref);
195
196 if (scaled_ref_frame) {
197 int i;
198 // Swap out the reference frame for a version that's been scaled to
199 // match the resolution of the current frame, allowing the existing
200 // motion search code to be used without additional modifications.
201 for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
202 av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
203 num_planes);
204 }
205
206 start_mv = get_fullmv_from_mv(&ref_mv);
207
208 if (!use_base_mv)
209 center_mv = ref_mv;
210 else
211 center_mv = tmp_mv->as_mv;
212 const search_site_config *src_search_sites =
213 cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
214 FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
215 av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv,
216 src_search_sites,
217 /*fine_search_interval=*/0);
218
219 av1_full_pixel_search(start_mv, &full_ms_params, step_param,
220 cond_cost_list(cpi, cost_list), &tmp_mv->as_fullmv,
221 NULL);
222
223 // calculate the bit cost on motion vector
224 MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
225
226 *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost,
227 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
228
229 // TODO(kyslov) Account for Rate Mode!
230 rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
231
232 if (rv && search_subpel) {
233 SUBPEL_MOTION_SEARCH_PARAMS ms_params;
234 av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
235 cost_list);
236 MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
237 cpi->mv_search_params.find_fractional_mv_step(
238 xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis,
239 &x->pred_sse[ref], NULL);
240
241 *rate_mv =
242 av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost,
243 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
244 }
245
246 if (scaled_ref_frame) {
247 int i;
248 for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
249 }
250 // Final MV can not be equal to referance MV as this will trigger assert
251 // later. This can happen if both NEAREST and NEAR modes were skipped
252 rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row);
253 return rv;
254 }
255
256 /*!\brief Searches for the best New Motion Vector.
257 *
258 * \ingroup nonrd_mode_search
259 * \callgraph
260 * \callergraph
261 * Finds the best Motion Vector by doing Motion Estimation. Uses reduced
262 * complexity ME for non-LAST frames or calls \c combined_motion_search
263 * for LAST reference frame
264 * \param[in] cpi Top-level encoder structure
265 * \param[in] x Pointer to structure holding all the
266 * data for the current macroblock
267 * \param[in] frame_mv Array that holds MVs for all modes
268 * and ref frames
269 * \param[in] ref_frame Reference freme for which to find
270 * the best New MVs
271 * \param[in] gf_temporal_ref Flag, indicating temporal reference
272 * for GOLDEN frame
273 * \param[in] bsize Current block size
274 * \param[in] mi_row Row index in 4x4 units
275 * \param[in] mi_col Column index in 4x4 units
276 * \param[in] rate_mv Pointer to Rate of the best new MV
277 * \param[in] best_rdc Pointer to the RD Cost for the best
278 * mode found so far
279 *
280 * \return Returns -1 if the search was not done, otherwise returns 0.
281 * Best New MV is placed into \c frame_mv array, Rate estimation for this
282 * vector is placed to \c rate_mv
283 */
search_new_mv(AV1_COMP * cpi,MACROBLOCK * x,int_mv frame_mv[][REF_FRAMES],MV_REFERENCE_FRAME ref_frame,int gf_temporal_ref,BLOCK_SIZE bsize,int mi_row,int mi_col,int * rate_mv,RD_STATS * best_rdc)284 static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
285 int_mv frame_mv[][REF_FRAMES],
286 MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
287 BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv,
288 RD_STATS *best_rdc) {
289 MACROBLOCKD *const xd = &x->e_mbd;
290 MB_MODE_INFO *const mi = xd->mi[0];
291 AV1_COMMON *cm = &cpi->common;
292 if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
293 gf_temporal_ref) {
294 int tmp_sad;
295 int dis;
296 int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
297
298 if (bsize < BLOCK_16X16) return -1;
299
300 tmp_sad = av1_int_pro_motion_estimation(
301 cpi, x, bsize, mi_row, mi_col,
302 &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv);
303
304 if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
305
306 frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
307 int_mv best_mv = mi->mv[0];
308 best_mv.as_mv.row >>= 3;
309 best_mv.as_mv.col >>= 3;
310 MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
311
312 *rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
313 x->mv_costs->nmv_joint_cost,
314 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
315 frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
316 frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
317
318 SUBPEL_MOTION_SEARCH_PARAMS ms_params;
319 av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
320 cost_list);
321 MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
322 cpi->mv_search_params.find_fractional_mv_step(
323 xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis,
324 &x->pred_sse[ref_frame], NULL);
325 frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int;
326 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
327 &frame_mv[NEWMV][ref_frame], rate_mv,
328 best_rdc->rdcost, 0)) {
329 return -1;
330 }
331
332 return 0;
333 }
334
335 /*!\brief Finds predicted motion vectors for a block.
336 *
337 * \ingroup nonrd_mode_search
338 * \callgraph
339 * \callergraph
340 * Finds predicted motion vectors for a block from a certain reference frame.
341 * First, it fills reference MV stack, then picks the test from the stack and
342 * predicts the final MV for a block for each mode.
343 * \param[in] cpi Top-level encoder structure
344 * \param[in] x Pointer to structure holding all the
345 * data for the current macroblock
346 * \param[in] ref_frame Reference freme for which to find
347 * ref MVs
348 * \param[in] frame_mv Predicted MVs for a block
349 * \param[in] tile_data Pointer to struct holding adaptive
350 * data/contexts/models for the tile
351 * during encoding
352 * \param[in] yv12_mb Buffer to hold predicted block
353 * \param[in] bsize Current block size
354 * \param[in] force_skip_low_temp_var Flag indicating possible mode search
355 * prune for low temporal variace block
356 *
357 * \return Nothing is returned. Instead, predicted MVs are placed into
358 * \c frame_mv array
359 */
find_predictors(AV1_COMP * cpi,MACROBLOCK * x,MV_REFERENCE_FRAME ref_frame,int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],TileDataEnc * tile_data,struct buf_2d yv12_mb[8][MAX_MB_PLANE],BLOCK_SIZE bsize,int force_skip_low_temp_var)360 static INLINE void find_predictors(AV1_COMP *cpi, MACROBLOCK *x,
361 MV_REFERENCE_FRAME ref_frame,
362 int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
363 TileDataEnc *tile_data,
364 struct buf_2d yv12_mb[8][MAX_MB_PLANE],
365 BLOCK_SIZE bsize,
366 int force_skip_low_temp_var) {
367 AV1_COMMON *const cm = &cpi->common;
368 MACROBLOCKD *const xd = &x->e_mbd;
369 MB_MODE_INFO *const mbmi = xd->mi[0];
370 MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
371 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
372 const int num_planes = av1_num_planes(cm);
373 (void)tile_data;
374
375 x->pred_mv_sad[ref_frame] = INT_MAX;
376 x->pred_mv0_sad[ref_frame] = INT_MAX;
377 x->pred_mv1_sad[ref_frame] = INT_MAX;
378 frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
379 // TODO(kyslov) this needs various further optimizations. to be continued..
380 assert(yv12 != NULL);
381 if (yv12 != NULL) {
382 const struct scale_factors *const sf =
383 get_ref_scale_factors_const(cm, ref_frame);
384 av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
385 av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
386 xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
387 mbmi_ext->mode_context);
388 // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
389 // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
390 av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
391 av1_find_best_ref_mvs_from_stack(
392 cm->features.allow_high_precision_mv, mbmi_ext, ref_frame,
393 &frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0);
394 frame_mv[GLOBALMV][ref_frame] = mbmi_ext->global_mvs[ref_frame];
395 // Early exit for non-LAST frame if force_skip_low_temp_var is set.
396 if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 &&
397 !(force_skip_low_temp_var && ref_frame != LAST_FRAME)) {
398 av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
399 bsize);
400 }
401 }
402 av1_count_overlappable_neighbors(cm, xd);
403 mbmi->num_proj_ref = 1;
404 }
405
estimate_single_ref_frame_costs(const AV1_COMMON * cm,const MACROBLOCKD * xd,const ModeCosts * mode_costs,int segment_id,unsigned int * ref_costs_single)406 static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
407 const MACROBLOCKD *xd,
408 const ModeCosts *mode_costs,
409 int segment_id,
410 unsigned int *ref_costs_single) {
411 int seg_ref_active =
412 segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
413 if (seg_ref_active) {
414 memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
415 } else {
416 int intra_inter_ctx = av1_get_intra_inter_context(xd);
417 ref_costs_single[INTRA_FRAME] =
418 mode_costs->intra_inter_cost[intra_inter_ctx][0];
419 unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
420 ref_costs_single[LAST_FRAME] = base_cost;
421 ref_costs_single[GOLDEN_FRAME] = base_cost;
422 ref_costs_single[ALTREF_FRAME] = base_cost;
423 // add cost for last, golden, altref
424 ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0];
425 ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1];
426 ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0];
427 ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1];
428 ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0];
429 }
430 }
431
calculate_tx_size(const AV1_COMP * const cpi,BLOCK_SIZE bsize,MACROBLOCK * const x,unsigned int var,unsigned int sse)432 static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
433 MACROBLOCK *const x, unsigned int var,
434 unsigned int sse) {
435 MACROBLOCKD *const xd = &x->e_mbd;
436 TX_SIZE tx_size;
437 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
438 if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) {
439 if (sse > (var << 1))
440 tx_size =
441 AOMMIN(max_txsize_lookup[bsize],
442 tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
443 else
444 tx_size = TX_8X8;
445
446 if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
447 cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
448 tx_size = TX_8X8;
449 else if (tx_size > TX_16X16)
450 tx_size = TX_16X16;
451 } else {
452 tx_size =
453 AOMMIN(max_txsize_lookup[bsize],
454 tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
455 }
456
457 if (txfm_params->tx_mode_search_type != ONLY_4X4 && bsize > BLOCK_32X32)
458 tx_size = TX_16X16;
459
460 return AOMMIN(tx_size, TX_16X16);
461 }
462
463 static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
464 2, 2, 3, 3, 3, 4,
465 4, 4, 5, 5 };
466 static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
467 2, 3, 2, 3, 4, 3,
468 4, 5, 4, 5 };
469
block_variance(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,unsigned int * sse,int * sum,int block_size,uint32_t * sse8x8,int * sum8x8,uint32_t * var8x8)470 static void block_variance(const uint8_t *src, int src_stride,
471 const uint8_t *ref, int ref_stride, int w, int h,
472 unsigned int *sse, int *sum, int block_size,
473 uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
474 int i, j, k = 0;
475
476 *sse = 0;
477 *sum = 0;
478
479 for (i = 0; i < h; i += block_size) {
480 for (j = 0; j < w; j += block_size) {
481 aom_get8x8var(src + src_stride * i + j, src_stride,
482 ref + ref_stride * i + j, ref_stride, &sse8x8[k],
483 &sum8x8[k]);
484 *sse += sse8x8[k];
485 *sum += sum8x8[k];
486 var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
487 k++;
488 }
489 }
490 }
491
calculate_variance(int bw,int bh,TX_SIZE tx_size,unsigned int * sse_i,int * sum_i,unsigned int * var_o,unsigned int * sse_o,int * sum_o)492 static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
493 unsigned int *sse_i, int *sum_i,
494 unsigned int *var_o, unsigned int *sse_o,
495 int *sum_o) {
496 const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
497 const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
498 const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
499 int i, j, k = 0;
500
501 for (i = 0; i < nh; i += 2) {
502 for (j = 0; j < nw; j += 2) {
503 sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
504 sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
505 sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
506 sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
507 var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
508 (b_width_log2_lookup[unit_size] +
509 b_height_log2_lookup[unit_size] + 6));
510 k++;
511 }
512 }
513 }
514
515 // Adjust the ac_thr according to speed, width, height and normalized sum
ac_thr_factor(const int speed,const int width,const int height,const int norm_sum)516 static int ac_thr_factor(const int speed, const int width, const int height,
517 const int norm_sum) {
518 if (speed >= 8 && norm_sum < 5) {
519 if (width <= 640 && height <= 480)
520 return 4;
521 else
522 return 2;
523 }
524 return 1;
525 }
526
model_skip_for_sb_y_large(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,MACROBLOCK * x,MACROBLOCKD * xd,RD_STATS * rd_stats,int * early_term,int calculate_rd)527 static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
528 int mi_row, int mi_col, MACROBLOCK *x,
529 MACROBLOCKD *xd, RD_STATS *rd_stats,
530 int *early_term, int calculate_rd) {
531 // Note our transform coeffs are 8 times an orthogonal transform.
532 // Hence quantizer step is also 8 times. To get effective quantizer
533 // we need to divide by 8 before sending to modeling function.
534 unsigned int sse;
535 struct macroblock_plane *const p = &x->plane[0];
536 struct macroblockd_plane *const pd = &xd->plane[0];
537 const uint32_t dc_quant = p->dequant_QTX[0];
538 const uint32_t ac_quant = p->dequant_QTX[1];
539 const int64_t dc_thr = dc_quant * dc_quant >> 6;
540 int64_t ac_thr = ac_quant * ac_quant >> 6;
541 unsigned int var;
542 int sum;
543
544 const int bw = b_width_log2_lookup[bsize];
545 const int bh = b_height_log2_lookup[bsize];
546 const int num8x8 = 1 << (bw + bh - 2);
547 unsigned int sse8x8[256] = { 0 };
548 int sum8x8[256] = { 0 };
549 unsigned int var8x8[256] = { 0 };
550 TX_SIZE tx_size;
551 int k;
552 // Calculate variance for whole partition, and also save 8x8 blocks' variance
553 // to be used in following transform skipping test.
554 block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
555 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
556 var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
557
558 rd_stats->sse = sse;
559
560 #if CONFIG_AV1_TEMPORAL_DENOISING
561 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
562 cpi->oxcf.speed > 5)
563 ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
564 (abs(sum) >> (bw + bh)),
565 cpi->svc.temporal_layer_id);
566 else
567 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
568 cpi->common.height, abs(sum) >> (bw + bh));
569 #else
570 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
571 cpi->common.height, abs(sum) >> (bw + bh));
572
573 #endif
574 tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
575 // The code below for setting skip flag assumes tranform size of at least 8x8,
576 // so force this lower limit on transform.
