• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "Schema.hpp"
9 
10 #include <armnn/Descriptors.hpp>
11 #include <armnn/IRuntime.hpp>
12 #include <armnn/TypesUtils.hpp>
13 #include <armnn/BackendRegistry.hpp>
14 #include <armnn/utility/Assert.hpp>
15 
16 #include <armnnTfLiteParser/ITfLiteParser.hpp>
17 
18 #include <ResolveType.hpp>
19 
20 #include <test/TensorHelpers.hpp>
21 
22 #include <fmt/format.h>
23 
24 #include "flatbuffers/idl.h"
25 #include "flatbuffers/util.h"
26 #include "flatbuffers/flexbuffers.h"
27 
28 #include <schema_generated.h>
29 
30 #include <iostream>
31 
32 using armnnTfLiteParser::ITfLiteParser;
33 using armnnTfLiteParser::ITfLiteParserPtr;
34 
35 using TensorRawPtr = const tflite::TensorT *;
36 struct ParserFlatbuffersFixture
37 {
ParserFlatbuffersFixtureParserFlatbuffersFixture38     ParserFlatbuffersFixture() :
39         m_Parser(nullptr, &ITfLiteParser::Destroy),
40         m_Runtime(armnn::IRuntime::Create(armnn::IRuntime::CreationOptions())),
41         m_NetworkIdentifier(-1)
42     {
43         ITfLiteParser::TfLiteParserOptions options;
44         options.m_StandInLayerForUnsupported = true;
45         options.m_InferAndValidate = true;
46 
47         m_Parser.reset(ITfLiteParser::CreateRaw(armnn::Optional<ITfLiteParser::TfLiteParserOptions>(options)));
48     }
49 
50     std::vector<uint8_t> m_GraphBinary;
51     std::string          m_JsonString;
52     ITfLiteParserPtr     m_Parser;
53     armnn::IRuntimePtr   m_Runtime;
54     armnn::NetworkId     m_NetworkIdentifier;
55 
56     /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
57     /// so they don't need to be passed to the single-input-single-output overload of RunTest().
58     std::string m_SingleInputName;
59     std::string m_SingleOutputName;
60 
SetupParserFlatbuffersFixture61     void Setup()
62     {
63         bool ok = ReadStringToBinary();
64         if (!ok) {
65             throw armnn::Exception("LoadNetwork failed while reading binary input");
66         }
67 
68         armnn::INetworkPtr network =
69                 m_Parser->CreateNetworkFromBinary(m_GraphBinary);
70 
71         if (!network) {
72             throw armnn::Exception("The parser failed to create an ArmNN network");
73         }
74 
75         auto optimized = Optimize(*network, { armnn::Compute::CpuRef },
76                                   m_Runtime->GetDeviceSpec());
77         std::string errorMessage;
78 
79         armnn::Status ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, move(optimized), errorMessage);
80 
81         if (ret != armnn::Status::Success)
82         {
83             throw armnn::Exception(
84                 fmt::format("The runtime failed to load the network. "
85                             "Error was: {}. in {} [{}:{}]",
86                             errorMessage,
87                             __func__,
88                             __FILE__,
89                             __LINE__));
90         }
91     }
92 
SetupSingleInputSingleOutputParserFlatbuffersFixture93     void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
94     {
95         // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
96         m_SingleInputName = inputName;
97         m_SingleOutputName = outputName;
98         Setup();
99     }
100 
ReadStringToBinaryParserFlatbuffersFixture101     bool ReadStringToBinary()
102     {
103         std::string schemafile(g_TfLiteSchemaText, g_TfLiteSchemaText + g_TfLiteSchemaText_len);
104 
105         // parse schema first, so we can use it to parse the data after
106         flatbuffers::Parser parser;
107 
108         bool ok = parser.Parse(schemafile.c_str());
109         ARMNN_ASSERT_MSG(ok, "Failed to parse schema file");
110 
111         ok &= parser.Parse(m_JsonString.c_str());
112         ARMNN_ASSERT_MSG(ok, "Failed to parse json input");
113 
114         if (!ok)
115         {
116             return false;
117         }
118 
119         {
120             const uint8_t * bufferPtr = parser.builder_.GetBufferPointer();
121             size_t size = static_cast<size_t>(parser.builder_.GetSize());
122             m_GraphBinary.assign(bufferPtr, bufferPtr+size);
123         }
124         return ok;
125     }
126 
127     /// Executes the network with the given input tensor and checks the result against the given output tensor.
