• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/utils/SkRandom.h"
9 #include "src/core/SkGeometry.h"
10 #include "src/gpu/tessellate/Tessellation.h"
11 #include "tests/Test.h"
12 
13 namespace skgpu {
14 
is_linear(SkPoint p0,SkPoint p1,SkPoint p2)15 static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) {
16     return SkScalarNearlyZero((p0 - p1).cross(p2 - p1));
17 }
18 
is_linear(const SkPoint p[4])19 static bool is_linear(const SkPoint p[4]) {
20     return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]);
21 }
22 
check_cubic_convex_180(skiatest::Reporter * r,const SkPoint p[4])23 static void check_cubic_convex_180(skiatest::Reporter* r, const SkPoint p[4]) {
24     bool areCusps = false;
25     float inflectT[2], convex180T[2];
26     if (int inflectN = SkFindCubicInflections(p, inflectT)) {
27         // The curve has inflections. FindCubicConvex180Chops should return the inflection
28         // points.
29         int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps);
30         REPORTER_ASSERT(r, inflectN == convex180N);
31         if (!areCusps) {
32             REPORTER_ASSERT(r, inflectN == 1 ||
33                             fabsf(inflectT[0] - inflectT[1]) >= SK_ScalarNearlyZero);
34         }
35         for (int i = 0; i < convex180N; ++i) {
36             REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i]));
37         }
38     } else {
39         float totalRotation = SkMeasureNonInflectCubicRotation(p);
40         int convex180N = FindCubicConvex180Chops(p, convex180T, &areCusps);
41         SkPoint chops[10];
42         SkChopCubicAt(p, chops, convex180T, convex180N);
43         float radsSum = 0;
44         for (int i = 0; i <= convex180N; ++i) {
45             float rads = SkMeasureNonInflectCubicRotation(chops + i*3);
46             SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero);
47             radsSum += rads;
48         }
49         if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) {
50             // The curve should never chop if rotation is <180 degrees.
51             REPORTER_ASSERT(r, convex180N == 0);
52         } else if (!is_linear(p)) {
53             REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation));
54             if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) {
55                 REPORTER_ASSERT(r, convex180N == 1);
56                 // This works because cusps take the "inflection" path above, so we don't get
57                 // non-lilnear curves that lose rotation when chopped.
58                 REPORTER_ASSERT(r, SkScalarNearlyEqual(
59                     SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI));
60                 REPORTER_ASSERT(r, SkScalarNearlyEqual(
61                     SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI));
62             }
63             REPORTER_ASSERT(r, !areCusps);
64         } else {
65             REPORTER_ASSERT(r, areCusps);
66         }
67     }
68 }
69 
DEF_TEST(FindCubicConvex180Chops,r)70 DEF_TEST(FindCubicConvex180Chops, r) {
71     // Test all combinations of corners from the square [0,0,1,1]. This covers every cubic type as
72     // well as a wide variety of special cases for cusps, lines, loops, and inflections.
73     for (int i = 0; i < (1 << 8); ++i) {
74         SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1),
75                         SkPoint::Make((i>>2)&1, (i>>3)&1),
76                         SkPoint::Make((i>>4)&1, (i>>5)&1),
77                         SkPoint::Make((i>>6)&1, (i>>7)&1)};
78         check_cubic_convex_180(r, p);
79     }
80 
81     {
82         // This cubic has a convex-180 chop at T=1-"epsilon"
83         static const uint32_t hexPts[] = {0x3ee0ac74, 0x3f1e061a, 0x3e0fc408, 0x3f457230,
84                                           0x3f42ac7c, 0x3f70d76c, 0x3f4e6520, 0x3f6acafa};
85         SkPoint p[4];
86         memcpy(p, hexPts, sizeof(p));
87         check_cubic_convex_180(r, p);
88     }
89 
90     // Now test an exact quadratic.
91     SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}};
92     float T[2];
93     bool areCusps;
94     REPORTER_ASSERT(r, FindCubicConvex180Chops(quad, T, &areCusps) == 0);
95 
96     // Now test that cusps and near-cusps get flagged as cusps.
97     SkPoint cusp[4] = {{0,0}, {1,1}, {1,0}, {0,1}};
98     REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1);
99     REPORTER_ASSERT(r, areCusps == true);
100 
101     // Find the height of the right side of "cusp" at which the distance between its inflection
102     // points is kEpsilon (in parametric space).
103     constexpr static double kEpsilon = 1.0 / (1 << 11);
104     constexpr static double kEpsilonSquared = kEpsilon * kEpsilon;
105     double h = (1 - kEpsilonSquared) / (3 * kEpsilonSquared + 1);
106     double dy = (1 - h) / 2;
107     cusp[1].fY = (float)(1 - dy);
108     cusp[2].fY = (float)(0 + dy);
109     REPORTER_ASSERT(r, SkFindCubicInflections(cusp, T) == 2);
110     REPORTER_ASSERT(r, SkScalarNearlyEqual(T[1] - T[0], (float)kEpsilon, (float)kEpsilonSquared));
111 
112     // Ensure two inflection points barely more than kEpsilon apart do not get flagged as cusps.
113     cusp[1].fY = (float)(1 - 1.1 * dy);
114     cusp[2].fY = (float)(0 + 1.1 * dy);
115     REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 2);
116     REPORTER_ASSERT(r, areCusps == false);
117 
118     // Ensure two inflection points barely less than kEpsilon apart do get flagged as cusps.
119     cusp[1].fY = (float)(1 - .9 * dy);
120     cusp[2].fY = (float)(0 + .9 * dy);
121     REPORTER_ASSERT(r, FindCubicConvex180Chops(cusp, T, &areCusps) == 1);
122     REPORTER_ASSERT(r, areCusps == true);
123 }
124 
125 }  // namespace skgpu
126