577 if (tx_size < TX_8X8) tx_size = TX_8X8;
578 xd->mi[0]->tx_size = tx_size;
579
580 // Evaluate if the partition block is a skippable block in Y plane.
581 {
582 unsigned int sse16x16[64] = { 0 };
583 int sum16x16[64] = { 0 };
584 unsigned int var16x16[64] = { 0 };
585 const int num16x16 = num8x8 >> 2;
586
587 unsigned int sse32x32[16] = { 0 };
588 int sum32x32[16] = { 0 };
589 unsigned int var32x32[16] = { 0 };
590 const int num32x32 = num8x8 >> 4;
591
592 int ac_test = 1;
593 int dc_test = 1;
594 const int num = (tx_size == TX_8X8)
595 ? num8x8
596 : ((tx_size == TX_16X16) ? num16x16 : num32x32);
597 const unsigned int *sse_tx =
598 (tx_size == TX_8X8) ? sse8x8
599 : ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
600 const unsigned int *var_tx =
601 (tx_size == TX_8X8) ? var8x8
602 : ((tx_size == TX_16X16) ? var16x16 : var32x32);
603
604 // Calculate variance if tx_size > TX_8X8
605 if (tx_size >= TX_16X16)
606 calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
607 sum16x16);
608 if (tx_size == TX_32X32)
609 calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
610 sse32x32, sum32x32);
611
612 // Skipping test
613 *early_term = 0;
614 for (k = 0; k < num; k++)
615 // Check if all ac coefficients can be quantized to zero.
616 if (!(var_tx[k] < ac_thr || var == 0)) {
617 ac_test = 0;
618 break;
619 }
620
621 for (k = 0; k < num; k++)
622 // Check if dc coefficient can be quantized to zero.
623 if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
624 dc_test = 0;
625 break;
626 }
627
628 if (ac_test && dc_test) {
629 int skip_uv[2] = { 0 };
630 unsigned int var_uv[2];
631 unsigned int sse_uv[2];
632 AV1_COMMON *const cm = &cpi->common;
633 // Transform skipping test in UV planes.
634 for (int i = 1; i <= 2; i++) {
635 int j = i - 1;
636 skip_uv[j] = 1;
637 if (x->color_sensitivity[j]) {
638 skip_uv[j] = 0;
639 struct macroblock_plane *const puv = &x->plane[i];
640 struct macroblockd_plane *const puvd = &xd->plane[i];
641 const BLOCK_SIZE uv_bsize = get_plane_block_size(
642 bsize, puvd->subsampling_x, puvd->subsampling_y);
643 // Adjust these thresholds for UV.
644 const int64_t uv_dc_thr =
645 (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
646 const int64_t uv_ac_thr =
647 (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
648 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
649 i);
650 var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(
651 puv->src.buf, puv->src.stride, puvd->dst.buf, puvd->dst.stride,
652 &sse_uv[j]);
653 if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
654 (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
655 skip_uv[j] = 1;
656 else
657 break;
658 }
659 }
660 if (skip_uv[0] & skip_uv[1]) {
661 *early_term = 1;
662 }
663 }
664 }
665 if (calculate_rd) {
666 if (!*early_term) {
667 const int bwide = block_size_wide[bsize];
668 const int bhigh = block_size_high[bsize];
669
670 model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh,
671 &rd_stats->rate, &rd_stats->dist);
672 }
673
674 if (*early_term) {
675 rd_stats->rate = 0;
676 rd_stats->dist = sse << 4;
677 }
678 }
679 }
680
model_rd_for_sb_y(const AV1_COMP * const cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,RD_STATS * rd_stats,int calculate_rd)681 static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
682 MACROBLOCK *x, MACROBLOCKD *xd,
683 RD_STATS *rd_stats, int calculate_rd) {
684 // Note our transform coeffs are 8 times an orthogonal transform.
685 // Hence quantizer step is also 8 times. To get effective quantizer
686 // we need to divide by 8 before sending to modeling function.
687 const int ref = xd->mi[0]->ref_frame[0];
688
689 assert(bsize < BLOCK_SIZES_ALL);
690
691 struct macroblock_plane *const p = &x->plane[0];
692 struct macroblockd_plane *const pd = &xd->plane[0];
693 unsigned int sse;
694 int rate;
695 int64_t dist;
696
697 unsigned int var = cpi->ppi->fn_ptr[bsize].vf(
698 p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse);
699 xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
700
701 if (calculate_rd) {
702 const int bwide = block_size_wide[bsize];
703 const int bhigh = block_size_high[bsize];
704 model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
705 &dist);
706 } else {
707 rate = INT_MAX; // this will be overwritten later with block_yrd
708 dist = INT_MAX;
709 }
710 rd_stats->sse = sse;
711 x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
712
713 assert(rate >= 0);
714
715 rd_stats->skip_txfm = (rate == 0);
716 rate = AOMMIN(rate, INT_MAX);
717 rd_stats->rate = rate;
718 rd_stats->dist = dist;
719 }
720
721 /*!\brief Calculates RD Cost using Hadamard transform.
722 *
723 * \ingroup nonrd_mode_search
724 * \callgraph
725 * \callergraph
726 * Calculates RD Cost using Hadamard transform. For low bit depth this function
727 * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
728 * \param[in] cpi Top-level encoder structure
729 * \param[in] x Pointer to structure holding all the data for
730 the current macroblock
731 * \param[in] mi_row Row index in 4x4 units
732 * \param[in] mi_col Column index in 4x4 units
733 * \param[in] this_rdc Pointer to calculated RD Cost
734 * \param[in] skippable Pointer to a flag indicating possible tx skip
735 * \param[in] bsize Current block size
736 * \param[in] tx_size Transform size
737 *
738 * \return Nothing is returned. Instead, calculated RD cost is placed to
739 * \c this_rdc. \c skippable flag is set if there is no non-zero quantized
740 * coefficients for Hadamard transform
741 */
block_yrd(AV1_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,RD_STATS * this_rdc,int * skippable,BLOCK_SIZE bsize,TX_SIZE tx_size)742 static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
743 RD_STATS *this_rdc, int *skippable, BLOCK_SIZE bsize,
744 TX_SIZE tx_size) {
745 MACROBLOCKD *xd = &x->e_mbd;
746 const struct macroblockd_plane *pd = &xd->plane[0];
747 struct macroblock_plane *const p = &x->plane[0];
748 const int num_4x4_w = mi_size_wide[bsize];
749 const int num_4x4_h = mi_size_high[bsize];
750 const int step = 1 << (tx_size << 1);
751 const int block_step = (1 << tx_size);
752 int block = 0;
753 const int max_blocks_wide =
754 num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
755 const int max_blocks_high =
756 num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
757 int eob_cost = 0;
758 const int bw = 4 * num_4x4_w;
759 const int bh = 4 * num_4x4_h;
760
761 (void)mi_row;
762 (void)mi_col;
763 (void)cpi;
764
765 #if CONFIG_AV1_HIGHBITDEPTH
766 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
767 aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
768 p->src.stride, pd->dst.buf, pd->dst.stride,
769 x->e_mbd.bd);
770 } else {
771 aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
772 pd->dst.buf, pd->dst.stride);
773 }
774 #else
775 aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
776 pd->dst.buf, pd->dst.stride);
777 #endif
778
779 *skippable = 1;
780 // Keep track of the row and column of the blocks we use so that we know
781 // if we are in the unrestricted motion border.
782 for (int r = 0; r < max_blocks_high; r += block_step) {
783 for (int c = 0; c < num_4x4_w; c += block_step) {
784 if (c < max_blocks_wide) {
785 const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
786 const int block_offset = BLOCK_OFFSET(block);
787 #if CONFIG_AV1_HIGHBITDEPTH
788 tran_low_t *const coeff = p->coeff + block_offset;
789 tran_low_t *const qcoeff = p->qcoeff + block_offset;
790 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
791 #else
792 int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
793 int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
794 int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
795 #endif
796 uint16_t *const eob = &p->eobs[block];
797 const int diff_stride = bw;
798 const int16_t *src_diff;
799 src_diff = &p->src_diff[(r * diff_stride + c) << 2];
800
801 switch (tx_size) {
802 case TX_64X64:
803 assert(0); // Not implemented
804 break;
805 case TX_32X32:
806 assert(0); // Not used
807 break;
808 #if CONFIG_AV1_HIGHBITDEPTH
809 case TX_16X16:
810 aom_hadamard_16x16(src_diff, diff_stride, coeff);
811 av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
812 p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
813 dqcoeff, p->dequant_QTX, eob, scan_order->scan,
814 scan_order->iscan);
815 break;
816 case TX_8X8:
817 aom_hadamard_8x8(src_diff, diff_stride, coeff);
818 av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX,
819 p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
820 dqcoeff, p->dequant_QTX, eob, scan_order->scan,
821 scan_order->iscan);
822 break;
823 default:
824 assert(tx_size == TX_4X4);
825 aom_fdct4x4(src_diff, coeff, diff_stride);
826 av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
827 p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
828 dqcoeff, p->dequant_QTX, eob, scan_order->scan,
829 scan_order->iscan);
830 break;
831 #else
832 case TX_16X16:
833 aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
834 av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
835 p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
836 p->dequant_QTX, eob, scan_order->scan,
837 scan_order->iscan);
838 break;
839 case TX_8X8:
840 aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
841 av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
842 low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
843 scan_order->scan, scan_order->iscan);
844 break;
845 default:
846 assert(tx_size == TX_4X4);
847 aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
848 av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
849 low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
850 scan_order->scan, scan_order->iscan);
851 break;
852 #endif
853 }
854 assert(*eob <= 1024);
855 *skippable &= (*eob == 0);
856 eob_cost += 1;
857 }
858 block += step;
859 }
860 }
861 this_rdc->skip_txfm = *skippable;
862 this_rdc->rate = 0;
863 if (this_rdc->sse < INT64_MAX) {
864 this_rdc->sse = (this_rdc->sse << 6) >> 2;
865 if (*skippable) {
866 this_rdc->dist = this_rdc->sse;
867 return;
868 }
869 }
870
871 block = 0;
872 this_rdc->dist = 0;
873 for (int r = 0; r < max_blocks_high; r += block_step) {
874 for (int c = 0; c < num_4x4_w; c += block_step) {
875 if (c < max_blocks_wide) {
876 const int block_offset = BLOCK_OFFSET(block);
877 uint16_t *const eob = &p->eobs[block];
878 #if CONFIG_AV1_HIGHBITDEPTH
879 int64_t dummy;
880 tran_low_t *const coeff = p->coeff + block_offset;
881 tran_low_t *const qcoeff = p->qcoeff + block_offset;
882 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
883
884 if (*eob == 1)
885 this_rdc->rate += (int)abs(qcoeff[0]);
886 else if (*eob > 1)
887 this_rdc->rate += aom_satd(qcoeff, step << 4);
888
889 this_rdc->dist +=
890 av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
891 #else
892 int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
893 int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
894 int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
895
896 if (*eob == 1)
897 this_rdc->rate += (int)abs(low_qcoeff[0]);
898 else if (*eob > 1)
899 this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
900
901 this_rdc->dist +=
902 av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
903 #endif
904 }
905 block += step;
906 }
907 }
908
909 // If skippable is set, rate gets clobbered later.
910 this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
911 this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
912 }
913
init_mbmi(MB_MODE_INFO * mbmi,PREDICTION_MODE pred_mode,MV_REFERENCE_FRAME ref_frame0,MV_REFERENCE_FRAME ref_frame1,const AV1_COMMON * cm)914 static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
915 MV_REFERENCE_FRAME ref_frame0,
916 MV_REFERENCE_FRAME ref_frame1,
917 const AV1_COMMON *cm) {
918 PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
919 mbmi->ref_mv_idx = 0;
920 mbmi->mode = pred_mode;
921 mbmi->uv_mode = UV_DC_PRED;
922 mbmi->ref_frame[0] = ref_frame0;
923 mbmi->ref_frame[1] = ref_frame1;
924 pmi->palette_size[0] = 0;
925 pmi->palette_size[1] = 0;
926 mbmi->filter_intra_mode_info.use_filter_intra = 0;
927 mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
928 mbmi->motion_mode = SIMPLE_TRANSLATION;
929 mbmi->num_proj_ref = 1;
930 mbmi->interintra_mode = 0;
931 set_default_interp_filters(mbmi, cm->features.interp_filter);
932 }
933
934 #if CONFIG_INTERNAL_STATS
store_coding_context(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx,int mode_index)935 static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
936 int mode_index) {
937 #else
938 static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
939 #endif // CONFIG_INTERNAL_STATS
940 MACROBLOCKD *const xd = &x->e_mbd;
941 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
942
943 // Take a snapshot of the coding context so it can be
944 // restored if we decide to encode this way
945 ctx->rd_stats.skip_txfm = txfm_info->skip_txfm;
946
947 memset(ctx->blk_skip, 0, sizeof(ctx->blk_skip[0]) * ctx->num_4x4_blk);
948 memset(ctx->tx_type_map, DCT_DCT,
949 sizeof(ctx->tx_type_map[0]) * ctx->num_4x4_blk);
950 ctx->skippable = txfm_info->skip_txfm;
951 #if CONFIG_INTERNAL_STATS
952 ctx->best_mode_index = mode_index;
953 #endif // CONFIG_INTERNAL_STATS
954 ctx->mic = *xd->mi[0];
955 ctx->skippable = txfm_info->skip_txfm;
956 av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
957 av1_ref_frame_type(xd->mi[0]->ref_frame));
958 ctx->comp_pred_diff = 0;
959 ctx->hybrid_pred_diff = 0;
960 ctx->single_pred_diff = 0;
961 }
962
963 static int get_pred_buffer(PRED_BUFFER *p, int len) {
964 for (int i = 0; i < len; i++) {
965 if (!p[i].in_use) {
966 p[i].in_use = 1;
967 return i;
968 }
969 }
970 return -1;
971 }
972
973 static void free_pred_buffer(PRED_BUFFER *p) {
974 if (p != NULL) p->in_use = 0;
975 }
976
977 static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
978 int16_t mode_context) {
979 if (is_inter_compound_mode(mode)) {
980 return mode_costs
981 ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
982 }
983
984 int mode_cost = 0;
985 int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
986
987 assert(is_inter_mode(mode));
988
989 if (mode == NEWMV) {
990 mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
991 return mode_cost;
992 } else {
993 mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
994 mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
995
996 if (mode == GLOBALMV) {
997 mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
998 return mode_cost;
999 } else {
1000 mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
1001 mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1002 mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
1003 return mode_cost;
1004 }
1005 }
1006 }
1007
1008 static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
1009 RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
1010 int mv_col, int speed, uint32_t spatial_variance,
1011 CONTENT_STATE_SB content_state_sb) {
1012 // Bias against MVs associated with NEWMV mode that are very different from
1013 // top/left neighbors.