128     /// This assumes the network has a single input and a single output.
129     template <std::size_t NumOutputDimensions,
130               armnn::DataType ArmnnType>
131     void RunTest(size_t subgraphId,
132                  const std::vector<armnn::ResolveType<ArmnnType>>& inputData,
133                  const std::vector<armnn::ResolveType<ArmnnType>>& expectedOutputData);
134 
135     /// Executes the network with the given input tensors and checks the results against the given output tensors.
136     /// This overload supports multiple inputs and multiple outputs, identified by name.
137     template <std::size_t NumOutputDimensions,
138               armnn::DataType ArmnnType>
139     void RunTest(size_t subgraphId,
140                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType>>>& inputData,
141                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType>>>& expectedOutputData);
142 
143     /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
144     /// Executes the network with the given input tensors and checks the results against the given output tensors.
145     /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
146     /// the input datatype to be different to the output
147     template <std::size_t NumOutputDimensions,
148               armnn::DataType ArmnnType1,
149               armnn::DataType ArmnnType2>
150     void RunTest(size_t subgraphId,
151                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType1>>>& inputData,
152                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType2>>>& expectedOutputData,
153                  bool isDynamic = false);
154 
155 
156     /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
157     /// Executes the network with the given input tensors and checks the results against the given output tensors.
158     /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
159     /// the input datatype to be different to the output
160     template<armnn::DataType ArmnnType1,
161              armnn::DataType ArmnnType2>
162     void RunTest(std::size_t subgraphId,
163                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType1>>>& inputData,
164                  const std::map<std::string, std::vector<armnn::ResolveType<ArmnnType2>>>& expectedOutputData);
165 
GenerateDetectionPostProcessJsonStringParserFlatbuffersFixture166     static inline std::string GenerateDetectionPostProcessJsonString(
167         const armnn::DetectionPostProcessDescriptor& descriptor)
168     {
169         flexbuffers::Builder detectPostProcess;
170         detectPostProcess.Map([&]() {
171             detectPostProcess.Bool("use_regular_nms", descriptor.m_UseRegularNms);
172             detectPostProcess.Int("max_detections", descriptor.m_MaxDetections);
173             detectPostProcess.Int("max_classes_per_detection", descriptor.m_MaxClassesPerDetection);
174             detectPostProcess.Int("detections_per_class", descriptor.m_DetectionsPerClass);
175             detectPostProcess.Int("num_classes", descriptor.m_NumClasses);
176             detectPostProcess.Float("nms_score_threshold", descriptor.m_NmsScoreThreshold);
177             detectPostProcess.Float("nms_iou_threshold", descriptor.m_NmsIouThreshold);
178             detectPostProcess.Float("h_scale", descriptor.m_ScaleH);
179             detectPostProcess.Float("w_scale", descriptor.m_ScaleW);
180             detectPostProcess.Float("x_scale", descriptor.m_ScaleX);
181             detectPostProcess.Float("y_scale", descriptor.m_ScaleY);
182         });
183         detectPostProcess.Finish();
184 
185         // Create JSON string
186         std::stringstream strStream;
187         std::vector<uint8_t> buffer = detectPostProcess.GetBuffer();
188         std::copy(buffer.begin(), buffer.end(),std::ostream_iterator<int>(strStream,","));
189 
190         return strStream.str();
191     }
192 
CheckTensorsParserFlatbuffersFixture193     void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
194                       tflite::TensorType tensorType, uint32_t buffer, const std::string& name,
195                       const std::vector<float>& min, const std::vector<float>& max,
196                       const std::vector<float>& scale, const std::vector<int64_t>& zeroPoint)
