• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 
22 
23 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_1x4c2__xop(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])24 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_1x4c2__xop(
25     size_t mr,
26     size_t nc,
27     size_t kc,
28     const int8_t* restrict a,
29     size_t a_stride,
30     const void* restrict w,
31     int8_t* restrict c,
32     size_t cm_stride,
33     size_t cn_stride,
34     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
35 {
36   assert(mr != 0);
37   assert(mr <= 1);
38   assert(nc != 0);
39   assert(kc != 0);
40   assert(kc % sizeof(int8_t) == 0);
41   assert(a != NULL);
42   assert(w != NULL);
43   assert(c != NULL);
44 
45   kc = round_up_po2(kc, 2);
46   const int8_t* a0 = a;
47   int8_t* c0 = c;
48 
49   do {
50     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
51     w = (const void*) ((const int32_t*) w + 4);
52 
53     size_t k = kc;
54     while (k >= 8 * sizeof(int8_t)) {
55       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
56       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
57       a0 += 8;
58 
59       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
60 
61       vacc0x0123 = _mm_maddd_epi16(
62         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
63       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
64 
65       vacc0x0123 = _mm_maddd_epi16(
66         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
67       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
68 
69       vacc0x0123 = _mm_maddd_epi16(
70         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
71       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
72 
73       vacc0x0123 = _mm_maddd_epi16(
74         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
75 
76       w = (const void*) ((const int16_t*) w + 32);
77       k -= 8 * sizeof(int8_t);
78     }
79     if (k != 0) {
80       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
81       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
82       a0 = (const int8_t*) ((uintptr_t) a0 + k);
83 
84       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
85       w = (const void*) ((const int16_t*) w + 8);
86 
87       vacc0x0123 = _mm_maddd_epi16(
88         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
89 
90       if (k > 2 * sizeof(int8_t)) {
91         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
92         w = (const void*) ((const int16_t*) w + 8);
93 
94         vacc0x0123 = _mm_maddd_epi16(
95           _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
96 
97         if (k > 4 * sizeof(int8_t)) {
98           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
99           w = (const void*) ((const int16_t*) w + 8);
100 
101           vacc0x0123 = _mm_maddd_epi16(
102             _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
103         }
104       }
105     }
106 
107     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
108 
109     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
110     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
111 
112     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
113     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
114 
115     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
116 
117     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
118     __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
119 
120 
121     __m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123);
122 
123     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
124 
125     if (nc >= 4) {
126       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
127 
128       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
129 
130       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
131 
132       nc -= 4;
133     } else {
134       if (nc & 2) {
135         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
136         c0 += 2;
137         vout = _mm_srli_epi32(vout, 16);
138       }
139       if (nc & 1) {
140         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
141       }
142 
143       nc = 0;
144     }
145   } while (nc != 0);
146 }
147