1014 if (this_mode == NEWMV) {
1015 int al_mv_average_row;
1016 int al_mv_average_col;
1017 int left_row, left_col;
1018 int row_diff, col_diff;
1019 int above_mv_valid = 0;
1020 int left_mv_valid = 0;
1021 int above_row = 0;
1022 int above_col = 0;
1023 if (bsize >= BLOCK_64X64 && content_state_sb.source_sad != kHighSad &&
1024 spatial_variance < 300 &&
1025 (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) {
1026 this_rdc->rdcost = this_rdc->rdcost << 2;
1027 return;
1028 }
1029 if (xd->above_mbmi) {
1030 above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
1031 above_row = xd->above_mbmi->mv[0].as_mv.row;
1032 above_col = xd->above_mbmi->mv[0].as_mv.col;
1033 }
1034 if (xd->left_mbmi) {
1035 left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
1036 left_row = xd->left_mbmi->mv[0].as_mv.row;
1037 left_col = xd->left_mbmi->mv[0].as_mv.col;
1038 }
1039 if (above_mv_valid && left_mv_valid) {
1040 al_mv_average_row = (above_row + left_row + 1) >> 1;
1041 al_mv_average_col = (above_col + left_col + 1) >> 1;
1042 } else if (above_mv_valid) {
1043 al_mv_average_row = above_row;
1044 al_mv_average_col = above_col;
1045 } else if (left_mv_valid) {
1046 al_mv_average_row = left_row;
1047 al_mv_average_col = left_col;
1048 } else {
1049 al_mv_average_row = al_mv_average_col = 0;
1050 }
1051 row_diff = al_mv_average_row - mv_row;
1052 col_diff = al_mv_average_col - mv_col;
1053 if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
1054 if (bsize >= BLOCK_32X32)
1055 this_rdc->rdcost = this_rdc->rdcost << 1;
1056 else
1057 this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
1058 }
1059 } else {
1060 // Bias for speed >= 8 for low spatial variance.
1061 if (speed >= 8 && spatial_variance < 150 &&
1062 (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
1063 this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
1064 }
1065 }
1066
1067 static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
1068 MACROBLOCK *x, MACROBLOCKD *xd,
1069 RD_STATS *this_rdc, int64_t *sse_y,
1070 int start_plane, int stop_plane) {
1071 // Note our transform coeffs are 8 times an orthogonal transform.
1072 // Hence quantizer step is also 8 times. To get effective quantizer
1073 // we need to divide by 8 before sending to modeling function.
1074 unsigned int sse;
1075 int rate;
1076 int64_t dist;
1077 int i;
1078 int64_t tot_sse = *sse_y;
1079
1080 this_rdc->rate = 0;
1081 this_rdc->dist = 0;
1082 this_rdc->skip_txfm = 0;
1083
1084 for (i = start_plane; i <= stop_plane; ++i) {
1085 struct macroblock_plane *const p = &x->plane[i];
1086 struct macroblockd_plane *const pd = &xd->plane[i];
1087 const uint32_t dc_quant = p->dequant_QTX[0];
1088 const uint32_t ac_quant = p->dequant_QTX[1];
1089 const BLOCK_SIZE bs = plane_bsize;
1090 unsigned int var;
1091 if (!x->color_sensitivity[i - 1]) continue;
1092
1093 var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
1094 pd->dst.stride, &sse);
1095 assert(sse >= var);
1096 tot_sse += sse;
1097
1098 av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
1099 dc_quant >> 3, &rate, &dist);
1100
1101 this_rdc->rate += rate >> 1;
1102 this_rdc->dist += dist << 3;
1103
1104 av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
1105 &rate, &dist);
1106
1107 this_rdc->rate += rate;
1108 this_rdc->dist += dist << 4;
1109 }
1110
1111 if (this_rdc->rate == 0) {
1112 this_rdc->skip_txfm = 1;
1113 }
1114
1115 if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
1116 RDCOST(x->rdmult, 0, tot_sse << 4)) {
1117 this_rdc->rate = 0;
1118 this_rdc->dist = tot_sse << 4;
1119 this_rdc->skip_txfm = 1;
1120 }
1121
1122 *sse_y = tot_sse;
1123 }
1124
1125 /*!\cond */
1126 struct estimate_block_intra_args {
1127 AV1_COMP *cpi;
1128 MACROBLOCK *x;
1129 PREDICTION_MODE mode;
1130 int skippable;
1131 RD_STATS *rdc;
1132 };
1133 /*!\endcond */
1134
1135 /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
1136 *
1137 * \ingroup nonrd_mode_search
1138 * \callgraph
1139 * \callergraph
1140 * Calculates RD Cost for an intra mode for a single TX block using Hadamard
1141 * transform.
1142 * \param[in] plane Color plane
1143 * \param[in] block Index of a TX block in a prediction block
1144 * \param[in] row Row of a current TX block
1145 * \param[in] col Column of a current TX block
1146 * \param[in] plane_bsize Block size of a current prediction block
1147 * \param[in] tx_size Transform size
1148 * \param[in] arg Pointer to a structure that holds paramaters
1149 * for intra mode search
1150 *
1151 * \return Nothing is returned. Instead, best mode and RD Cost of the best mode
1152 * are set in \c args->rdc and \c args->mode
1153 */
1154 static void estimate_block_intra(int plane, int block, int row, int col,
1155 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1156 void *arg) {
1157 struct estimate_block_intra_args *const args = arg;
1158 AV1_COMP *const cpi = args->cpi;
1159 AV1_COMMON *const cm = &cpi->common;
1160 MACROBLOCK *const x = args->x;
1161 MACROBLOCKD *const xd = &x->e_mbd;
1162 struct macroblock_plane *const p = &x->plane[plane];
1163 struct macroblockd_plane *const pd = &xd->plane[plane];
1164 const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
1165 uint8_t *const src_buf_base = p->src.buf;
1166 uint8_t *const dst_buf_base = pd->dst.buf;
1167 const int64_t src_stride = p->src.stride;
1168 const int64_t dst_stride = pd->dst.stride;
1169 RD_STATS this_rdc;
1170
1171 (void)block;
1172
1173 av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
1174 av1_invalid_rd_stats(&this_rdc);
1175
1176 p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
1177 pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
1178
1179 if (plane == 0) {
1180 block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, bsize_tx,
1181 AOMMIN(tx_size, TX_16X16));
1182 } else {
1183 int64_t sse = 0;
1184 model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &sse, plane, plane);
1185 }
1186
1187 p->src.buf = src_buf_base;
1188 pd->dst.buf = dst_buf_base;
1189 args->rdc->rate += this_rdc.rate;
1190 args->rdc->dist += this_rdc.dist;
1191 }
1192
1193 static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
1194 BLOCK_SIZE bsize,
1195 MV_REFERENCE_FRAME ref_frame,
1196 THR_MODES best_mode_idx,
1197 PREDICTION_MODE mode) {
1198 const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1199 const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4);
1200 const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128);
1201 for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) {
1202 int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx];
1203 if (thr_mode_idx == best_mode_idx) {
1204 *freq_fact -= (*freq_fact >> 4);
1205 } else {
1206 *freq_fact =
1207 AOMMIN(*freq_fact + RD_THRESH_INC,
1208 cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1209 }
1210 }
1211 }
1212
1213 #if CONFIG_AV1_TEMPORAL_DENOISING
1214 static void av1_pickmode_ctx_den_update(
1215 AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
1216 unsigned int ref_frame_cost[REF_FRAMES],
1217 int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred,
1218 BEST_PICKMODE *bp) {
1219 ctx_den->zero_last_cost_orig = zero_last_cost_orig;
1220 ctx_den->ref_frame_cost = ref_frame_cost;
1221 ctx_den->frame_mv = frame_mv;
1222 ctx_den->reuse_inter_pred = reuse_inter_pred;
1223 ctx_den->best_tx_size = bp->best_tx_size;
1224 ctx_den->best_mode = bp->best_mode;
1225 ctx_den->best_ref_frame = bp->best_ref_frame;
1226 ctx_den->best_pred_filter = bp->best_pred_filter;
1227 ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
1228 }
1229
1230 static void recheck_zeromv_after_denoising(
1231 AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
1232 AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den,
1233 struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc,
1234 BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) {
1235 // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
1236 // denoised result. Only do this under noise conditions, and if rdcost of
1237 // ZEROMV onoriginal source is not significantly higher than rdcost of best
1238 // mode.
1239 if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
1240 ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
1241 ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
1242 (ctx_den->best_ref_frame == GOLDEN_FRAME &&
1243 cpi->svc.number_spatial_layers == 1 &&
1244 decision == FILTER_ZEROMV_BLOCK))) {
1245 // Check if we should pick ZEROMV on denoised signal.
1246 AV1_COMMON *const cm = &cpi->common;
1247 RD_STATS this_rdc;
1248 const ModeCosts *mode_costs = &x->mode_costs;
1249 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
1250 MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
1251
1252 mi->mode = GLOBALMV;
1253 mi->ref_frame[0] = LAST_FRAME;
1254 mi->ref_frame[1] = NONE_FRAME;
1255 set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
1256 mi->mv[0].as_int = 0;
1257 mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
1258 xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
1259 av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1260 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
1261
1262 const int16_t mode_ctx =
1263 av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
1264 this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx);
1265
1266 this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME];
1267 this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
1268 txfm_info->skip_txfm = this_rdc.skip_txfm;
1269 // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
1270 // is higher than best_ref mode (on original source).
1271 if (this_rdc.rdcost > best_rdc->rdcost) {
1272 this_rdc = *best_rdc;
1273 mi->mode = best_pickmode->best_mode;
1274 mi->ref_frame[0] = best_pickmode->best_ref_frame;
1275 set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
1276 mi->interp_filters = best_pickmode->best_pred_filter;
1277 if (best_pickmode->best_ref_frame == INTRA_FRAME) {
1278 mi->mv[0].as_int = INVALID_MV;
1279 } else {
1280 mi->mv[0].as_int = ctx_den
1281 ->frame_mv[best_pickmode->best_mode]
1282 [best_pickmode->best_ref_frame]
1283 .as_int;
1284 if (ctx_den->reuse_inter_pred) {
1285 xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
1286 av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1287 }
1288 }
1289 mi->tx_size = best_pickmode->best_tx_size;
1290 txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm;
1291 } else {
1292 ctx_den->best_ref_frame = LAST_FRAME;
1293 *best_rdc = this_rdc;
1294 }
1295 }
1296 }
1297 #endif // CONFIG_AV1_TEMPORAL_DENOISING
1298
1299 static INLINE int get_force_skip_low_temp_var_small_sb(uint8_t *variance_low,
1300 int mi_row, int mi_col,
1301 BLOCK_SIZE bsize) {
1302 // Relative indices of MB inside the superblock.
1303 const int mi_x = mi_row & 0xF;
1304 const int mi_y = mi_col & 0xF;
1305 // Relative indices of 16x16 block inside the superblock.
1306 const int i = mi_x >> 2;
1307 const int j = mi_y >> 2;
1308 int force_skip_low_temp_var = 0;
1309 // Set force_skip_low_temp_var based on the block size and block offset.
1310 switch (bsize) {
1311 case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
1312 case BLOCK_64X32:
1313 if (!mi_y && !mi_x) {
1314 force_skip_low_temp_var = variance_low[1];
1315 } else if (!mi_y && mi_x) {
1316 force_skip_low_temp_var = variance_low[2];
1317 }
1318 break;
1319 case BLOCK_32X64:
1320 if (!mi_y && !mi_x) {
1321 force_skip_low_temp_var = variance_low[3];
1322 } else if (mi_y && !mi_x) {
1323 force_skip_low_temp_var = variance_low[4];
1324 }
1325 break;
1326 case BLOCK_32X32:
1327 if (!mi_y && !mi_x) {
1328 force_skip_low_temp_var = variance_low[5];
1329 } else if (mi_y && !mi_x) {
1330 force_skip_low_temp_var = variance_low[6];
1331 } else if (!mi_y && mi_x) {
1332 force_skip_low_temp_var = variance_low[7];
1333 } else if (mi_y && mi_x) {
1334 force_skip_low_temp_var = variance_low[8];
1335 }
1336 break;
1337 case BLOCK_32X16:
1338 case BLOCK_16X32:
1339 case BLOCK_16X16:
1340 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
1341 break;
1342 default: break;
1343 }
1344
1345 return force_skip_low_temp_var;
1346 }
1347
1348 static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
1349 int mi_col, BLOCK_SIZE bsize) {
1350 int force_skip_low_temp_var = 0;
1351 int x, y;
1352 x = (mi_col & 0x1F) >> 4;
1353 // y = (mi_row & 0x1F) >> 4;
1354 // const int idx64 = (y << 1) + x;
1355 y = (mi_row & 0x17) >> 3;
1356 const int idx64 = y + x;
1357
1358 x = (mi_col & 0xF) >> 3;
1359 // y = (mi_row & 0xF) >> 3;
1360 // const int idx32 = (y << 1) + x;
1361 y = (mi_row & 0xB) >> 2;
1362 const int idx32 = y + x;
1363
1364 x = (mi_col & 0x7) >> 2;
1365 // y = (mi_row & 0x7) >> 2;
1366 // const int idx16 = (y << 1) + x;
1367 y = (mi_row & 0x5) >> 1;
1368 const int idx16 = y + x;
1369 // Set force_skip_low_temp_var based on the block size and block offset.