197     {
198         BOOST_CHECK(tensors);
199         BOOST_CHECK_EQUAL(shapeSize, tensors->shape.size());
200         BOOST_CHECK_EQUAL_COLLECTIONS(shape.begin(), shape.end(), tensors->shape.begin(), tensors->shape.end());
201         BOOST_CHECK_EQUAL(tensorType, tensors->type);
202         BOOST_CHECK_EQUAL(buffer, tensors->buffer);
203         BOOST_CHECK_EQUAL(name, tensors->name);
204         BOOST_CHECK(tensors->quantization);
205         BOOST_CHECK_EQUAL_COLLECTIONS(min.begin(), min.end(), tensors->quantization.get()->min.begin(),
206                                       tensors->quantization.get()->min.end());
207         BOOST_CHECK_EQUAL_COLLECTIONS(max.begin(), max.end(), tensors->quantization.get()->max.begin(),
208                                       tensors->quantization.get()->max.end());
209         BOOST_CHECK_EQUAL_COLLECTIONS(scale.begin(), scale.end(), tensors->quantization.get()->scale.begin(),
210                                       tensors->quantization.get()->scale.end());
211         BOOST_CHECK_EQUAL_COLLECTIONS(zeroPoint.begin(), zeroPoint.end(),
212                                       tensors->quantization.get()->zero_point.begin(),
213                                       tensors->quantization.get()->zero_point.end());
214     }
215 };
216 
217 /// Single Input, Single Output
218 /// Executes the network with the given input tensor and checks the result against the given output tensor.
219 /// This overload assumes the network has a single input and a single output.
220 template <std::size_t NumOutputDimensions,
221           armnn::DataType armnnType>
RunTest(size_t subgraphId,const std::vector<armnn::ResolveType<armnnType>> & inputData,const std::vector<armnn::ResolveType<armnnType>> & expectedOutputData)222 void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
223                                        const std::vector<armnn::ResolveType<armnnType>>& inputData,
224                                        const std::vector<armnn::ResolveType<armnnType>>& expectedOutputData)
225 {
226     RunTest<NumOutputDimensions, armnnType>(subgraphId,
227                                             { { m_SingleInputName, inputData } },
228                                             { { m_SingleOutputName, expectedOutputData } });
229 }
230 
231 /// Multiple Inputs, Multiple Outputs
232 /// Executes the network with the given input tensors and checks the results against the given output tensors.
233 /// This overload supports multiple inputs and multiple outputs, identified by name.
234 template <std::size_t NumOutputDimensions,
235           armnn::DataType armnnType>
RunTest(size_t subgraphId,const std::map<std::string,std::vector<armnn::ResolveType<armnnType>>> & inputData,const std::map<std::string,std::vector<armnn::ResolveType<armnnType>>> & expectedOutputData)236 void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
237     const std::map<std::string, std::vector<armnn::ResolveType<armnnType>>>& inputData,
238     const std::map<std::string, std::vector<armnn::ResolveType<armnnType>>>& expectedOutputData)
239 {
240     RunTest<NumOutputDimensions, armnnType, armnnType>(subgraphId, inputData, expectedOutputData);
241 }
242 
243 /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes
244 /// Executes the network with the given input tensors and checks the results against the given output tensors.
245 /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
246 /// the input datatype to be different to the output
247 template <std::size_t NumOutputDimensions,
248           armnn::DataType armnnType1,
249           armnn::DataType armnnType2>
RunTest(size_t subgraphId,const std::map<std::string,std::vector<armnn::ResolveType<armnnType1>>> & inputData,const std::map<std::string,std::vector<armnn::ResolveType<armnnType2>>> & expectedOutputData,bool isDynamic)250 void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
251     const std::map<std::string, std::vector<armnn::ResolveType<armnnType1>>>& inputData,
252     const std::map<std::string, std::vector<armnn::ResolveType<armnnType2>>>& expectedOutputData,
253     bool isDynamic)
254 {
255     using DataType2 = armnn::ResolveType<armnnType2>;
256 
257     // Setup the armnn input tensors from the given vectors.
