• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 
17 
18 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_3x4c2__sse41(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_3x4c2__sse41(
20     size_t mr,
21     size_t nc,
22     size_t kc,
23     const int8_t* restrict a,
24     size_t a_stride,
25     const void* restrict w,
26     int8_t* restrict c,
27     size_t cm_stride,
28     size_t cn_stride,
29     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
30 {
31   assert(mr != 0);
32   assert(mr <= 3);
33   assert(nc != 0);
34   assert(kc != 0);
35   assert(kc % sizeof(int8_t) == 0);
36   assert(a != NULL);
37   assert(w != NULL);
38   assert(c != NULL);
39 
40   kc = round_up_po2(kc, 2);
41   const int8_t* a0 = a;
42   int8_t* c0 = c;
43   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
44   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
45   if XNN_UNPREDICTABLE(mr < 2) {
46     a1 = a0;
47     c1 = c0;
48   }
49   const int8_t* a2 = (const int8_t*) ((uintptr_t) a1 + a_stride);
50   int8_t* c2 = (int8_t*) ((uintptr_t) c1 + cm_stride);
51   if XNN_UNPREDICTABLE(mr <= 2) {
52     a2 = a1;
53     c2 = c1;
54   }
55 
56   do {
57     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
58     __m128i vacc1x0123 = vacc0x0123;
59     __m128i vacc2x0123 = vacc0x0123;
60     w = (const void*) ((const int32_t*) w + 4);
61 
62     size_t k = kc;
63     while (k >= 8 * sizeof(int8_t)) {
64       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
65       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
66       a0 += 8;
67       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
68       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
69       a1 += 8;
70       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
71       const __m128i vxa2 = _mm_cvtepi8_epi16(va2);
72       a2 += 8;
73 
74       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
75 
76       vacc0x0123 = _mm_add_epi32(vacc0x0123,
77         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
78       vacc1x0123 = _mm_add_epi32(vacc1x0123,
79         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
80       vacc2x0123 = _mm_add_epi32(vacc2x0123,
81         _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
82       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
83 
84       vacc0x0123 = _mm_add_epi32(vacc0x0123,
85         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
86       vacc1x0123 = _mm_add_epi32(vacc1x0123,
87         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
88       vacc2x0123 = _mm_add_epi32(vacc2x0123,
89         _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
90       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
91 
92       vacc0x0123 = _mm_add_epi32(vacc0x0123,
93         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
94       vacc1x0123 = _mm_add_epi32(vacc1x0123,
95         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
96       vacc2x0123 = _mm_add_epi32(vacc2x0123,
97         _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
98       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
99 
100       vacc0x0123 = _mm_add_epi32(vacc0x0123,
101         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
102       vacc1x0123 = _mm_add_epi32(vacc1x0123,
103         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
104       vacc2x0123 = _mm_add_epi32(vacc2x0123,
105         _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
106 
107       w = (const void*) ((const int16_t*) w + 32);
108       k -= 8 * sizeof(int8_t);
109     }
110     if (k != 0) {
111       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
112       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
113       a0 = (const int8_t*) ((uintptr_t) a0 + k);
114       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
115       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
116       a1 = (const int8_t*) ((uintptr_t) a1 + k);
117       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
118       const __m128i vxa2 = _mm_cvtepi8_epi16(va2);
119       a2 = (const int8_t*) ((uintptr_t) a2 + k);
120 
121       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
122       w = (const void*) ((const int16_t*) w + 8);
123 
124       vacc0x0123 = _mm_add_epi32(vacc0x0123,
125         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
126       vacc1x0123 = _mm_add_epi32(vacc1x0123,
127         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
128       vacc2x0123 = _mm_add_epi32(vacc2x0123,
129         _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
130 
131       if (k > 2 * sizeof(int8_t)) {
132         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
133         w = (const void*) ((const int16_t*) w + 8);
134 
135         vacc0x0123 = _mm_add_epi32(vacc0x0123,
136           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
137         vacc1x0123 = _mm_add_epi32(vacc1x0123,
138           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
139         vacc2x0123 = _mm_add_epi32(vacc2x0123,
140           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
141 
142         if (k > 4 * sizeof(int8_t)) {
143           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
144           w = (const void*) ((const int16_t*) w + 8);
145 
146           vacc0x0123 = _mm_add_epi32(vacc0x0123,
147             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
148           vacc1x0123 = _mm_add_epi32(vacc1x0123,
149             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
150           vacc2x0123 = _mm_add_epi32(vacc2x0123,
151             _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
152         }
153       }
154     }
155 
156     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
157     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
158     __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
159 
160     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
161     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
162     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
163     vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
164 
165     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
166     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
167     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
168     vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
169 
170     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
171     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
172     vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
173 
174     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
175     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
176     __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
177 
178 
179     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc22x0123);
180 
181     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
182 
183     if (nc >= 4) {
184       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
185       *((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
186       *((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout, 2);
187 
188       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
189       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
190       c2 = (int8_t*) ((uintptr_t) c2 + cn_stride);
191 
192       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
193       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
194       a2 = (const int8_t*) ((uintptr_t) a2 - kc);
195 
196       nc -= 4;
197     } else {
198       if (nc & 2) {
199         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
200         c0 += 2;
201         *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
202         c1 += 2;
203         *((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout, 4);
204         c2 += 2;
205         vout = _mm_srli_epi32(vout, 16);
206       }
207       if (nc & 1) {
208         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
209         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
210         *c2 = (int8_t) _mm_extract_epi8(vout, 8);
211       }
212 
213       nc = 0;
214     }
215   } while (nc != 0);
216 }
217