1370 switch (bsize) {
1371 case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
1372 case BLOCK_128X64:
1373 assert((mi_col & 0x1F) == 0);
1374 force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
1375 break;
1376 case BLOCK_64X128:
1377 assert((mi_row & 0x1F) == 0);
1378 force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
1379 break;
1380 case BLOCK_64X64:
1381 // Location of this 64x64 block inside the 128x128 superblock
1382 force_skip_low_temp_var = variance_low[5 + idx64];
1383 break;
1384 case BLOCK_64X32:
1385 x = (mi_col & 0x1F) >> 4;
1386 y = (mi_row & 0x1F) >> 3;
1387 /*
1388 .---------------.---------------.
1389 | x=0,y=0,idx=0 | x=0,y=0,idx=2 |
1390 :---------------+---------------:
1391 | x=0,y=1,idx=1 | x=1,y=1,idx=3 |
1392 :---------------+---------------:
1393 | x=0,y=2,idx=4 | x=1,y=2,idx=6 |
1394 :---------------+---------------:
1395 | x=0,y=3,idx=5 | x=1,y=3,idx=7 |
1396 '---------------'---------------'
1397 */
1398 const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
1399 force_skip_low_temp_var = variance_low[9 + idx64x32];
1400 break;
1401 case BLOCK_32X64:
1402 x = (mi_col & 0x1F) >> 3;
1403 y = (mi_row & 0x1F) >> 4;
1404 const int idx32x64 = (y << 2) + x;
1405 force_skip_low_temp_var = variance_low[17 + idx32x64];
1406 break;
1407 case BLOCK_32X32:
1408 force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
1409 break;
1410 case BLOCK_32X16:
1411 case BLOCK_16X32:
1412 case BLOCK_16X16:
1413 force_skip_low_temp_var =
1414 variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
1415 break;
1416 default: break;
1417 }
1418 return force_skip_low_temp_var;
1419 }
1420
1421 #define FILTER_SEARCH_SIZE 2
1422
1423 /*!\brief Searches for the best intrpolation filter
1424 *
1425 * \ingroup nonrd_mode_search
1426 * \callgraph
1427 * \callergraph
1428 * Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR,
1429 * EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects
1430 * the one that gives lowest RD cost. RD cost is calculated using curvfit model.
1431 * Support for dual filters (different filters in the x & y directions) is
1432 * allowed if sf.interp_sf.disable_dual_filter = 0.
1433 *
1434 * \param[in] cpi Top-level encoder structure
1435 * \param[in] x Pointer to structure holding all the
1436 * data for the current macroblock
1437 * \param[in] this_rdc Pointer to calculated RD Cost
1438 * \param[in] mi_row Row index in 4x4 units
1439 * \param[in] mi_col Column index in 4x4 units
1440 * \param[in] tmp Pointer to a temporary buffer for
1441 * prediction re-use
1442 * \param[in] bsize Current block size
1443 * \param[in] reuse_inter_pred Flag, indicating prediction re-use
1444 * \param[out] this_mode_pred Pointer to store prediction buffer
1445 * for prediction re-use
1446 * \param[out] this_early_term Flag, indicating that transform can be
1447 * skipped
1448 * \param[in] use_model_yrd_large Flag, indicating special logic to handle
1449 * large blocks
1450 *
1451 * \return Nothing is returned. Instead, calculated RD cost is placed to
1452 * \c this_rdc and best filter is placed to \c mi->interp_filters. In case
1453 * \c reuse_inter_pred flag is set, this function also ouputs
1454 * \c this_mode_pred. Also \c this_early_temp is set if transform can be
1455 * skipped
1456 */
1457 static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
1458 int mi_row, int mi_col, PRED_BUFFER *tmp,
1459 BLOCK_SIZE bsize, int reuse_inter_pred,
1460 PRED_BUFFER **this_mode_pred,
1461 int *this_early_term, int use_model_yrd_large) {
1462 AV1_COMMON *const cm = &cpi->common;
1463 MACROBLOCKD *const xd = &x->e_mbd;
1464 struct macroblockd_plane *const pd = &xd->plane[0];
1465 MB_MODE_INFO *const mi = xd->mi[0];
1466 const int bw = block_size_wide[bsize];
1467 int dim_factor =
1468 (cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1;
1469 RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
1470 TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
1471 PRED_BUFFER *current_pred = *this_mode_pred;
1472 int best_skip = 0;
1473 int best_early_term = 0;
1474 int64_t best_cost = INT64_MAX;
1475 int best_filter_index = -1;
1476 for (int i = 0; i < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; ++i) {
1477 int64_t cost;
1478 if (cpi->sf.interp_sf.disable_dual_filter &&
1479 filters_ref_set[i].filter_x != filters_ref_set[i].filter_y)
1480 continue;
1481 mi->interp_filters.as_filters.x_filter = filters_ref_set[i].filter_x;
1482 mi->interp_filters.as_filters.y_filter = filters_ref_set[i].filter_y;
1483 av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1484 if (use_model_yrd_large)
1485 model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
1486 &pf_rd_stats[i], this_early_term, 1);
1487 else
1488 model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1);
1489 pf_rd_stats[i].rate += av1_get_switchable_rate(
1490 x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter);
1491 cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
1492 pf_tx_size[i] = mi->tx_size;
1493 if (cost < best_cost) {
1494 best_filter_index = i;
1495 best_cost = cost;
1496 best_skip = pf_rd_stats[i].skip_txfm;
1497 best_early_term = *this_early_term;
1498 if (reuse_inter_pred) {
1499 if (*this_mode_pred != current_pred) {
1500 free_pred_buffer(*this_mode_pred);
1501 *this_mode_pred = current_pred;
1502 }
1503 current_pred = &tmp[get_pred_buffer(tmp, 3)];
1504 pd->dst.buf = current_pred->data;
1505 pd->dst.stride = bw;
1506 }
1507 }
1508 }
1509 assert(best_filter_index >= 0 &&
1510 best_filter_index < dim_factor * FILTER_SEARCH_SIZE);
1511 if (reuse_inter_pred && *this_mode_pred != current_pred)
1512 free_pred_buffer(current_pred);
1513
1514 mi->interp_filters.as_filters.x_filter =
1515 filters_ref_set[best_filter_index].filter_x;
1516 mi->interp_filters.as_filters.y_filter =
1517 filters_ref_set[best_filter_index].filter_y;
1518 mi->tx_size = pf_tx_size[best_filter_index];
1519 this_rdc->rate = pf_rd_stats[best_filter_index].rate;
1520 this_rdc->dist = pf_rd_stats[best_filter_index].dist;
1521 this_rdc->sse = pf_rd_stats[best_filter_index].sse;
1522 this_rdc->skip_txfm = (best_skip || best_early_term);
1523 *this_early_term = best_early_term;
1524 if (reuse_inter_pred) {
1525 pd->dst.buf = (*this_mode_pred)->data;
1526 pd->dst.stride = (*this_mode_pred)->stride;
1527 } else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) {
1528 av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1529 }
1530 }
1531 #if !CONFIG_REALTIME_ONLY
1532 #define MOTION_MODE_SEARCH_SIZE 2
1533
1534 static AOM_INLINE int is_warped_mode_allowed(const AV1_COMMON *cm,
1535 MACROBLOCK *const x,
1536 const MB_MODE_INFO *mbmi) {
1537 const FeatureFlags *const features = &cm->features;
1538 const MACROBLOCKD *xd = &x->e_mbd;
1539
1540 if (has_second_ref(mbmi)) return 0;
1541 MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
1542
1543 if (features->switchable_motion_mode) {
1544 // Determine which motion modes to search if more than SIMPLE_TRANSLATION
1545 // is allowed.
1546 last_motion_mode_allowed = motion_mode_allowed(
1547 xd->global_motion, xd, mbmi, features->allow_warped_motion);
1548 }
1549
1550 if (last_motion_mode_allowed == WARPED_CAUSAL) {
1551 return 1;
1552 }
1553
1554 return 0;
1555 }
1556
1557 static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) {
1558 AV1_COMMON *const cm = &cpi->common;
1559 MACROBLOCKD *const xd = &x->e_mbd;
1560 const FeatureFlags *const features = &cm->features;
1561
1562 mi->num_proj_ref = 1;
1563 WARP_SAMPLE_INFO *const warp_sample_info =
1564 &x->warp_sample_info[mi->ref_frame[0]];
1565 int *pts0 = warp_sample_info->pts;
1566 int *pts_inref0 = warp_sample_info->pts_inref;
1567 MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
1568
1569 if (features->switchable_motion_mode) {
1570 // Determine which motion modes to search if more than SIMPLE_TRANSLATION
1571 // is allowed.
1572 last_motion_mode_allowed = motion_mode_allowed(
1573 xd->global_motion, xd, mi, features->allow_warped_motion);
1574 }
1575
1576 if (last_motion_mode_allowed == WARPED_CAUSAL) {
1577 if (warp_sample_info->num < 0) {
1578 warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
1579 }
1580 mi->num_proj_ref = warp_sample_info->num;
1581 }
1582 }
1583
1584 static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
1585 int mi_row, int mi_col, BLOCK_SIZE bsize,
1586 int *this_early_term, int use_model_yrd_large,
1587 int *rate_mv) {
1588 AV1_COMMON *const cm = &cpi->common;
1589 MACROBLOCKD *const xd = &x->e_mbd;
1590 const FeatureFlags *const features = &cm->features;
1591 MB_MODE_INFO *const mi = xd->mi[0];
1592 RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 };
1593 int best_skip = 0;
1594 int best_early_term = 0;
1595 int64_t best_cost = INT64_MAX;
1596 int best_mode_index = -1;
1597 const int interp_filter = features->interp_filter;
1598
1599 const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = {
1600 SIMPLE_TRANSLATION, WARPED_CAUSAL
1601 };
1602 int mode_search_size = is_warped_mode_allowed(cm, x, mi) ? 2 : 1;
1603
1604 WARP_SAMPLE_INFO *const warp_sample_info =
1605 &x->warp_sample_info[mi->ref_frame[0]];
1606 int *pts0 = warp_sample_info->pts;
1607 int *pts_inref0 = warp_sample_info->pts_inref;
1608
1609 const int total_samples = mi->num_proj_ref;
1610 if (total_samples == 0) {
1611 // Do not search WARPED_CAUSAL if there are no samples to use to determine
1612 // warped parameters.
1613 mode_search_size = 1;
1614 }
1615
1616 const MB_MODE_INFO base_mbmi = *mi;
1617 MB_MODE_INFO best_mbmi;
1618
1619 for (int i = 0; i < mode_search_size; ++i) {
1620 int64_t cost = INT64_MAX;
1621 MOTION_MODE motion_mode = motion_modes[i];
1622 *mi = base_mbmi;
1623 mi->motion_mode = motion_mode;
1624 if (motion_mode == SIMPLE_TRANSLATION) {
1625 mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
1626
1627 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
1628 if (use_model_yrd_large)
1629 model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
1630 &pf_rd_stats[i], this_early_term, 1);
1631 else
1632 model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1);
1633 pf_rd_stats[i].rate +=
1634 av1_get_switchable_rate(x, xd, cm->features.interp_filter,
1635 cm->seq_params->enable_dual_filter);
1636 cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
1637 } else if (motion_mode == WARPED_CAUSAL) {
1638 int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
1639 const ModeCosts *mode_costs = &x->mode_costs;
1640 mi->wm_params.wmtype = DEFAULT_WMTYPE;
1641 mi->interp_filters =
1642 av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
1643
1644 memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
1645 memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
1646 // Select the samples according to motion vector difference
1647 if (mi->num_proj_ref > 1) {
1648 mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref,
1649 mi->num_proj_ref, bsize);
1650 }
1651
1652 // Compute the warped motion parameters with a least squares fit
1653 // using the collected samples
1654 if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize,
1655 mi->mv[0].as_mv.row, mi->mv[0].as_mv.col,
1656 &mi->wm_params, mi_row, mi_col)) {
1657 if (mi->mode == NEWMV) {
1658 const int_mv mv0 = mi->mv[0];
1659 const WarpedMotionParams wm_params0 = mi->wm_params;
1660 const int num_proj_ref0 = mi->num_proj_ref;
1661
1662 const int_mv ref_mv = av1_get_ref_mv(x, 0);
1663 SUBPEL_MOTION_SEARCH_PARAMS ms_params;
1664 av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
1665 &ref_mv.as_mv, NULL);
1666
1667 // Refine MV in a small range.
1668 av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
1669 total_samples);
1670 if (mi->mv[0].as_int == ref_mv.as_int) {
1671 continue;
1672 }
1673
1674 if (mv0.as_int != mi->mv[0].as_int) {
1675 // Keep the refined MV and WM parameters.
1676 int tmp_rate_mv = av1_mv_bit_cost(
1677 &mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
1678 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
1679 *rate_mv = tmp_rate_mv;
1680 } else {
1681 // Restore the old MV and WM parameters.