258     armnn::InputTensors inputTensors;
259     for (auto&& it : inputData)
260     {
261         armnn::BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
262         armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType1);
263         inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
264     }
265 
266     // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
267     std::map<std::string, boost::multi_array<DataType2, NumOutputDimensions>> outputStorage;
268     armnn::OutputTensors outputTensors;
269     for (auto&& it : expectedOutputData)
270     {
271         armnn::LayerBindingId outputBindingId = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first).first;
272         armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkIdentifier, outputBindingId);
273 
274         // Check that output tensors have correct number of dimensions (NumOutputDimensions specified in test)
275         auto outputNumDimensions = outputTensorInfo.GetNumDimensions();
276         BOOST_CHECK_MESSAGE((outputNumDimensions == NumOutputDimensions),
277             fmt::format("Number of dimensions expected {}, but got {} for output layer {}",
278                         NumOutputDimensions,
279                         outputNumDimensions,
280                         it.first));
281 
282         armnn::VerifyTensorInfoDataType(outputTensorInfo, armnnType2);
283         outputStorage.emplace(it.first, MakeTensor<DataType2, NumOutputDimensions>(outputTensorInfo));
284         outputTensors.push_back(
285                 { outputBindingId, armnn::Tensor(outputTensorInfo, outputStorage.at(it.first).data()) });
286     }
287 
288     m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
289 
290     // Compare each output tensor to the expected values
291     for (auto&& it : expectedOutputData)
292     {
293         armnn::BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
294         auto outputExpected = MakeTensor<DataType2, NumOutputDimensions>(bindingInfo.second, it.second, isDynamic);
295         BOOST_TEST(CompareTensors(outputExpected, outputStorage[it.first], false, isDynamic));
296     }
297 }
298 
299 /// Multiple Inputs, Multiple Outputs w/ Variable Datatypes and different dimension sizes.
300 /// Executes the network with the given input tensors and checks the results against the given output tensors.
301 /// This overload supports multiple inputs and multiple outputs, identified by name along with the allowance for
302 /// the input datatype to be different to the output.
303 template <armnn::DataType armnnType1,
304           armnn::DataType armnnType2>
RunTest(std::size_t subgraphId,const std::map<std::string,std::vector<armnn::ResolveType<armnnType1>>> & inputData,const std::map<std::string,std::vector<armnn::ResolveType<armnnType2>>> & expectedOutputData)305 void ParserFlatbuffersFixture::RunTest(std::size_t subgraphId,
306     const std::map<std::string, std::vector<armnn::ResolveType<armnnType1>>>& inputData,
307     const std::map<std::string, std::vector<armnn::ResolveType<armnnType2>>>& expectedOutputData)
308 {
309     using DataType2 = armnn::ResolveType<armnnType2>;
310 
311     // Setup the armnn input tensors from the given vectors.
312     armnn::InputTensors inputTensors;
313     for (auto&& it : inputData)
314     {
315         armnn::BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
316         armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType1);
317 
318         inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
319     }
320 
321     armnn::OutputTensors outputTensors;
322     outputTensors.reserve(expectedOutputData.size());
323     std::map<std::string, std::vector<DataType2>> outputStorage;
324     for (auto&& it : expectedOutputData)
325     {
326         armnn::BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
327         armnn::VerifyTensorInfoDataType(bindingInfo.second, armnnType2);
328 
329         std::vector<DataType2> out(it.second.size());
330         outputStorage.emplace(it.first, out);
331         outputTensors.push_back({ bindingInfo.first,
332                                   armnn::Tensor(bindingInfo.second,
333                                   outputStorage.at(it.first).data()) });
334     }
335 
336     m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
337 
338     // Checks the results.
339     for (auto&& it : expectedOutputData)
340     {
341         std::vector<armnn::ResolveType<armnnType2>> out = outputStorage.at(it.first);
342         {
343             for (unsigned int i = 0; i < out.size(); ++i)
344             {
345                 BOOST_TEST(it.second[i] == out[i], boost::test_tools::tolerance(0.000001f));
346             }
347         }
348     }
349 }
350