• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 
17 
18 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__avx(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__avx(
20     size_t mr,
21     size_t nc,
22     size_t kc,
23     const int8_t* restrict a,
24     size_t a_stride,
25     const void* restrict w,
26     int8_t* restrict c,
27     size_t cm_stride,
28     size_t cn_stride,
29     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
30 {
31   assert(mr != 0);
32   assert(mr <= 2);
33   assert(nc != 0);
34   assert(kc != 0);
35   assert(kc % sizeof(int8_t) == 0);
36   assert(a != NULL);
37   assert(w != NULL);
38   assert(c != NULL);
39 
40   kc = round_up_po2(kc, 2);
41   const int8_t* a0 = a;
42   int8_t* c0 = c;
43   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
44   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
45   if XNN_UNPREDICTABLE(mr != 2) {
46     a1 = a0;
47     c1 = c0;
48   }
49 
50   do {
51     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
52     __m128i vacc1x0123 = vacc0x0123;
53     w = (const void*) ((const int32_t*) w + 4);
54 
55     size_t k = kc;
56     while (k >= 8 * sizeof(int8_t)) {
57       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
58       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
59       a0 += 8;
60       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
61       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
62       a1 += 8;
63 
64       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
65 
66       vacc0x0123 = _mm_add_epi32(vacc0x0123,
67         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
68       vacc1x0123 = _mm_add_epi32(vacc1x0123,
69         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
70       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
71 
72       vacc0x0123 = _mm_add_epi32(vacc0x0123,
73         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
74       vacc1x0123 = _mm_add_epi32(vacc1x0123,
75         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
76       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
77 
78       vacc0x0123 = _mm_add_epi32(vacc0x0123,
79         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
80       vacc1x0123 = _mm_add_epi32(vacc1x0123,
81         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
82       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
83 
84       vacc0x0123 = _mm_add_epi32(vacc0x0123,
85         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
86       vacc1x0123 = _mm_add_epi32(vacc1x0123,
87         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
88 
89       w = (const void*) ((const int16_t*) w + 32);
90       k -= 8 * sizeof(int8_t);
91     }
92     if (k != 0) {
93       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
94       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
95       a0 = (const int8_t*) ((uintptr_t) a0 + k);
96       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
97       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
98       a1 = (const int8_t*) ((uintptr_t) a1 + k);
99 
100       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
101       w = (const void*) ((const int16_t*) w + 8);
102 
103       vacc0x0123 = _mm_add_epi32(vacc0x0123,
104         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
105       vacc1x0123 = _mm_add_epi32(vacc1x0123,
106         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
107 
108       if (k > 2 * sizeof(int8_t)) {
109         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
110         w = (const void*) ((const int16_t*) w + 8);
111 
112         vacc0x0123 = _mm_add_epi32(vacc0x0123,
113           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
114         vacc1x0123 = _mm_add_epi32(vacc1x0123,
115           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
116 
117         if (k > 4 * sizeof(int8_t)) {
118           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
119           w = (const void*) ((const int16_t*) w + 8);
120 
121           vacc0x0123 = _mm_add_epi32(vacc0x0123,
122             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
123           vacc1x0123 = _mm_add_epi32(vacc1x0123,
124             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
125         }
126       }
127     }
128 
129     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
130     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
131 
132     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
133     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
134     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
135 
136     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
137     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
138     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
139 
140     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
141     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
142 
143     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
144     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
145 
146 
147     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
148 
149     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
150 
151     if (nc >= 4) {
152       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
153       *((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
154 
155       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
156       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
157 
158       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
159       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
160 
161       nc -= 4;
162     } else {
163       if (nc & 2) {
164         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
165         c0 += 2;
166         *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
167         c1 += 2;
168         vout = _mm_srli_epi32(vout, 16);
169       }
170       if (nc & 1) {
171         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
172         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
173       }
174 
175       nc = 0;
176     }
177   } while (nc != 0);
178 }
179