1682 mi->mv[0] = mv0;
1683 mi->wm_params = wm_params0;
1684 mi->num_proj_ref = num_proj_ref0;
1685 }
1686 }
1687 // Build the warped predictor
1688 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
1689 av1_num_planes(cm) - 1);
1690 if (use_model_yrd_large)
1691 model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
1692 &pf_rd_stats[i], this_early_term, 1);
1693 else
1694 model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1);
1695
1696 pf_rd_stats[i].rate +=
1697 mode_costs->motion_mode_cost[bsize][mi->motion_mode];
1698 cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
1699 } else {
1700 cost = INT64_MAX;
1701 }
1702 }
1703 if (cost < best_cost) {
1704 best_mode_index = i;
1705 best_cost = cost;
1706 best_skip = pf_rd_stats[i].skip_txfm;
1707 best_early_term = *this_early_term;
1708 best_mbmi = *mi;
1709 }
1710 }
1711 assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE);
1712
1713 *mi = best_mbmi;
1714 this_rdc->rate = pf_rd_stats[best_mode_index].rate;
1715 this_rdc->dist = pf_rd_stats[best_mode_index].dist;
1716 this_rdc->sse = pf_rd_stats[best_mode_index].sse;
1717 this_rdc->skip_txfm = (best_skip || best_early_term);
1718 *this_early_term = best_early_term;
1719 if (best_mode_index < FILTER_SEARCH_SIZE - 1) {
1720 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
1721 }
1722 }
1723 #endif // !CONFIG_REALTIME_ONLY
1724
1725 #define COLLECT_PICK_MODE_STAT 0
1726
1727 #if COLLECT_PICK_MODE_STAT
1728 typedef struct _mode_search_stat {
1729 int32_t num_blocks[BLOCK_SIZES];
1730 int64_t avg_block_times[BLOCK_SIZES];
1731 int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
1732 int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
1733 int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
1734 int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
1735 struct aom_usec_timer timer1;
1736 struct aom_usec_timer timer2;
1737 } mode_search_stat;
1738 #endif // COLLECT_PICK_MODE_STAT
1739
1740 static void compute_intra_yprediction(const AV1_COMMON *cm,
1741 PREDICTION_MODE mode, BLOCK_SIZE bsize,
1742 MACROBLOCK *x, MACROBLOCKD *xd) {
1743 const SequenceHeader *seq_params = cm->seq_params;
1744 struct macroblockd_plane *const pd = &xd->plane[0];
1745 struct macroblock_plane *const p = &x->plane[0];
1746 uint8_t *const src_buf_base = p->src.buf;
1747 uint8_t *const dst_buf_base = pd->dst.buf;
1748 const int src_stride = p->src.stride;
1749 const int dst_stride = pd->dst.stride;
1750 int plane = 0;
1751 int row, col;
1752 // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
1753 // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
1754 // transform size varies per plane, look it up in a common way.
1755 const TX_SIZE tx_size = max_txsize_lookup[bsize];
1756 const BLOCK_SIZE plane_bsize =
1757 get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
1758 // If mb_to_right_edge is < 0 we are in a situation in which
1759 // the current block size extends into the UMV and we won't
1760 // visit the sub blocks that are wholly within the UMV.
1761 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
1762 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
1763 // Keep track of the row and column of the blocks we use so that we know
1764 // if we are in the unrestricted motion border.
1765 for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
1766 // Skip visiting the sub blocks that are wholly within the UMV.
1767 for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
1768 p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
1769 pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
1770 av1_predict_intra_block(
1771 xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
1772 block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0,
1773 FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride,
1774 0, 0, plane);
1775 }
1776 }
1777 p->src.buf = src_buf_base;
1778 pd->dst.buf = dst_buf_base;
1779 }
1780
1781 void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
1782 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1783 AV1_COMMON *const cm = &cpi->common;
1784 MACROBLOCKD *const xd = &x->e_mbd;
1785 MB_MODE_INFO *const mi = xd->mi[0];
1786 RD_STATS this_rdc, best_rdc;
1787 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
1788 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1789 const TX_SIZE intra_tx_size =
1790 AOMMIN(max_txsize_lookup[bsize],
1791 tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
1792 int *bmode_costs;
1793 PREDICTION_MODE best_mode = DC_PRED;
1794 const MB_MODE_INFO *above_mi = xd->above_mbmi;
1795 const MB_MODE_INFO *left_mi = xd->left_mbmi;
1796 const PREDICTION_MODE A = av1_above_block_mode(above_mi);
1797 const PREDICTION_MODE L = av1_left_block_mode(left_mi);
1798 const int above_ctx = intra_mode_context[A];
1799 const int left_ctx = intra_mode_context[L];
1800 bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx];
1801
1802 av1_invalid_rd_stats(&best_rdc);
1803 av1_invalid_rd_stats(&this_rdc);
1804
1805 init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
1806 mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
1807
1808 // Change the limit of this loop to add other intra prediction
1809 // mode tests.
1810 for (int i = 0; i < 4; ++i) {
1811 PREDICTION_MODE this_mode = intra_mode_list[i];
1812 this_rdc.dist = this_rdc.rate = 0;
1813 args.mode = this_mode;
1814 args.skippable = 1;
1815 args.rdc = &this_rdc;
1816 mi->tx_size = intra_tx_size;
1817 mi->mode = this_mode;
1818 av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
1819 &args);
1820 const int skip_ctx = av1_get_skip_txfm_context(xd);
1821 if (args.skippable) {
1822 this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
1823 } else {
1824 this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0];
1825 }
1826 this_rdc.rate += bmode_costs[this_mode];
1827 this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
1828
1829 if (this_rdc.rdcost < best_rdc.rdcost) {
1830 best_rdc = this_rdc;
1831 best_mode = this_mode;
1832 }
1833 }
1834
1835 mi->mode = best_mode;
1836 // Keep DC for UV since mode test is based on Y channel only.
1837 mi->uv_mode = DC_PRED;
1838 *rd_cost = best_rdc;
1839
1840 #if CONFIG_INTERNAL_STATS
1841 store_coding_context(x, ctx, mi->mode);
1842 #else
1843 store_coding_context(x, ctx);
1844 #endif // CONFIG_INTERNAL_STATS
1845 }
1846
1847 static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) {
1848 struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
1849 struct scale_factors *const sf_golden =
1850 get_ref_scale_factors(cm, GOLDEN_FRAME);
1851 return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) &&
1852 (sf_last->y_scale_fp == sf_golden->y_scale_fp));
1853 }
1854
1855 static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x,
1856 MB_MODE_INFO *mi, int mi_row,
1857 int mi_col, int bsize,
1858 int gf_temporal_ref,
1859 int use_ref_frame[],
1860 int *force_skip_low_temp_var) {
1861 AV1_COMMON *const cm = &cpi->common;
1862 const struct segmentation *const seg = &cm->seg;
1863 const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
1864
1865 // For SVC the usage of alt_ref is determined by the ref_frame_flags.
1866 int use_alt_ref_frame =
1867 cpi->ppi->use_svc || cpi->sf.rt_sf.use_nonrd_altref_frame;
1868 int use_golden_ref_frame = 1;
1869
1870 use_ref_frame[LAST_FRAME] = 1; // we never skip LAST
1871
1872 if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
1873 use_golden_ref_frame = 0;
1874 }
1875 if (cpi->sf.rt_sf.short_circuit_low_temp_var &&
1876 x->nonrd_prune_ref_frame_search) {
1877 if (is_small_sb)
1878 *force_skip_low_temp_var = get_force_skip_low_temp_var_small_sb(
1879 &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
1880 else
1881 *force_skip_low_temp_var = get_force_skip_low_temp_var(
1882 &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
1883 // If force_skip_low_temp_var is set, skip golden reference.
1884 if (*force_skip_low_temp_var) {
1885 use_golden_ref_frame = 0;
1886 use_alt_ref_frame = 0;
1887 }
1888 }
1889
1890 if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
1891 get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
1892 use_golden_ref_frame = 1;
1893 use_alt_ref_frame = 0;
1894 }
1895
1896 use_alt_ref_frame =
1897 cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0;
1898 use_golden_ref_frame =
1899 cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0;
1900
1901 use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame;
1902 use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame;
1903 }
1904
1905 /*!\brief Estimates best intra mode for inter mode search
1906 *
1907 * \ingroup nonrd_mode_search
1908 * \callgraph
1909 * \callergraph
1910 *
1911 * Using heuristics based on best inter mode, block size, and other decides
1912 * whether to check intra modes. If so, estimates and selects best intra mode
1913 * from the reduced set of intra modes (max 4 intra modes checked)
1914 *
1915 * \param[in] cpi Top-level encoder structure
1916 * \param[in] x Pointer to structure holding all the
1917 * data for the current macroblock
1918 * \param[in] bsize Current block size
1919 * \param[in] use_modeled_non_rd_cost Flag, indicating usage of curvfit
1920 * model for RD cost
1921 * \param[in] best_early_term Flag, indicating that TX for the
1922 * best inter mode was skipped
1923 * \param[in] ref_cost_intra Cost of signalling intra mode
1924 * \param[in] reuse_prediction Flag, indicating prediction re-use
1925 * \param[in] orig_dst Original destination buffer
1926 * \param[in] tmp_buffers Pointer to a temporary buffers for
1927 * prediction re-use
1928 * \param[out] this_mode_pred Pointer to store prediction buffer
1929 * for prediction re-use
1930 * \param[in] best_rdc Pointer to RD cost for the best
1931 * selected intra mode
1932 * \param[in] best_pickmode Pointer to a structure containing
1933 * best mode picked so far
1934 *
1935 * \return Nothing is returned. Instead, calculated RD cost is placed to
1936 * \c best_rdc and best selected mode is placed to \c best_pickmode
1937 */
1938 static void estimate_intra_mode(
1939 AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int use_modeled_non_rd_cost,
1940 int best_early_term, unsigned int ref_cost_intra, int reuse_prediction,
1941 struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers,
1942 PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
1943 BEST_PICKMODE *best_pickmode) {
1944 AV1_COMMON *const cm = &cpi->common;
1945 MACROBLOCKD *const xd = &x->e_mbd;
1946 MB_MODE_INFO *const mi = xd->mi[0];
1947 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1948 const unsigned char segment_id = mi->segment_id;
1949 const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
1950 const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
1951 const int mi_row = xd->mi_row;
1952 const int mi_col = xd->mi_col;
1953 struct macroblockd_plane *const pd = &xd->plane[0];
1954
1955 const CommonQuantParams *quant_params = &cm->quant_params;
1956
1957 RD_STATS this_rdc;
1958
1959 int intra_cost_penalty = av1_get_intra_cost_penalty(
1960 quant_params->base_qindex, quant_params->y_dc_delta_q,
1961 cm->seq_params->bit_depth);
1962 int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
1963 int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd;
1964 // For spatial enhancemanent layer: turn off intra prediction if the
1965 // previous spatial layer as golden ref is not chosen as best reference.
1966 // only do this for temporal enhancement layer and on non-key frames.
1967 if (cpi->svc.spatial_layer_id > 0 &&
1968 best_pickmode->best_ref_frame != GOLDEN_FRAME &&
1969 cpi->svc.temporal_layer_id > 0 &&
1970 !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
1971 perform_intra_pred = 0;
1972
1973 int do_early_exit_rdthresh = 1;
1974
1975 uint32_t spatial_var_thresh = 50;
1976 int motion_thresh = 32;
1977 // Adjust thresholds to make intra mode likely tested if the other
1978 // references (golden, alt) are skipped/not checked. For now always
1979 // adjust for svc mode.
1980 if (cpi->ppi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 &&
1981 cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) {
1982 spatial_var_thresh = 150;
1983 motion_thresh = 0;
1984 }
1985
1986 // Some adjustments to checking intra mode based on source variance.
1987 if (x->source_variance < spatial_var_thresh) {
1988 // If the best inter mode is large motion or non-LAST ref reduce intra cost
1989 // penalty, so intra mode is more likely tested.
1990 if (best_rdc->rdcost != INT64_MAX &&
1991 (best_pickmode->best_ref_frame != LAST_FRAME ||
1992 abs(mi->mv[0].as_mv.row) >= motion_thresh ||
1993 abs(mi->mv[0].as_mv.col) >= motion_thresh)) {
1994 intra_cost_penalty = intra_cost_penalty >> 2;
1995 inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
1996 do_early_exit_rdthresh = 0;
1997 }
1998 // For big blocks worth checking intra (since only DC will be checked),
1999 // even if best_early_term is set.
2000 if (bsize >= BLOCK_32X32) best_early_term = 0;
2001 } else if (cpi->sf.rt_sf.source_metrics_sb_nonrd &&
2002 x->content_state_sb.source_sad == kLowSad) {
2003 perform_intra_pred = 0;
2004 }
2005
2006 if (cpi->sf.rt_sf.skip_intra_pred_if_tx_skip && best_rdc->skip_txfm &&
2007 best_pickmode->best_mode_initial_skip_flag) {
2008 perform_intra_pred = 0;
2009 }
2010
2011 if (!(best_rdc->rdcost == INT64_MAX ||
2012 (perform_intra_pred && !best_early_term &&
2013 best_rdc->rdcost > inter_mode_thresh &&
2014 bsize <= cpi->sf.part_sf.max_intra_bsize))) {
2015 return;
2016 }
2017
2018 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
2019 TX_SIZE intra_tx_size = AOMMIN(
2020 AOMMIN(max_txsize_lookup[bsize],
2021 tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
2022 TX_16X16);
2023
2024 PRED_BUFFER *const best_pred = best_pickmode->best_pred;
2025 if (reuse_prediction && best_pred != NULL) {
2026 const int bh = block_size_high[bsize];
2027 const int bw = block_size_wide[bsize];
2028 if (best_pred->data == orig_dst->buf) {
2029 *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
2030 aom_convolve_copy(best_pred->data, best_pred->stride,
2031 (*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
2032 bh);
2033 best_pickmode->best_pred = *this_mode_pred;
2034 }
2035 }
2036 pd->dst = *orig_dst;
2037
2038 for (int i = 0; i < 4; ++i) {
2039 const PREDICTION_MODE this_mode = intra_mode_list[i];
2040 const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
2041 const int64_t mode_rd_thresh = rd_threshes[mode_index];
2042
2043 if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
2044 continue;
2045
2046 if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
2047 rd_thresh_freq_fact[mode_index]) &&
2048 (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
2049 continue;
2050 }
2051 const BLOCK_SIZE uv_bsize = get_plane_block_size(
2052 bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
2053
2054 mi->mode = this_mode;
2055 mi->ref_frame[0] = INTRA_FRAME;
2056 mi->ref_frame[1] = NONE_FRAME;
2057
2058 av1_invalid_rd_stats(&this_rdc);
2059 args.mode = this_mode;
2060 args.skippable = 1;
2061 args.rdc = &this_rdc;
2062 mi->tx_size = intra_tx_size;
2063 compute_intra_yprediction(cm, this_mode, bsize, x, xd);
2064 // Look into selecting tx_size here, based on prediction residual.
2065 if (use_modeled_non_rd_cost)
2066 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
2067 else
2068 block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, bsize,
2069 mi->tx_size);
2070 // TODO(kyslov@) Need to account for skippable
2071 if (x->color_sensitivity[0]) {
2072 av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
2073 estimate_block_intra, &args);
2074 }
2075 if (x->color_sensitivity[1]) {
2076 av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
2077 estimate_block_intra, &args);
2078 }
2079
2080 int mode_cost = 0;
2081 if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
2082 mode_cost +=
2083 x->mode_costs.angle_delta_cost[this_mode - V_PRED]
2084 [MAX_ANGLE_DELTA +
2085 mi->angle_delta[PLANE_TYPE_Y]];
2086 }
2087 if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
2088 mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
2089 }
2090 this_rdc.rate += ref_cost_intra;
2091 this_rdc.rate += intra_cost_penalty;
2092 this_rdc.rate += mode_cost;
2093 this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
2094
2095 if (this_rdc.rdcost < best_rdc->rdcost) {
2096 *best_rdc = this_rdc;
2097 best_pickmode->best_mode = this_mode;
2098 best_pickmode->best_tx_size = mi->tx_size;
2099 best_pickmode->best_ref_frame = INTRA_FRAME;
2100 best_pickmode->best_second_ref_frame = NONE;
2101 mi->uv_mode = this_mode;
2102 mi->mv[0].as_int = INVALID_MV;
2103 mi->mv[1].as_int = INVALID_MV;
2104 }
2105 }
2106 mi->tx_size = best_pickmode->best_tx_size;
2107 }
2108
2109 static AOM_INLINE int is_filter_search_enabled(const AV1_COMP *cpi, int mi_row,
2110 int mi_col, BLOCK_SIZE bsize,
2111 int segment_id) {
2112 const AV1_COMMON *const cm = &cpi->common;
2113 int enable_filter_search = 0;
2114
2115 if (cpi->sf.rt_sf.use_nonrd_filter_search) {
2116 enable_filter_search = 1;
2117 if (cpi->sf.interp_sf.cb_pred_filter_search) {
2118 const int bsl = mi_size_wide_log2[bsize];
2119 enable_filter_search =
2120 (((mi_row + mi_col) >> bsl) +
2121 get_chessboard_index(cm->current_frame.frame_number)) &
2122 0x1;
2123 if (cyclic_refresh_segment_id_boosted(segment_id))
2124 enable_filter_search = 1;
2125 }
2126 }
2127 return enable_filter_search;
2128 }
2129
2130 static AOM_INLINE int skip_mode_by_threshold(
2131 PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv,
2132 int frames_since_golden, const int *const rd_threshes,
2133 const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip,
2134 int extra_shift) {
2135 int skip_this_mode = 0;
2136 const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)];
2137 int64_t mode_rd_thresh =
2138 best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1)
2139 : ((int64_t)rd_threshes[mode_index]) << extra_shift;
2140
2141 // Increase mode_rd_thresh value for non-LAST for improved encoding
2142 // speed
2143 if (ref_frame != LAST_FRAME) {
2144 mode_rd_thresh = mode_rd_thresh << 1;
2145 if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4)
2146 mode_rd_thresh = mode_rd_thresh << (extra_shift + 1);
2147 }
2148
2149 if (rd_less_than_thresh(best_cost, mode_rd_thresh,
2150 rd_thresh_freq_fact[mode_index]))
2151 if (mv.as_int != 0) skip_this_mode = 1;
2152
2153 return skip_this_mode;
2154 }
2155
2156 static AOM_INLINE int skip_mode_by_low_temp(
2157 PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
2158 CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) {
2159 // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
2160 // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
2161 // later.
2162 if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) {
2163 return 1;
2164 }
2165
2166 if (content_state_sb.source_sad != kHighSad && bsize >= BLOCK_64X64 &&
2167 force_skip_low_temp_var && mode == NEWMV) {
2168 return 1;
2169 }
2170 return 0;
2171 }
2172
2173 static AOM_INLINE int skip_mode_by_bsize_and_ref_frame(
2174 PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
2175 int extra_prune, unsigned int sse_zeromv_norm, int more_prune) {
2176 const unsigned int thresh_skip_golden = 500;
2177
2178 if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden &&
2179 mode == NEWMV)
2180 return 1;
2181
2182 if (bsize == BLOCK_128X128 && mode == NEWMV) return 1;
2183
2184 // Skip testing non-LAST if this flag is set.
2185 if (extra_prune) {
2186 if (extra_prune > 1 && ref_frame != LAST_FRAME &&
2187 (bsize > BLOCK_64X64 || (bsize > BLOCK_16X16 && mode == NEWMV)))
2188 return 1;
2189
2190 if (ref_frame != LAST_FRAME && mode == NEARMV) return 1;
2191
2192 if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1;
2193
2194 if (extra_prune > 2 && ref_frame != LAST_FRAME) {
2195 return 1;
2196 }
2197 }
2198 return 0;
2199 }
2200
2201 void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
2202 BLOCK_SIZE bsize, int y_sad,
2203 unsigned int source_variance) {
2204 const int factor = (bsize >= BLOCK_32X32) ? 2 : 3;
2205 NOISE_LEVEL noise_level = kLow;
2206 int norm_sad =
2207 y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
2208 // If the spatial source variance is high and the normalized y_sad
2209 // is low, then y-channel is likely good for mode estimation, so keep
2210 // color_sensitivity off. For low noise content for now, since there is
2211 // some bdrate regression for noisy color clip.
2212 if (cpi->noise_estimate.enabled)
2213 noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
2214 if (noise_level == kLow && source_variance > 1000 && norm_sad < 50) {
2215 x->color_sensitivity[0] = 0;
2216 x->color_sensitivity[1] = 0;
2217 return;
2218 }
2219 for (int i = 1; i <= 2; ++i) {
2220 if (x->color_sensitivity[i - 1] == 2) {
2221 struct macroblock_plane *const p = &x->plane[i];
2222 struct macroblockd_plane *const pd = &xd->plane[i];
2223 const BLOCK_SIZE bs =
2224 get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
2225 const int uv_sad = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
2226 pd->dst.buf, pd->dst.stride);
2227 const int norm_uv_sad =
2228 uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]);
2229 x->color_sensitivity[i - 1] =
2230 uv_sad > (factor * (y_sad >> 3)) && norm_uv_sad > 40;
2231 }
2232 }
2233 }
2234
2235 void setup_compound_prediction(AV1_COMP *cpi, MACROBLOCK *x,
2236 struct buf_2d yv12_mb[8][MAX_MB_PLANE],
2237 int *use_ref_frame_mask, int flag_comp,
2238 int *ref_mv_idx) {
2239 AV1_COMMON *const cm = &cpi->common;
2240 MACROBLOCKD *const xd = &x->e_mbd;
2241 MB_MODE_INFO *const mbmi = xd->mi[0];
2242 MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
2243 MV_REFERENCE_FRAME rf[2] = { LAST_FRAME, GOLDEN_FRAME };
2244 MV_REFERENCE_FRAME ref_frame_comp;
2245 if (flag_comp == 1) {
2246 rf[1] = LAST2_FRAME;
2247 } else if (flag_comp == 2) {
2248 rf[1] = ALTREF_FRAME;
2249 }
2250 if (!use_ref_frame_mask[rf[1]]) {
2251 // Need to setup pred_block, if it hasn't been done in find_predictors.
2252 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]);
2253 const int num_planes = av1_num_planes(cm);
2254 if (yv12 != NULL) {
2255 const struct scale_factors *const sf =
2256 get_ref_scale_factors_const(cm, rf[1]);
2257 av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes);
2258 }
2259 }
2260 ref_frame_comp = av1_ref_frame_type(rf);
2261 mbmi_ext->mode_context[ref_frame_comp] = 0;
2262 mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX;
2263 av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count,
2264 xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
2265 mbmi_ext->mode_context);
2266 av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp);
2267 *ref_mv_idx = mbmi->ref_mv_idx + 1;
2268 }
2269
2270 static void set_compound_mode(MACROBLOCK *x, int comp_index, int ref_frame,
2271 int ref_frame2, int ref_mv_idx,
2272 int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
2273 PREDICTION_MODE *this_mode) {
2274 MACROBLOCKD *const xd = &x->e_mbd;
2275 MB_MODE_INFO *const mi = xd->mi[0];
2276 *this_mode = GLOBAL_GLOBALMV;
2277 mi->ref_frame[0] = ref_frame;
2278 mi->ref_frame[1] = ref_frame2;
2279 mi->compound_idx = 1;
2280 mi->comp_group_idx = 0;
2281 mi->interinter_comp.type = COMPOUND_AVERAGE;
2282 MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame);
2283 if (comp_index % 3 == 0) {
2284 frame_mv[*this_mode][ref_frame].as_int = 0;
2285 frame_mv[*this_mode][ref_frame2].as_int = 0;
2286 } else if (comp_index % 3 == 1) {
2287 *this_mode = NEAREST_NEARESTMV;
2288 frame_mv[*this_mode][ref_frame].as_int =
2289 xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int;
2290 frame_mv[*this_mode][ref_frame2].as_int =
2291 xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int;
2292 } else if (comp_index % 3 == 2) {
2293 *this_mode = NEAR_NEARMV;
2294 frame_mv[*this_mode][ref_frame].as_int =
2295 xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int;
2296 frame_mv[*this_mode][ref_frame2].as_int =
2297 xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int;
2298 }
2299 }
2300
2301 void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
2302 MACROBLOCK *x, RD_STATS *rd_cost,
2303 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
2304 AV1_COMMON *const cm = &cpi->common;
2305 SVC *const svc = &cpi->svc;
2306 MACROBLOCKD *const xd = &x->e_mbd;
2307 MB_MODE_INFO *const mi = xd->mi[0];
2308 struct macroblockd_plane *const pd = &xd->plane[0];
2309 const InterpFilter filter_ref = cm->features.interp_filter;
2310 const InterpFilter default_interp_filter = EIGHTTAP_REGULAR;
2311 BEST_PICKMODE best_pickmode;
2312 #if COLLECT_PICK_MODE_STAT
2313 static mode_search_stat ms_stat;
2314 #endif
2315 MV_REFERENCE_FRAME ref_frame, ref_frame2;
2316 int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
2317 int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES];
2318 uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
2319 struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
2320 RD_STATS this_rdc, best_rdc;
2321 const unsigned char segment_id = mi->segment_id;
2322 const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
2323 const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
2324 int best_early_term = 0;
2325 unsigned int ref_costs_single[REF_FRAMES];
2326 int force_skip_low_temp_var = 0;
2327 int use_ref_frame_mask[REF_FRAMES] = { 0 };
2328 unsigned int sse_zeromv_norm = UINT_MAX;
2329 // Use mode set that includes zeromv (via globalmv) for speed >= 9 for
2330 // content with low motion.
2331 int use_zeromv =
2332 ((cpi->oxcf.speed >= 9 && cpi->rc.avg_frame_low_motion > 70) ||
2333 cpi->sf.rt_sf.nonrd_agressive_skip);
2334 const int num_inter_modes =
2335 use_zeromv ? NUM_INTER_MODES_REDUCED : NUM_INTER_MODES_RT;
2336 const REF_MODE *const ref_mode_set =
2337 use_zeromv ? ref_mode_set_reduced : ref_mode_set_rt;
2338 PRED_BUFFER tmp[4];
2339 DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
2340 PRED_BUFFER *this_mode_pred = NULL;
2341 const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd &&
2342 cm->seq_params->bit_depth == AOM_BITS_8;
2343
2344 const int bh = block_size_high[bsize];
2345 const int bw = block_size_wide[bsize];
2346 const int pixels_in_block = bh * bw;
2347 struct buf_2d orig_dst = pd->dst;
2348 const CommonQuantParams *quant_params = &cm->quant_params;
2349 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2350 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2351 #if COLLECT_PICK_MODE_STAT
2352 aom_usec_timer_start(&ms_stat.timer2);
2353 #endif
2354 int64_t thresh_sad_pred = INT64_MAX;
2355 const int mi_row = xd->mi_row;
2356 const int mi_col = xd->mi_col;
2357 int svc_mv_col = 0;
2358 int svc_mv_row = 0;
2359 int force_mv_inter_layer = 0;
2360 int use_modeled_non_rd_cost = 0;
2361 int comp_pred = 0;
2362 int num_comp_modes_ref = 0;
2363 int tot_num_comp_modes = 9;
2364 int ref_mv_idx = 0;
2365 #if CONFIG_AV1_TEMPORAL_DENOISING
2366 const int denoise_recheck_zeromv = 1;
2367 AV1_PICKMODE_CTX_DEN ctx_den;
2368 int64_t zero_last_cost_orig = INT64_MAX;
2369 int denoise_svc_pickmode = 1;
2370 const int resize_pending =
2371 (cpi->resize_pending_params.width && cpi->resize_pending_params.height &&
2372 (cpi->common.width != cpi->resize_pending_params.width ||
2373 cpi->common.height != cpi->resize_pending_params.height));
2374
2375 #endif
2376 x->color_sensitivity[0] = x->color_sensitivity_sb[0];
2377 x->color_sensitivity[1] = x->color_sensitivity_sb[1];
2378 init_best_pickmode(&best_pickmode);
2379
2380 const ModeCosts *mode_costs = &x->mode_costs;
2381
2382 estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id,
2383 ref_costs_single);
2384
2385 memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
2386 if (reuse_inter_pred) {
2387 for (int i = 0; i < 3; i++) {
2388 tmp[i].data = &pred_buf[pixels_in_block * i];
2389 tmp[i].stride = bw;
2390 tmp[i].in_use = 0;
2391 }
2392 tmp[3].data = pd->dst.buf;
2393 tmp[3].stride = pd->dst.stride;
2394 tmp[3].in_use = 0;
2395 }
2396
2397 txfm_info->skip_txfm = 0;
2398
2399 // initialize mode decisions
2400 av1_invalid_rd_stats(&best_rdc);
2401 av1_invalid_rd_stats(&this_rdc);
2402 av1_invalid_rd_stats(rd_cost);
2403 for (int i = 0; i < REF_FRAMES; ++i) {
2404 x->warp_sample_info[i].num = -1;
2405 }
2406
2407 mi->bsize = bsize;
2408 mi->ref_frame[0] = NONE_FRAME;
2409 mi->ref_frame[1] = NONE_FRAME;
2410
2411 #if CONFIG_AV1_TEMPORAL_DENOISING
2412 if (cpi->oxcf.noise_sensitivity > 0) {
2413 // if (cpi->ppi->use_svc) denoise_svc_pickmode =
2414 // av1_denoise_svc_non_key(cpi);
2415 if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
2416 av1_denoiser_reset_frame_stats(ctx);
2417 }
2418 #endif
2419
2420 const int gf_temporal_ref = is_same_gf_and_last_scale(cm);
2421
2422 // If the lower spatial layer uses an averaging filter for downsampling
2423 // (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative
2424 // to source, so use subpel motion vector to compensate. The nonzero motion
2425 // is half pixel shifted to left and top, so (-4, -4). This has more effect
2426 // on higher resolutins, so condition it on that for now.
2427 if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
2428 svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 &&
2429 cm->width * cm->height > 640 * 480) {
2430 svc_mv_col = -4;
2431 svc_mv_row = -4;
2432 }
2433
2434 get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref,
2435 use_ref_frame_mask, &force_skip_low_temp_var);
2436
2437 // Compound modes per reference pair (GOLDEN_LAST/LAST2_LAST/ALTREF_LAST):
2438 // (0_0)/(NEAREST_NEAREST)/(NEAR_NEAR).
2439 // For now to reduce slowdowm, use only (0,0) for blocks above 16x16
2440 // for non-svc case or on enhancement layers for svc.
2441 if (cpi->sf.rt_sf.use_comp_ref_nonrd && is_comp_ref_allowed(bsize)) {
2442 if (cpi->ppi->use_svc && cpi->svc.temporal_layer_id == 0)
2443 num_comp_modes_ref = 2;
2444 else if (bsize > BLOCK_16X16)
2445 num_comp_modes_ref = 1;
2446 else
2447 tot_num_comp_modes = 0;
2448 } else {
2449 tot_num_comp_modes = 0;
2450 }
2451
2452 for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME;
2453 ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) {
2454 if (use_ref_frame_mask[ref_frame_iter]) {
2455 find_predictors(cpi, x, ref_frame_iter, frame_mv, tile_data, yv12_mb,
2456 bsize, force_skip_low_temp_var);
2457 }
2458 }
2459
2460 thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1;
2461 // Increase threshold for less agressive pruning.
2462 if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1)
2463 thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2);
2464
2465 const int large_block = bsize >= BLOCK_32X32;
2466 const int use_model_yrd_large =
2467 cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block &&
2468 !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
2469 quant_params->base_qindex && cm->seq_params->bit_depth == 8;
2470
2471 const int enable_filter_search =
2472 is_filter_search_enabled(cpi, mi_row, mi_col, bsize, segment_id);
2473
2474 // TODO(marpan): Look into reducing these conditions. For now constrain
2475 // it to avoid significant bdrate loss.
2476 if (cpi->sf.rt_sf.use_modeled_non_rd_cost) {
2477 if (cpi->svc.non_reference_frame)
2478 use_modeled_non_rd_cost = 1;
2479 else if (cpi->svc.number_temporal_layers > 1 &&
2480 cpi->svc.temporal_layer_id == 0)
2481 use_modeled_non_rd_cost = 0;
2482 else
2483 use_modeled_non_rd_cost =
2484 (quant_params->base_qindex > 120 && x->source_variance > 100 &&
2485 bsize <= BLOCK_16X16 && !x->content_state_sb.lighting_change &&
2486 x->content_state_sb.source_sad != kHighSad);
2487 }
2488
2489 #if COLLECT_PICK_MODE_STAT
2490 ms_stat.num_blocks[bsize]++;
2491 #endif
2492 init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm);
2493 mi->tx_size = AOMMIN(
2494 AOMMIN(max_txsize_lookup[bsize],
2495 tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
2496 TX_16X16);
2497
2498 for (int idx = 0; idx < num_inter_modes + tot_num_comp_modes; ++idx) {
2499 const struct segmentation *const seg = &cm->seg;
2500
2501 int rate_mv = 0;
2502 int is_skippable;
2503 int this_early_term = 0;
2504 int skip_this_mv = 0;
2505 comp_pred = 0;
2506 PREDICTION_MODE this_mode;
2507 MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
2508 RD_STATS nonskip_rdc;
2509 av1_invalid_rd_stats(&nonskip_rdc);
2510
2511 if (idx >= num_inter_modes) {
2512 int comp_index = idx - num_inter_modes;
2513 if (comp_index % 3 == 0) {
2514 int i = 0;
2515 ref_mv_idx = 0;
2516 // Only needs to be done once per reference pair.
2517 if (comp_index == 3) i = 1;
2518 if (comp_index == 6) i = 2;
2519 if (cpi->sf.rt_sf.ref_frame_comp_nonrd[i])
2520 setup_compound_prediction(cpi, x, yv12_mb, use_ref_frame_mask, i,
2521 &ref_mv_idx);
2522 }
2523 // num_comp_modes_ref == 1 only do (0,0)
2524 if (num_comp_modes_ref == 1 && comp_index % 3 != 0) continue;
2525 // num_comp_modes_ref == 2 only do (0,0) and (NEAREST_NEAREST)
2526 if (num_comp_modes_ref == 2 && comp_index % 3 == 2) continue;
2527 ref_frame = LAST_FRAME;
2528 ref_frame2 = GOLDEN_FRAME;
2529 if (comp_index >= 0 && comp_index < 3) {
2530 // comp_index = 0,1,2 for (0/NEAREST/NEAR) for GOLDEN_LAST.
2531 if (cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 ||
2532 !(cpi->ref_frame_flags & AOM_GOLD_FLAG))
2533 continue;
2534 } else if (comp_index >= 3 && comp_index < 6) {
2535 // comp_index = 3,4,5 for (0/NEAREST/NEAR) for LAST2_LAST.
2536 ref_frame2 = LAST2_FRAME;
2537 if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 ||
2538 !(cpi->ref_frame_flags & AOM_LAST2_FLAG))
2539 continue;
2540 } else if (comp_index >= 6 && comp_index < 9) {
2541 // comp_index = 6,7,8 for (0/NEAREST/NEAR) for ALTREF_LAST.
2542 ref_frame2 = ALTREF_FRAME;
2543 if (cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 ||
2544 !(cpi->ref_frame_flags & AOM_ALT_FLAG))
2545 continue;
2546 }
2547 set_compound_mode(x, comp_index, ref_frame, ref_frame2, ref_mv_idx,
2548 frame_mv, &this_mode);
2549 if (this_mode != GLOBAL_GLOBALMV &&
2550 frame_mv[this_mode][ref_frame].as_int == 0 &&
2551 frame_mv[this_mode][ref_frame2].as_int == 0)
2552 continue;
2553 comp_pred = 1;
2554 } else {
2555 this_mode = ref_mode_set[idx].pred_mode;
2556 ref_frame = ref_mode_set[idx].ref_frame;
2557 ref_frame2 = NONE_FRAME;
2558 }
2559
2560 #if COLLECT_PICK_MODE_STAT
2561 aom_usec_timer_start(&ms_stat.timer1);
2562 ms_stat.num_searches[bsize][this_mode]++;
2563 #endif
2564 mi->mode = this_mode;
2565 mi->ref_frame[0] = ref_frame;
2566 mi->ref_frame[1] = ref_frame2;
2567
2568 if (!use_ref_frame_mask[ref_frame]) continue;
2569
2570 force_mv_inter_layer = 0;
2571 if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
2572 ((ref_frame == LAST_FRAME && svc->skip_mvsearch_last) ||
2573 (ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf))) {
2574 // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row),
2575 // otherwise set NEWMV to (svc_mv_col, svc_mv_row).
2576 // Skip newmv and filter search.
2577 force_mv_inter_layer = 1;
2578 if (this_mode == NEWMV) {
2579 frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col;
2580 frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row;
2581 } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col ||
2582 frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) {
2583 continue;
2584 }
2585 }
2586
2587 // If the segment reference frame feature is enabled then do nothing if the
2588 // current ref frame is not allowed.
2589 if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
2590 get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
2591 continue;
2592
2593 if (skip_mode_by_bsize_and_ref_frame(
2594 this_mode, ref_frame, bsize, x->nonrd_prune_ref_frame_search,
2595 sse_zeromv_norm, cpi->sf.rt_sf.nonrd_agressive_skip))
2596 continue;
2597
2598 if (skip_mode_by_low_temp(this_mode, ref_frame, bsize, x->content_state_sb,
2599 frame_mv[this_mode][ref_frame],
2600 force_skip_low_temp_var))
2601 continue;
2602
2603 // Disable this drop out case if the ref frame segment level feature is
2604 // enabled for this segment. This is to prevent the possibility that we
2605 // end up unable to pick any mode.
2606 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
2607 // Check for skipping GOLDEN and ALTREF based pred_mv_sad.
2608 if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 &&
2609 x->pred_mv_sad[ref_frame] != INT_MAX && ref_frame != LAST_FRAME) {
2610 if ((int64_t)(x->pred_mv_sad[ref_frame]) > thresh_sad_pred) continue;
2611 }
2612 }
2613 // Check for skipping NEARMV based on pred_mv_sad.
2614 if (this_mode == NEARMV && x->pred_mv1_sad[ref_frame] != INT_MAX &&
2615 x->pred_mv1_sad[ref_frame] > (x->pred_mv0_sad[ref_frame] << 1))
2616 continue;
2617
2618 if (!comp_pred) {
2619 if (skip_mode_by_threshold(
2620 this_mode, ref_frame, frame_mv[this_mode][ref_frame],
2621 cpi->rc.frames_since_golden, rd_threshes, rd_thresh_freq_fact,
2622 best_rdc.rdcost, best_pickmode.best_mode_skip_txfm,
2623 (cpi->sf.rt_sf.nonrd_agressive_skip ? 1 : 0)))
2624 continue;
2625 }
2626
2627 // Select prediction reference frames.
2628 for (int i = 0; i < MAX_MB_PLANE; i++) {
2629 xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
2630 if (comp_pred) xd->plane[i].pre[1] = yv12_mb[ref_frame2][i];
2631 }
2632
2633 mi->ref_frame[0] = ref_frame;
2634 mi->ref_frame[1] = ref_frame2;
2635 set_ref_ptrs(cm, xd, ref_frame, ref_frame2);
2636
2637 if (this_mode == NEWMV && !force_mv_inter_layer) {
2638 if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
2639 mi_row, mi_col, &rate_mv, &best_rdc))
2640 continue;
2641 }
2642
2643 for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
2644 inter_mv_mode++) {
2645 if (inter_mv_mode == this_mode) continue;
2646 if (mode_checked[inter_mv_mode][ref_frame] &&
2647 frame_mv[this_mode][ref_frame].as_int ==
2648 frame_mv[inter_mv_mode][ref_frame].as_int) {
2649 skip_this_mv = 1;
2650 break;
2651 }
2652 }
2653
2654 if (skip_this_mv && !comp_pred) continue;
2655
2656 mi->mode = this_mode;
2657 mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
2658 mi->mv[1].as_int = 0;
2659 if (comp_pred) mi->mv[1].as_int = frame_mv[this_mode][ref_frame2].as_int;
2660
2661 if (reuse_inter_pred) {
2662 if (!this_mode_pred) {
2663 this_mode_pred = &tmp[3];
2664 } else {
2665 this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
2666 pd->dst.buf = this_mode_pred->data;
2667 pd->dst.stride = bw;
2668 }
2669 }
2670 #if COLLECT_PICK_MODE_STAT
2671 ms_stat.num_nonskipped_searches[bsize][this_mode]++;
2672 #endif
2673
2674 if (idx == 0) {
2675 // Set color sensitivity on first tested mode only.
2676 // Use y-sad already computed in find_predictors: take the sad with motion
2677 // vector closest to 0; the uv-sad computed below in set_color_sensitivity
2678 // is for zeromv.
2679 int y_sad = x->pred_mv0_sad[LAST_FRAME];
2680 if (x->pred_mv1_sad[LAST_FRAME] != INT_MAX &&
2681 (abs(frame_mv[NEARMV][LAST_FRAME].as_mv.col) +
2682 abs(frame_mv[NEARMV][LAST_FRAME].as_mv.row)) <
2683 (abs(frame_mv[NEARESTMV][LAST_FRAME].as_mv.col) +
2684 abs(frame_mv[NEARESTMV][LAST_FRAME].as_mv.row)))
2685 y_sad = x->pred_mv1_sad[LAST_FRAME];
2686 set_color_sensitivity(cpi, x, xd, bsize, y_sad, x->source_variance);
2687 }
2688 mi->motion_mode = SIMPLE_TRANSLATION;
2689 #if !CONFIG_REALTIME_ONLY
2690 if (cpi->oxcf.motion_mode_cfg.allow_warped_motion) {
2691 calc_num_proj_ref(cpi, x, mi);
2692 }
2693 #endif
2694
2695 if (enable_filter_search && !force_mv_inter_layer && !comp_pred &&
2696 ((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) &&
2697 (ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)) {
2698 search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
2699 reuse_inter_pred, &this_mode_pred, &this_early_term,
2700 use_model_yrd_large);
2701 #if !CONFIG_REALTIME_ONLY
2702 } else if (cpi->oxcf.motion_mode_cfg.allow_warped_motion &&
2703 this_mode == NEWMV) {
2704 search_motion_mode(cpi, x, &this_rdc, mi_row, mi_col, bsize,
2705 &this_early_term, use_model_yrd_large, &rate_mv);
2706 if (this_mode == NEWMV) {
2707 frame_mv[this_mode][ref_frame] = mi->mv[0];
2708 }
2709 #endif
2710 } else {
2711 mi->interp_filters =
2712 (filter_ref == SWITCHABLE)
2713 ? av1_broadcast_interp_filter(default_interp_filter)
2714 : av1_broadcast_interp_filter(filter_ref);
2715 if (force_mv_inter_layer)
2716 mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
2717
2718 // If it is sub-pel motion and best filter was not selected in
2719 // search_filter_ref() for all blocks, then check top and left values and
2720 // force smooth if both were selected to be smooth.
2721 if (cpi->sf.interp_sf.cb_pred_filter_search &&
2722 (mi->mv[0].as_mv.row & 0x07 || mi->mv[0].as_mv.col & 0x07)) {
2723 if (xd->left_mbmi && xd->above_mbmi) {
2724 if ((xd->left_mbmi->interp_filters.as_filters.x_filter ==
2725 EIGHTTAP_SMOOTH &&
2726 xd->above_mbmi->interp_filters.as_filters.x_filter ==
2727 EIGHTTAP_SMOOTH))
2728 mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_SMOOTH);
2729 }
2730 }
2731
2732 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
2733
2734 if (use_model_yrd_large) {
2735 model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &this_rdc,
2736 &this_early_term, use_modeled_non_rd_cost);
2737 } else {
2738 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc,
2739 use_modeled_non_rd_cost);
2740 }
2741 }
2742
2743 if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) {
2744 sse_zeromv_norm =
2745 (unsigned int)(this_rdc.sse >> (b_width_log2_lookup[bsize] +
2746 b_height_log2_lookup[bsize]));
2747 }
2748
2749 const int skip_ctx = av1_get_skip_txfm_context(xd);
2750 const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1];
2751 const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0];
2752 const int64_t sse_y = this_rdc.sse;
2753 if (this_early_term) {
2754 this_rdc.skip_txfm = 1;
2755 this_rdc.rate = skip_txfm_cost;
2756 this_rdc.dist = this_rdc.sse << 4;
2757 } else {
2758 if (use_modeled_non_rd_cost) {
2759 if (this_rdc.skip_txfm) {
2760 this_rdc.rate = skip_txfm_cost;
2761 } else {
2762 this_rdc.rate += no_skip_txfm_cost;
2763 }
2764 } else {
2765 block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, bsize,
2766 mi->tx_size);
2767 if (this_rdc.skip_txfm ||
2768 RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >=
2769 RDCOST(x->rdmult, 0, this_rdc.sse)) {
2770 if (!this_rdc.skip_txfm) {
2771 // Need to store "real" rdc for possible furure use if UV rdc
2772 // disallows tx skip
2773 nonskip_rdc = this_rdc;
2774 nonskip_rdc.rate += no_skip_txfm_cost;
2775 }
2776 this_rdc.rate = skip_txfm_cost;
2777 this_rdc.skip_txfm = 1;
2778 this_rdc.dist = this_rdc.sse;
2779 } else {
2780 this_rdc.rate += no_skip_txfm_cost;
2781 }
2782 }
2783 if ((x->color_sensitivity[0] || x->color_sensitivity[1])) {
2784 RD_STATS rdc_uv;
2785 const BLOCK_SIZE uv_bsize = get_plane_block_size(
2786 bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
2787 if (x->color_sensitivity[0]) {
2788 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
2789 AOM_PLANE_U, AOM_PLANE_U);
2790 }
2791 if (x->color_sensitivity[1]) {
2792 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
2793 AOM_PLANE_V, AOM_PLANE_V);
2794 }
2795 model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &this_rdc.sse, 1, 2);
2796 // Restore Y rdc if UV rdc disallows txfm skip
2797 if (this_rdc.skip_txfm && !rdc_uv.skip_txfm &&
2798 nonskip_rdc.rate != INT_MAX)
2799 this_rdc = nonskip_rdc;
2800 this_rdc.rate += rdc_uv.rate;
2801 this_rdc.dist += rdc_uv.dist;
2802 this_rdc.skip_txfm = this_rdc.skip_txfm && rdc_uv.skip_txfm;
2803 }
2804 }
2805
2806 // TODO(kyslov) account for UV prediction cost
2807 this_rdc.rate += rate_mv;
2808 const int16_t mode_ctx =
2809 av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
2810 this_rdc.rate += cost_mv_ref(mode_costs, this_mode, mode_ctx);
2811
2812 this_rdc.rate += ref_costs_single[ref_frame];
2813
2814 this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
2815 if (cpi->oxcf.rc_cfg.mode == AOM_CBR && !comp_pred) {
2816 newmv_diff_bias(xd, this_mode, &this_rdc, bsize,
2817 frame_mv[this_mode][ref_frame].as_mv.row,
2818 frame_mv[this_mode][ref_frame].as_mv.col, cpi->speed,
2819 x->source_variance, x->content_state_sb);
2820 }
2821 #if CONFIG_AV1_TEMPORAL_DENOISING
2822 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
2823 cpi->denoiser.denoising_level > kDenLowLow) {
2824 av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
2825 // Keep track of zero_last cost.
2826 if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0)
2827 zero_last_cost_orig = this_rdc.rdcost;
2828 }
2829 #else
2830 (void)sse_y;
2831 #endif
2832
2833 mode_checked[this_mode][ref_frame] = 1;
2834 #if COLLECT_PICK_MODE_STAT
2835 aom_usec_timer_mark(&ms_stat.timer1);
2836 ms_stat.nonskipped_search_times[bsize][this_mode] +=
2837 aom_usec_timer_elapsed(&ms_stat.timer1);
2838 #endif
2839 if (this_rdc.rdcost < best_rdc.rdcost) {
2840 best_rdc = this_rdc;
2841 best_early_term = this_early_term;
2842 best_pickmode.best_mode = this_mode;
2843 best_pickmode.best_motion_mode = mi->motion_mode;
2844 best_pickmode.wm_params = mi->wm_params;
2845 best_pickmode.num_proj_ref = mi->num_proj_ref;
2846 best_pickmode.best_pred_filter = mi->interp_filters;
2847 best_pickmode.best_tx_size = mi->tx_size;
2848 best_pickmode.best_ref_frame = ref_frame;
2849 best_pickmode.best_second_ref_frame = ref_frame2;
2850 best_pickmode.best_mode_skip_txfm = this_rdc.skip_txfm;
2851 best_pickmode.best_mode_initial_skip_flag =
2852 (nonskip_rdc.rate == INT_MAX && this_rdc.skip_txfm);
2853
2854 // This is needed for the compound modes.
2855 frame_mv_best[this_mode][ref_frame].as_int =
2856 frame_mv[this_mode][ref_frame].as_int;
2857 if (ref_frame2 > NONE_FRAME)
2858 frame_mv_best[this_mode][ref_frame2].as_int =
2859 frame_mv[this_mode][ref_frame2].as_int;
2860
2861 if (reuse_inter_pred) {
2862 free_pred_buffer(best_pickmode.best_pred);
2863 best_pickmode.best_pred = this_mode_pred;
2864 }
2865 } else {
2866 if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
2867 }
2868 if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_agressive_skip)) {
2869 txfm_info->skip_txfm = 1;
2870 break;
2871 }
2872 }
2873
2874 mi->mode = best_pickmode.best_mode;
2875 mi->motion_mode = best_pickmode.best_motion_mode;
2876 mi->wm_params = best_pickmode.wm_params;
2877 mi->num_proj_ref = best_pickmode.num_proj_ref;
2878 mi->interp_filters = best_pickmode.best_pred_filter;
2879 mi->tx_size = best_pickmode.best_tx_size;
2880 memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
2881 mi->ref_frame[0] = best_pickmode.best_ref_frame;
2882 mi->mv[0].as_int =
2883 frame_mv_best[best_pickmode.best_mode][best_pickmode.best_ref_frame]
2884 .as_int;
2885 mi->mv[1].as_int = 0;
2886 if (best_pickmode.best_second_ref_frame > INTRA_FRAME) {
2887 mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
2888 mi->mv[1].as_int = frame_mv_best[best_pickmode.best_mode]
2889 [best_pickmode.best_second_ref_frame]
2890 .as_int;
2891 }
2892 // Perform intra prediction search, if the best SAD is above a certain
2893 // threshold.
2894 mi->angle_delta[PLANE_TYPE_Y] = 0;
2895 mi->angle_delta[PLANE_TYPE_UV] = 0;
2896 mi->filter_intra_mode_info.use_filter_intra = 0;
2897
2898 estimate_intra_mode(cpi, x, bsize, use_modeled_non_rd_cost, best_early_term,
2899 ref_costs_single[INTRA_FRAME], reuse_inter_pred,
2900 &orig_dst, tmp, &this_mode_pred, &best_rdc,
2901 &best_pickmode);
2902
2903 pd->dst = orig_dst;
2904 mi->mode = best_pickmode.best_mode;
2905 mi->ref_frame[0] = best_pickmode.best_ref_frame;
2906 mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
2907 txfm_info->skip_txfm = best_rdc.skip_txfm;
2908 if (has_second_ref(mi)) {
2909 mi->comp_group_idx = 0;
2910 mi->compound_idx = 1;
2911 mi->interinter_comp.type = COMPOUND_AVERAGE;
2912 }
2913
2914 if (!is_inter_block(mi)) {
2915 mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
2916 }
2917
2918 if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
2919 PRED_BUFFER *const best_pred = best_pickmode.best_pred;
2920 if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
2921 aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2922 pd->dst.stride, bw, bh);
2923 }
2924 }
2925
2926 #if CONFIG_AV1_TEMPORAL_DENOISING
2927 if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 &&
2928 denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
2929 cpi->denoiser.reset == 0) {
2930 AV1_DENOISER_DECISION decision = COPY_BLOCK;
2931 ctx->sb_skip_denoising = 0;
2932 av1_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_costs_single,
2933 frame_mv, reuse_inter_pred, &best_pickmode);
2934 av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision,
2935 gf_temporal_ref);
2936 if (denoise_recheck_zeromv)
2937 recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den,
2938 yv12_mb, &best_rdc, &best_pickmode, bsize,
2939 mi_row, mi_col);
2940 best_pickmode.best_ref_frame = ctx_den.best_ref_frame;
2941 }
2942 #endif
2943
2944 if (cpi->sf.inter_sf.adaptive_rd_thresh && !has_second_ref(mi)) {
2945 THR_MODES best_mode_idx =
2946 mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
2947 if (best_pickmode.best_ref_frame == INTRA_FRAME) {
2948 // Only consider the modes that are included in the intra_mode_list.
2949 int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
2950 for (int i = 0; i < intra_modes; i++) {
2951 update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
2952 intra_mode_list[i]);
2953 }
2954 } else {
2955 PREDICTION_MODE this_mode;
2956 for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2957 update_thresh_freq_fact(cpi, x, bsize, best_pickmode.best_ref_frame,
2958 best_mode_idx, this_mode);
2959 }
2960 }
2961 }
2962
2963 #if CONFIG_INTERNAL_STATS
2964 store_coding_context(x, ctx, mi->mode);
2965 #else
2966 store_coding_context(x, ctx);
2967 #endif // CONFIG_INTERNAL_STATS
2968 #if COLLECT_PICK_MODE_STAT
2969 aom_usec_timer_mark(&ms_stat.timer2);
2970 ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2);
2971 //
2972 if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_params.mi_rows)) &&
2973 (mi_col + mi_size_wide[bsize] >= (cpi->common.mi_params.mi_cols))) {
2974 int i, j;
2975 PREDICTION_MODE used_modes[3] = { NEARESTMV, NEARMV, NEWMV };
2976 BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
2977 BLOCK_128X128 };
2978 int64_t total_time = 0l;
2979 int32_t total_blocks = 0;
2980
2981 printf("\n");
2982 for (i = 0; i < 5; i++) {
2983 printf("BS(%d) Num %d, Avg_time %f: ", bss[i], ms_stat.num_blocks[bss[i]],
2984 ms_stat.num_blocks[bss[i]] > 0
2985 ? (float)ms_stat.avg_block_times[bss[i]] /
2986 ms_stat.num_blocks[bss[i]]
2987 : 0);
2988 total_time += ms_stat.avg_block_times[bss[i]];
2989 total_blocks += ms_stat.num_blocks[bss[i]];
2990 for (j = 0; j < 3; j++) {
2991 printf("Mode %d, %d/%d tps %f ", used_modes[j],
2992 ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]],
2993 ms_stat.num_searches[bss[i]][used_modes[j]],
2994 ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]] > 0
2995 ? (float)ms_stat
2996 .nonskipped_search_times[bss[i]][used_modes[j]] /
2997 ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]]
2998 : 0l);
2999 }
3000 printf("\n");
3001 }
3002 printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
3003 }
3004 //
3005 #endif // COLLECT_PICK_MODE_STAT
3006 *rd_cost = best_rdc;
3007 }
3008